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When q theory meets large losses risks and agency

conflicts

WANG Ying1 HUANG Wen-li2,∗ LI Sheng-hong1

Abstract. We incorporate large losses risks into the DeMarzo et al.(2012) model of dynamic

agency and the q theory of investment. The large losses risks induce losses costs and losses

arising from agency conflicts during the large losses prevention process. Both of them reduce

firm’s value, distort investment policy and generate a deeper wedge between the marginal and

average q. In addition, we study the implementation of the contract to enhance the practical

utility of our model. The agent optimally manages the firm’s cash flow and treats the cash

reservation and credit line as the firm’s financial slack, and hedges the productivity shocks and

large losses shocks via futures and insurance contracts, respectively.

§1 Introduction

As one of the most important sources of financial market frictions, the agency problem affects

firm’s value and investment decisions by unobservable actions.[1] The investors can provide the

agent with compensation according to the cash flow realizations of the firm so as to motivate

the agent, or terminate the firm by withdrawing their financial support.

Since all firms inevitably face large losses risks, industrial firms may be exposed to severe

accidents, financial firms may suffer sudden sharp drops in the value of financial assets. Lots

of facts and papers proved that for preventing these losses it requires managerial efforts.[2]

In practice it is often impossible to make the agent bear the costs that the losses generated,

since total damages often exceed the extent the agent can bear and also it is protected by the
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[1] Agent’s hidden actions involve (i) concealing and diverting cash flows for his own consumption, see

Demarzo and Fishman (2007b), and/or (ii) stopping providing costly effort, such as Biais et al. (2010), Demarezo
et al. (2012). Some papers consider both cases, for instance, Demarzo and Sannikov (2006), Sannikov (2008).
Our paper adopts the second type of action.

[2] During the recent financial crisis, the large losses incurred by financial firms were in part due to insufficient
risk control. Systematic analyses of industrial accidents point to the role of human deficiencies and inadequate
levels of care, see Gordon, Flin, Mearns, and FLeming (1996), and Hollnagel (2002).
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limited liability. This curbs managers’ incentives to reduce the losses risks. What’s worse, to

a large extent, these activities are unobservable by external parties. Those factors also induce

an agency conflicts.

Therefore, we incorporate large losses risks into the DeMarzo et al. (2012) model(DFHW

hereafter). We study how to design optimal incentive contract to mitigate those conflicts and

how the agency problem arising from large losses affects firm’s value and investment decision.

To enhance practical utility, we also explore how to implement our contract to hedge the large

losses risks.

By comparing our conclusions with those of DFHW and Benchmark case, our paper char-

acterizes the effects of the large losses imposed on the firm’s value, optimal investment policies,

as well as on the marginal and average q. The wedges between the DFHW case and our model

reflect large losses effects including the losses costs and the losses arising from agency problem

on losses prevention. Both of them reduce firm’s value and distort investment decision. To en-

hance the practical utility of our model, we study the implementation of the optimal contract

in practice. The agent optimally manages firm’s cash flow and treats the cash reservation and

a credit line as the firm’s financial slack. The firm is terminated as soon as the cash exhaust-

ed. To maximize firm’s value, the agent holds futures and insurance contracts to hedge the

productivity shocks and large losses shocks, respectively.

Our paper is related to a growing body of literature on optimal contracting theory, such as

DeMarzo and Fishman (2003), DeMarzo and Fishman (2006), DeMarzo and Fishman (2007b).

He (2008) considered a similar model where the agent’s hidden actions have an impact over

the scale of the firm rather than its current cash flow. Hoffman and Pfeil (2010) developed a

dynamic agency model, in which firm’s profitability experiences observable shock.

Lorenzoni and Walentin (2007) and Schmid (2008) used a discrete-time model to analyze

the relationship between the agency problems and the q theory of investment. In contrast

we use the continuous-time recursive contracting methodology to derive the optimal contract.

Other related investment papers include Albuquerque and Hopenhayn (2004), Quadrini (2004),

Clementi and Hopenhayn (2006), Demarzo and Fishman (2007a). Our model differs from these

models in that we focus on the effects that large losses imposed on the investment. Biais et al.

(2010) also consider the losses risks. However, we focus on its interaction with the investment.

This paper is organized as follows: Section 2 presents the model, which includes firm’s

production technology, the agency problem and the incentive contract. Section 3 formulates

the incentive compatibility and derives the model solution. Section 4 analyzes the economic

implications based on the contract. Section 5 discusses how to implement the contract. Section

6 concludes.
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§2 The model

2.1 Firm’s production technology

The firm employs physical capital for production. Let K and I denote the level of capital

stock and the gross investment rate, respectively. As is standard in capital accumulation models,

the firm’s capital stock K evolves according to

dKt = (It − δKt)dt, t ≥ 0, (1)

where δ ≥ 0 is depreciation rate.

Investment entails adjustment costs. Following the neoclassical investment literature (Hayashi

(1982)), we assume the adjustment costs function G(I,K) with G(0,K) = 0, is convex and s-

mooth in I and is homogeneous of degree one in I and K. Given the homogeneity of the

adjustment costs, the total investment costs can be written as

I +G(I,K) = c(i)K, (2)

where c(i) is an increasing convex function and represents the total cost per unit of capital

required for the firm to grow at rate i = I
K before depreciation.

While our analysis does not depend on the specific functional form of c(i), we adopt for

simplicity the special case of a quadratic form,

c(i) = i+
1

2
θi2, (3)

where the parameter θ measures the degree of the adjustment cost.

We suppose that the incremental gross output over time increment dt is proportional to the

capital stock, and so can be represented as KtdAt, where At is the cumulative productivity

process. We model the instantaneous productivity dAt in the next subsection, where we in-

troduce the agency problem. After accounting for investment, adjustment cost and the large

losses costs, the dynamics of the firm’s incremental cash flow dYt over time increment dt can

be written as

dYt = Kt(dAt − c(it)dt− CdNt). (4)

The investors have the option to terminate the contract at any time and enjoy lKτ , where

l ∈ [0, 1] is a constant. The termination can be interpreted as the firm’s liquidation or the

replacement of the agent.

2.2 The agency problem

Investors possess the firm and hire the agent to manage it. The agency problem just arises

from the separation of the firm’s ownership and control. In this paper, we suppose the agent’s

private efforts lie in two aspects: the productivity process and the large losses prevention

process.

Specifically, agent’s private efforts lie in production process are denoted by at ∈ [0, 1], which

influence the expected rate of output per unit of capital,

dAt = atμdt+ σdBt, t ≥ 0, (5)
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whereμ > 0 is firm’s expected rate of production, σ > 0 is the constant volatility, B = {Bt :

0 ≤ t < ∞} is a standard Brownian motion. While the agent chooses proper effort level at in

the productivity process, the agent enjoys private benefits at the rate λ(1− at)μdt (0 ≤ λ ≤ 1).

The action can be interpreted as choice of the effort.

Compared with daily operation, large losses are rare events. It’s natural to model the number

of large losses occurrence as a Poisson process N = {Nt}t≥0 whose intensity A depends on

the level of risk prevention. For similarity, we suppose At = {α, α + Δα}, with Δα > 0.

Specifically, the agent’s efforts ct influence the large losses prevention process, if the agent

shirks, the intensity goes to the higher level At = α + Δα, and the agent obtains private

benefits ΔαKtbdt in [t, t+ dt). Otherwise, Atα and the agent enjoys no private benefits. Once

the losses happen, firm’s value drops by CKt. C is the losses rate of firm’s capital.

In the absence of fixed investment costs and no financial market frictions, the firm optimally

chooses investment to equate the marginal value of capital with the marginal cost of capital

(adjustment costs). With the homogeneous production technology, the marginal value of cap-

ital, that is, marginal q, equals the average value of capital, that is, average q. This result

motivates the widespread use of average q, which is relatively easy to measure, as an empirical

proxy for marginal q, which is relatively difficult to measure. Following DeMarzo and Sannikov

(2006), the agent (firm management) must be continually provided with the incentive to choose

the appropriate action. The optimal contract between investors and the agent minimizes the

cost of the agency problem and has implications for the dynamics of investment and firm value.

2.3 Formulating the optimal contracting problem

The optimal contracting problem is to find an incentive-compatible contract to maximize

investors’ profit subject to delivering the agent an initial required payment W0. Denote the

contract as Φ = (I, U, τ), which specifies the firm’s investment policy It, the agent’s cumulative

compensation Ut, and termination time τ , all of which depend on the profit history that are

affected by the agent’s performance.

After the contract is initiated, the agent whose discount rate is γ > r > 0 chooses proper

effort level at, ct, 0 ≤ t ≤ τ , so as to maximize the objective function

W (Φ) = max
at,ct

Ea

[∫ τ

0

e−γt(dUt + λ(1 − at)μKtdt+ I{ct<1}ΔαKtbdt)

]
. (6)

Ea(·) is the expectation operator under the probability measure P that is induced by the action

process.

The investors’ purpose is to maximize the value function F (K,W ) by choosing an incentive-

compatible contract,

F (K0,W0) = max
Φ

E

[ ∫ τ

0
e−rtdYt + e−rτ lKτ −

∫ τ

0
e−rtdUt

]

s.t. Φ is incentive compatible and W (Φ) =W0.
(7)

The agent’s expected payoff W0 is determined by the relative bargaining power between the

agent and the investors, by varying W0 we can obtain the entire feasible contract curve.
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§3 Model solution

3.1 Incentive condition

An incentive-compatible contract Φ is the one which induces the agent to choose full efforts

level. Define agent’s discounted expected value of future compensation Wt as continuation

payoff at time t > 0

Wt(Φ) = Et

[∫ τ

t

e−γ(s−t)dUs

]
.

The following result provides a useful representation of Wt.

Lemma 3.1. At any moment of time t > 0, agent’s continuation payoff Wt satisfies the

following stochastic differential equation

dWt = γWtdt− dUt + βt(dAt − μdt)Kt +Ht(dNt − αdt). (8)

the sensitivity βt and Ht of the agent’s continuation payoff are determined by the agent’s past

efforts as, cs, 0 ≤ s ≤ t imposed on the productivity process and large losses prevention process,

respectively.

Proof. To characterize how the agent’s continuation payoff evolves over time, it is useful to

consider the lifetime expected continuation payoff, evaluated conditionally on the information

available at time t. Thus, we construct a stochastic process {Vt, t ≥ 0} from the agent’s

continuation payoff Wt as follows:

Vt =

∫ t

0

e−γsdUs + e−γtWt = Et

[ ∫ τ

0

e−γsdUs

]
.

Since Vt is the expectation of a given random variable conditional on the history up to t, the

process Vt is a martingale. Applying Itô formula to the process Vt given in above equation, we

obtain

dVt = e−γtdUt − γe−γtWt + e−γtdWt.

To maintain agent’s compensation is incentive compatible, agent’s compensation must be

sensitive to the firm’s output. Recall that firm’s output is driven by two shocks: productivity

shock (the Brownian motion Bt) and large losses shock (the Poisson process Nt) in our model.

Relying on martingale representation theorem (Stochastic Calculus for Finance II: Continuous-

Time Models, Steven E. Shreve (2004)) that there exits adaptive processes βt and Ht such

that

dVt = e−γtβt(dAt − μdt)Kt + e−γtHt(dNt − αdt)

Thus, we can write the stochastic differential equation for dWt as the sum of: i) the expected

change term Et− [dWt]; ii) a martingale term driven by the Bownian motion dBt; and iii) a

martingale term driven by the Compound Poisson process dNt − αdt:

dWt = γWtdt− dUt + βt(dAt − μdt)Kt +Ht(dNt − αdt).

Thus (8) holds.

Lemma 3.2. The necessary and sufficient condition for the contract to be incentive-compatible
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is

at = 1, ct = 1 ⇔ βt ≥ λ, ht ≥ b, t ≥ 0. (9)

where ht = Ht/K.

Proof. One important aspect of large losses lies in their timing. Large losses are relatively rare

events that contrast with day-to-day firm productivity process and cash flows. Thus, the firm’s

outputs from the production are much more directly observed than the cash flow caused by

the large losses. The investors are more sensitive to the productivity process than the large

losses. Therefore, from investors’ perspective, so that the incentive conditions on the two efforts

process should be calculated independently.

we then turn to determine the incentive coefficients βt. According to (8), βt denotes agent’s

compensation sensitivity to the efforts in the productivity process, When the agent shirks

in the production, the the instantaneous cost to the agent is the expected reduction of the

compensation, βt(1 − at)μKtdt, the benefits she get is λ(1 − at)μKtdt. Thus, to induce the

agent to choose full efforts, λ(1− at)μKtdt− βt(1− at)μKtdt ≤ 0. So the sensitivity coefficient

on the productivity process βt satisfies the following condition:

βt ≥ λ.

ht stands for the sensitivity to agent’s efforts in the large losses prevention process, When

the agent deviates and chooses shirking, the the instantaneous cost to the agent is the expected

reduction of the compensation, ΔαHtdt, the benefits getting is ΔαKtbdt. Thus, to induce

the agent to choose full efforts, we should set ΔαKtbdt − ΔαHtdt ≤ 0. Thus the sensitivity

coefficient on the productivity process ht should satisfies

ht ≥ b. �
Combining the fact that the agent’s continuation payoff must remain nonnegative according

to the limited liability constraint and the fact that it must be reduced by Ht if there is a large

loss at time t ∈ [0, τ ], we should set

Wt ≥ Ht. (10)

3.2 The optimal contract

Now we use the dynamic programming approach to determine the most profitable way for

the investors to deliver the agent any valueW . Denote by F (K,W ) the investors’ value function.

There are two state variables in our model: the capital stock Kt and agent’s continuation payoff

Wt. By using the scale invariance of the firm’s technology F (K,W ) = Kf(ω), the problem

reduces to a one dimensional problem with the single state variable ω = W
K .

We begin with a number of key properties of investors’ scaled value function f(ω). First,

it cannot exceed the first best, f(ω) ≤ fFB(ω), where fFB(ω) is the maximum value that

investors can get when there is no agency problem, the agent always takes full efforts and gets a

constant payoff. The details about the full-commitment benchmark are presented in Appendix.

Second, from (9) and (10), we have ωt ≥ b, for all t ≥ 0. When ωt ∈ [0, b], the contract must
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be terminated, the investors get the termination value, so that

f(ω) = l, ω ∈ [0, b]. (11)

Third, f is concave. This property can be derived from the following economic interpretation.

As argued above, termination is inefficient. It is necessary to provide incentives to the agent

when the agent’s scaled continuation payoff ω is low. Under this circumstance, the investors’

value reacts strongly to the bad performance, because the latter significantly raises the risk of

costly termination. By contrast, when ω is large, bad performance has a more limited impact

on the termination risk. Therefore, the sensitivity to shocks is higher for smaller ω and lower

for larger w; this results in the concavity of the investors’ scaled value function f .

Because the investors have the option to provide the agent with ω by making a lump-sum

transfer of dU > 0 to the agent and then moving to the optimal contract with payoff ω − dU ,

f(ω) ≥ f(ω − dU)− dU.

This equation suggests that f ′(ω) ≥ −1 for all ω, which means the marginal cost of com-

pensating the agent can never exceed the cost of an immediate transfer. Define ω1 as the lowest

value such that

f ′(ω1) = −1. (12)

At ω1, the firm is indifferent to allocating or keeping one dollar. Since ω1 is optimally

chosen, we also have the following “super contract” condition of ω1[3]

f ′′(ω1) = 0. (13)

The point ω1 serves as cash payout boundary. It is optimal to pay the agent with cash when

ωt > ω1 and to defer compensation otherwise. Thus, we set

dU = max(ω − ω1, 0), (14)

which means f(ωt) = f(ω1)− (ωt − ω1) for ωt > ω1.

When ωt ∈ [b, ω1], the agent’s compensation is deferred (dUt = 0). According to (8), we get

the evolution of ω = W
K as follows:

dωt = (γ − i+ δ)ωtdt+ βtσdBt − h(dNt − αdt). (15)

According to the dynamic programming principle, the corresponding Hamilton-Jacobi-Bellman

equation for f(ω) is given by

rf(ω) = max
i,h,β

{
μ− αC − c(i) + f(ω)(i − δ)− ωf ′(ω)(i− δ) + f ′(ω)(γω + hα)

+ 1
2f

′′(ω)σ2β2 − α(f(ω)− f(ω − h))

}
.

(16)

Since f is concave, the mapping β �→ 1
2f

′′(ω)σ2β2 is decreasing for positive β. According

to (9) we get

β = λ. (17)

In the same way, it is optimal to take h as low as possible,

h = b. (18)

[3]Dixit(1993) stated that the super contract condition essentially requires that the second derivatives match
at the boundary.
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Taking the first order condition of the HJB equation (16) with respect to i, we have the

optimal investment-capital ratio i(ω) which satisfies the following equation:

c′(i) = f(ω)− ωf ′(ω). (19)

From the investor’s perspective, this equation shows that the marginal cost of investing equals

the marginal value of investing. The marginal value of investing equals the current per unit

value of the firms to investors f(ω) plus the marginal effect of decreasing the agent’s per unit

of payoff ω as the firm grows.

Our main results on the optimal contract are summarized in the following theorem.

Theorem 3.1. The investors’ value function F (K,W ) is proportional to capital stock K,

F (K,W ) = K · f(ω), where f(ω) is the investors’ scaled value function. For ωt ∈ [b, ω1],

f(ω) is concave and is the unique solution of ODE (16) with boundary conditions (11), (12)

and (13). The agent’s scaled continuation payoff ω evolves according to (15). For ω > ω1,

f(ω) = f(ω1) − (ω − ω1). Cash payments dut = dUt/Kt reflects ωt back to ω1. The contract

is terminated at time τ , which is the smallest τ such that ωτ = b. Optimal investment-capital

ratio is given by (19).

We present a formal verification theorem for the optimal contract in Appendix B. And

prove that f(ω) represents the investor’s optimal profits, which can be achieved by the contract

outlined in the proposition.

§4 Model implications and analysis

4.1 Parameter choices and calibration

We take the widely used value for the agent’s discount rate γ = 5%, the annual risk free

interest rate as investors’ discount rate r = 4.6%. According to Eberly, Rebelo and Vincent

(2009) which provides empirical evidence in support of Hayashi (1982), we set the expected

productivity rate μ = 20%, and the volatility of productivity process σ = 20%. To fit the first-

best values of qFB and iFB to the sample averages, we install the adjustment cost parameter

θ = 2 and the capital depreciation rate δ = 12.5%. For the parameters depicting the large

losses, the intensity of the large losses α = 0.02, the cost of losses per capital C = 0.35, the

incentive parameters λ = 0.2 and b = 0.1. Finally, we choose the firm’s termination value per

capital l = 0.9, in line with some empirical estimates.[4]

4.2 Investor’s scaled value function

According to the solution of optimal contract in Section 3, we plot the investors’ scaled

value function f(ω) for ω ∈ (b, ω1) in three cases. The gap between the benchmark solution

[4]See Li, Whited and Wu (2014) for the empirical estimates of l. The averages are 1.2 for Tobin’s q and 0.1
for the investment-capital ratio, respectively, for the sample used by Eberly, Rebelo and Vincent (2009). The
imputed value for the adjustment cost parameter θ is 2 broadly in the range of estimates used in the literature.
See Hall (2004), Riddick and Whited (2009) and Eberly, Rebelo and Vincent (2009).
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Table 1: Summary of Parameters
The parameter values used for numerical illustration

Parameters Symbol Value
Investors’ discount rate r 4.6%
Agent’s discount rate γ 5%
Expected productivity rate μ 20%
Volatility of productivity process σ 20%
Adjustment costs parameter θ 2
Depreciation rate δ 12.5%
Intensity of the large losses α 2%
The large losses cost per capital C 35%
Fraction of private benefits derived from the productivity process λ 20%
Private benefits caused by the large losses per capital b 10%
Termination value per capital l 90%

Figure 1: The investors’scaled value function f(ω) in different model

and our model captures the total losses due to the agency conflicts. The wedge between the

DFHW model and the large losses model characterizes the large losses costs and the loss arising

from agency problem during the large losses prevention.

Note that, the cash payout boundary ω1 is the end point of the curves, it’s valuable to notice

that the cash payout boundary in our model is lower than that in the DFHW. The result is

very intuitive since the large losses risks imposed more risks on the agent and also increases the

risk of inefficient termination, all of these make the agent more impatient. So it’s optimal for

the agent to get cash payoff earlier. Obviously, f(ω) in the DFHW model is much higher than

the rest, which implies large losses act as a shock creating great destruction on the firm is an

important factor in the investors’ value composition, and taking such losses into account has
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practical significance.

4.3 Average q and marginal q

Based on f(ω) we now derive the effect of the large losses risks on the marginal qm and

average qa. The average q is defined as the ratio between the firm’s value and capital stock,

qa(ω) =
F (K,W ) +W

K
= f(ω) + ω. (20)

This is consistent with the definition of q in the benchmark condition. The marginal qm captures

the marginal impact of an incremental unit of capital on the firm value and can be represented

by

qm(ω) =
∂(F (K,W ) +W )

∂K
= f(ω)− ωf ′(ω). (21)

Recall f ′(ω) ≥ −1, we have the following relationship:

qFB > qa(ω) > qm(ω). (22)

So the average q is always above the marginal q and the difference between them varies over

time. Thess results are consistent with the existing research in DFHW. In our model, we focus

on the effect of the large losses play on qa and qm.

Figure 2: Marginal qa Figure 3: Average qa

Figure 2 and 3 plot the marginal q and average q for the DFHW and our model. Obviously,

both qa and qm with large losses are smaller than the values in DFHW model. As in the

analysis above, the gap reflects the firm’s losses when the losses happened and the costs due

to agent’s conflicts during the large losses prevention process. Both of them cause a reduction

in firm’s value. As marginal q is a forward looking measure which captures future investment

opportunities. So Figure 2 implies the large losses influence the evaluation of firm’s investment

opportunities.

4.4 Investment

In this part, we discuss the firm’s investment decision. According to the expression of c(i)

(3), the first order condition (19) and the definition of marginal q (2), the optimal investment-
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capital ratio i(ω) can be written as

i =
1

θ

(
f(ω)− ωf ′(ω)− 1

)
. (23)

Taking the first-order derivative with respect to ω, we obtain the following measure of i(ω)

sensitivity, which is i′(ω). From the convexity of c(i) and the monotonicity of qm, we have

i′(ω) = − ωf ′′(ω)
c′′(i(ω))

≥ 0, (24)

the equality holds only at termination and payout boundaries.

Figure 4: Comparing investment ratio in different model.

The gap between i(ω) in the DFHW case and our model reflects large loss effects, which

contains two factors, the loss cost and the loss arising from agency problem on loss prevention.

Figure 4 implies that investment-capital ratio in our model is less than that in DFHW, it

is optimal to invest less when large loss risk exists. It is noteworthy that i(ω) is higher in

benchmark case than that in DFHW model when ω is lower, which implies the agency conflict

cost is higher than the large loss cost when agency problem occupies dominated position. When

ω is higher, which means the agency problem relaxes, large loss occupies the main position, the

investment ratio in the DFHW model is higher than that in the benchmark case.

§5 Model implementation

In this section, we examine the liquidity and risk management through firm’s financial

slack and financial instruments. Specifically, the agent optimally manages the firm’s cash flow,

and hedges the firm’s risk by the futures and insurance contract. It is well known that the

implementation is not unique, we adopt this intuitive way in this paper.
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5.1 Financial slack

During the liquidity management, credit line can be used as a source to fund the firm. A

credit line is an important alternative source of liquidity. We set it as a fraction of the firm’s

capital stock. The economic interpretation is that the firm must be able to post collateral to

secure a credit line and the value of the highest quality collateral does not exceed the fraction

m of the firm’s capital stock, where m > 0 is a constant. mK can be interpreted as the firm’s

short-term debt capacity. For simplicity, we assume m as exogenously specified in this paper.

Recall that the firm potentially generates operating losses and needs access to cash or credit

to operate. Financial slack may correspond to the firm’s cash reserves, line of credit, or a

combination of these two. Rather than describing all possibilities, we adopt the combination

of the firm’s cash reserves and the credit line as financial slack, the largest short-run loss the

firm can sustain before the contract is terminated. Once its cash reserves is exhausted, the

firm cannot continue to operate, the contract is terminated. The agent controls the firm and

maximizes the firm’s cash reserve after payout. Let St denote the level of cash reserves at time

t, which satisfies

St ≥ −mKt. (25)

When St = −mKt, the firm exhausts all the cash reserves and is terminated.

5.2 Risk hedging

In addition to cash liquidity management, the agent reduces the firm’s risks through financial

hedging. One financial instrument, which the agent can use to hedge the productivity risk Bt,

is a standard futures contract. And insurance is used to hedge the risk with respect to the large

losses.

First, we characterize the futures contract. In the standard asset pricing framework, futures

have zero initial value and its payoff has zero mean under the risk-neutral measure. The futures

price Pt evolves according to

dPt = σmPtdZt, (26)

where σm is the volatility of the aggregate market portfolio, and Zt is a standard Brownian

motion that is partially correlated with firm productivity shocks driven by the Brownian motion

Bt, with correlation coefficient ρ. Given any admissible futures position φt that the agent

takes to hedge the firm’s risk exposure to the productivity risk Bt, the instantaneous payoff is

φtσmStdZt

Then, the agent takes an insurance to hedge the large losses risk. If the agent takes a unit

long position in the contingent claim, he pays an insurance premium α per unit of time and

receives a unit payment from the insurer when the losses happen. Let πK denote the agent’s

demand for this insurance contract. When the large losses happen, dNt = 1, the total stochastic

exposure of this insurance is πKt(dNt − αdt). Because investors are risk neutral, there is no

risk premium in the insurance contract.

When the agent takes hedging position in futures contract and insurance, firm’s cash reser-
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vation evolves as follow:

dSt = rStdt+ dYt − dUt + φtσmStdZt + πKt(dNt − αdt). (27)

The first term on the right side comes from the interest rate r earned by the cash reserves. The

term dYt − dUt refers to the net cash flow derived by the productivity process after the payout,

the last two terms are benefits which result from hedging the two shocks.

Next, by optimally choosing the investment, payout policy and hedging position, the agent

maximizes the firm’s value P (K,S). The firm’s decisions and value depend on the value of St,

and the firm suffers termination if St < −mKt. Similarly, there also exists a payout threshold

S. As we discussed before, S satisfies

P ′(K,S) = −1, P ′′(K,S) = 0. (28)

Thus, St > S corresponds to firm’s payout region, so that,

P (K,S) = P (K,S)− (S − dU).

When St ∈ [−mKt, S], the firm is in the internal financing region. The HJB equation of the

firm’s value function P (K,S) is as follows:

rP (K,S) = max
I,π,φ

{
Yt − c(i)K − αC + (I − δK)PK + [rS +K(μ− c(i)− αC − απ)]PS

+ 1
2 (σ

2K2 + σ2
mφ

2S2 + 2ρφσσmSK)PSS + α(P (K,S + πK)− P (K,S))

}
.

(29)

Similarly, the firm’s value function is homogeneous with respect to K, that is, P (K,S) =

K · p(s), where s = S
K is the firm’s cash-capital ratio. The dynamics of s and p(s) can be

obtained via the same calculation as in Section 3, so we omit it here.

The first-order condition with respect to φ is

φ∗(s) = − ρσ

σms
. (30)

Thus, the firm’s total hedge position of the futures contract is |φ ·W | = (ρσ/σm)K, which is

linearly increasing with the firm capitalK. In futures contract, we do not consider the marginal

account; our model can be extended so as to incorporate this factor. See Bolton, Chen and

Wang (2011).

§6 Conclusion

In this paper, we extend DeMarzo et al.(2012) by incorporating large losses risks, an im-

portant factor in practice, to investigate the corresponding effects on firm value, investment

strategies. Therefore, our model is able to link large losses to firm value, average q, marginal

q and corporate investment decisions. To enhance the practical utility of our model, we study

the implementation of the optimal contract. The agent optimally manages the firm’s cash flow

and treats the cash reservation and credit line as the firm’s financial slack, and hedges the

productivity shocks and large losses shocks via futures and insurance contracts, respectively.

This paper shows that, except the agency problem in productivity process, the large loss costs

and the losses arising from the agency conflicts in losses prevention process result in a loss of
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firm value due to distorted investment and payout decisions.

Appendix A: The full-commitment benchmark

To highlight the dynamic effects of agency problem, we examine the optimal investment

under standard neoclassical setting without the agency problem. Under full commitment, the

agent’s payments and investment decisions are separated. Investors optimally choose investment

I to maximize the firm’s value

Q(Kt) = max
I
Et

[ ∫ ∞

t

e−r(s−t)Ysds

]
. (31)

Using the dynamic programming approach, we obtain

rQ(K) = max
I
K(μ− c(i)− αC) +QK(I − δK). (32)

According to the homogeneity property, the firm’s value function QFB(K) is given by

QFB(K) = qFB ·K. (33)

By substituting (33) into (32), we obtain the following HJB equation of qFB,

(r + δ)qFB = max
i

(
μ− αC − c(i) + iqFB

)
. (34)

There exists an optimal investment-capital ratio iFB that maximizes the present value of the

firm’s cash flow. Tobin’s q is expressed via the first-order condition for investment. By jointly

solving (3), (34), we obtain the values of qFB and iFB as follows:

qFB = c′(iFB) = 1 + θiFB, (35)

iFB = r + δ −
√
(r + δ)2 +

2(r + δ + αC − μ)

θ
. (36)

The agent’s and investors’ payoffs on a per unit of capital as ω = W
K and

fFB(ω) = FFB(K,W )/K = qFB − ω. (37)

The above results show that, in absence of the agency problem, the first-best investment

is constant over time and independent of the firm’s history or the volatility of its cash flows.

After taking agency problem into account, we will find these conclusions no longer hold.

Appendix B: Proof of Proposition 3.1

We prove that f represents the investors’ optimal profit, which is achieved by the contract

outlined in the proposition. Define

Gt =

∫ t

0

e−rs(dYs − dUs) + e−rtF (Kt,Wt), (38)

where Wt evolves according to (8). Under an arbitrary incentive-compatible contract Φ∗, using
Itô’s formula, we obtain for t < τ

ertdGt = Kt

{[− rf(ω) + μ− c(i)− αC + (i − δ)(f(ω)− ψf ′(ω)) + (γω + αh)f ′(ω)

+ 1
2σ

2β2f ′′(ω)
]
dt+ (−1− f ′(ω))dUt/Kt + σ(1 + βf ′(ω))dBt

}
.

(39)
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Under the optimal investment policy i′(ω) and the optimal incentive policy (9), the coeffi-

cient of dt always equals zero. The second term captures the optimality of the cash payment

policy. It is equals zero under the optimal contract for ω ∈ [b, ω1]. Gt is a super-martingale.

Because any other contracts make first term non-positive, the second term is non-positive by

f ′(ω) ≥ −1, and the expectation of the last term equals zero. It is a martingale if and only if

under the optimal contract and ω ∈ [b, ω1]. And it is increasing only when ω > ω1.

Now we evaluate the investors’ value for an arbitrary incentive-compatible contract. For all

t <∞, the investors’ expected payoff is

G(Φ) = E
[∫ τ

0 e
−rs(dYs − dUs) + e−rτ lKτ

]
= E

[
Gt∧τ + 1t≤τ

(∫ τ

t
e−rs(dYs − dUs) + e−rτ lKτ − e−rtF (Kt,Wt)

)]
= E[Gt∧τ ] + e−rtE

{
1t≤τ

[ ∫ τ

t e
−r(s−t)(dYs − dUs) + e−r(τ−t)lKτ − F (Kt,Wt)

]}

≤ G0 + (qFB − l)E[e−rtKt].

The super-martingale property of Gt leads to the first term on the right hand side. The second

term in the inequality follows from

Et

[ ∫ τ

t

e−r(s−t)(dYs − dUs) + e−r(τ−t)lKτ

]
+Wt ≤ qFBKt, (40)

and

qFBKt −Wt − F (Kt,Wt) < (qFB − l)Kt. (41)

Therefore, letting t→ ∞,

G(Φ) ≤ G0. (42)

For a contract that satisfies the conditions of the proposition, Gt is a martingale until time τ .

Therefore, the payoff G0 is achieved with equality. Q.E.D.
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