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Abstract. In this paper, we study the propagation of the pattern for a reaction-diffusion-

chemotaxis model. By using a weakly nonlinear analysis with multiple temporal and spatial

scales, we establish the amplitude equations for the patterns, which show that a local pertur-

bation at the constant steady state is spread over the whole domain in the form of a traveling

wavefront. The simulations demonstrate that the amplitude equations capture the evolution of

the exact patterns obtained by numerically solving the considered system.

§1 Introduction and preliminaries

We consider the following reaction-diffusion system with chemotaxis and volume-filling ef-

fects {
ut = ∇ · (D(1− u)−α∇u − χu(1− u)β∇v) + μu(1− u/uc), x ∈ Ω, t > 0,

vt = Δv − v + u, x ∈ Ω, t > 0,
(1)

where D(1− u)−α stands for the diffusion coefficient depending on cell density, and u(1 − u)β

is the chemotactic sensitivity function with crowding capacity 1, i.e., the maximal cell numbers

that can be accommodated in a unit volume of space; (x, t) ∈ Ω× [0,+∞) and Ω is a bounded

convex domain in R
N (N = 1, 2 and 3) with smooth boundary ∂Ω; D > 0 and α, β are real

constants; μ > 0 is the intrinsic growth rate of the cell and uc denotes the carrying capacity

with 0 < uc < 1; χ > 0 is called the chemotactic coefficient.
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As for the derivation of system (1), we refer to [3, 4, 7, 8] and references therein. The research

on (1) has already involved many aspects. For instance, the global existence of classical solutions

and non-existence and existence of stationary patterns [4], the local and global bifurcation and

their stability of non-constant steady states [3], pattern formation and competition of unstable

wave modes [2]. However, there are no references on the wave propagation in a large spatial

domain for system (1). There only exist two trivial steady states (0, 0) and (uc, uc) in (1)

when the chemotactic coefficient χ is sufficiently small [2]. Thus, we assert that there is a

traveling wave solution for system (1) connecting (0, 0) and (uc, uc) in the domain R, which

can be proved by applying the method in the references [5, 6]. But this problem is left for

interested readers. In this paper, we shall focus on how the pattern invades the whole domain

when the chemotactic coefficient χ and the spatial domain are large enough. By using the

weakly nonlinear analysis [1], we derive the real cubic Ginzburg-Landau equation governing the

evolution of pattern amplitude, so that the existence of traveling wavefront in (1) is established.

For system (1) we incorporate the initial data

(u0, v0) ∈ [W 1,∞(Ω)]2 and 0 ≤ u0(x) < 1, v0(x) ≥ 0, x ∈ Ω (2)

and Neumann boundary conditions
∂u

∂ν
=

∂v

∂ν
= 0, t > 0, x ∈ ∂Ω (3)

with ν being the outer unit normal vector on ∂Ω. The present work is based on the following

results:

Lemma 1.1 (Theorem 2.1 of [4]). Assume that parameters α and β satisfy

α+ β > 1, (4)

then problem (1)-(2) has a global classical solution (u(x, t), v(x, t)). Moreover, there exists a

constant δ > 0 such that

0 ≤ u(x, t) ≤ 1− δ, 0 ≤ v(x, t) ≤ 1− δ, for all (x, t) ∈ Ω× (0,∞). (5)

Lemma 1.2 (Proposition 2.5 of [3]). Let (u(x), v(x)) be a nonnegative steady state of (1)-(3)

with 0 ≤ u(x) ≤ 1. If α and β satisfy (4), then

0 < u(x) < 1, 0 < v(x) < 1, for all x ∈ Ω. (6)

In one dimensional case, we take Ω = (0, l) with l > 0. The negative Laplace operator −Δ

on Ω with the homogeneous Neumann boundary condition has a sequence of simple eigenvalues

with corresponding eigenfunctions given by

λj = (πj/l)2, ϕj(x) =

{
1, j = 0,

cos(πjx/l), j > 0,
(7)

where j = 0, 1, 2, · · · . The result below is from [2] and [3].

Lemma 1.3. Let parameters D, μ and uc be fixed. If (4) holds and the chemotactic coefficient

χ satisfies

χ >
(
√
D(1 − uc)−α +

√
μ)2

uc(1− uc)β
def
= χc, (8)
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then the constant steady state (uc, uc) loses stability and (1)-(3) possesses stationary patterns.

Moreover, the first admissible wave number kjm corresponds to the smallest bifurcation value

χm =
(1 + k2jm)

[
μ+ k2jmD(1− uc)

−α
]

k2jmuc(1− uc)β
≥ χc, (9)

where kjm = λj = (πj/l)2, and we denote kjm by ka.

This paper is organized as follows. In Section 2, we shall derive the real Ginzburg-Landau

equation governing the evolution of the amplitude of the pattern by using a weakly nonlinear

multiple scale analysis. We show that the pattern invades the whole spatial domain as a traveling

wavefront. In Section 3, by solving numerically the full system (1)-(3), it is demonstrated that

the Ginzburg-Landau equation well approximates the shape and speed of the traveling front.

Discussion and problems for further study are also presented.

For ease of statement, in what follows, we will restrict the spatial dimension to N = 1 and

take Ω = [0, l], where the positive constant l is large enough. But it will be seen that the same

arguments can still apply for N = 2, 3. In addition, throughout this paper we will always

assume (4) and (8) are true.

§2 Traveling front invasion of pattern

In this section, we shall derive the equation describing the evolution of the amplitude of

the pattern. By taking the slow and the fast spatial dependence of solution into account, we

introduce X as the slow dependence and x as the fast dependence with X = εx. The pattern

stems from the perturbation of the constant steady state (uc, uc), and thus we begin with the

transformation

U = u− uc, V = v − uc,

then system (1) becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ut = d′(uc + U)(U ′)2 + d(uc + U)U ′′

− χh′(uc + U)U ′V ′ − χh(uc + U)V ′′ − μU − μ

uc
U2,

Vt = V ′′ + U − V,

(10)

where d(u) = D(1 − u)−α, h(u) = u(1 − u)β . For nonlinear analysis, we introduce time and

space scales as ⎧⎨
⎩t = t(T1, T2, T3, · · · ), Ti = εit, i = 1, 2, · · · ,
x = x(x,X), X = εx,

(11)

then the spatial and the temporal derivatives take the form as⎧⎪⎪⎨
⎪⎪⎩
∂t → ε∂T1 + ε2∂T2 + ε3∂T3 + · · · ,
∂x → ∂x + ε∂X ,

∂xx → ∂xx + 2ε∂xX + ε2∂XX ,

(12)
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where ε 	 1; moreover, expand χ and W = (U V )T in the small parameter ε as⎧⎪⎨
⎪⎩
χ = χc + εχ1 + ε2χ2 + ε2χ2 + · · · ,

W = εW1 + ε2W2 + ε3W3 + · · · ,
(13)

where Wi = (W1i W2i)
T , T denotes the transpose of a vector. Substituting (12) and (13) into

(1) and collecting the terms with the same order in ε, we have

K(χm)W1 = 0, ................................................O(ε), (14)

K(χm)W2 = F (W1), .......................................O(ε2), (15)

K(χm)W3 = G(W1,W2), .................................O(ε3), (16)

where χm is defined as (9),

K(χm) =

⎛
⎜⎝ d(uc)∂xx − μ −χmh(uc)∂xx

1 ∂xx − 1

⎞
⎟⎠ , F = (F1 F2)

T , G = (G1 G2)
T ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1 = ∂W11

∂T1
+ μ

uc
W 2

11 − 2d(uc)∂xXW11 − d′(uc)∂x(W11∂xW11)

+χm [2h(uc)∂xXW21 + h′(uc)∂x(W11∂xW21)] + χ1h(uc)∂xxW21,

F2 = ∂W21

∂T1
− 2∂xXW21,

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 = ∂W11

∂T2
+ ∂W12

∂T1
+ 2μ

uc
W11W12 − d(uc)(2∂xXW12 + ∂XXW11)

−d′(uc) [2∂x(W11∂XW11) + ∂xx(W11W12)]− 1
2d

′′(uc)∂x(W
2
11∂xW11)

+χmh′(uc) [∂x(W11∂xW22) + ∂x(W11∂XW21) + ∂X(W11∂xW21) + ∂x(W12∂xW21)]

+χm

[
h(uc)(2∂xXW22 + ∂XXW21) +

1
2h

′′(uc)∂x(W
2
11∂xW21)

]
+χ1 [h(uc)(∂xxW22 + 2∂xXW21) + h′(uc)∂x(W11∂xW21)] + χ2h(uc)∂xxW21,

G2 = ∂W21

∂T2
+ ∂W22

∂T1
− 2∂xXW22 − ∂XXW21.

Again substituting (12) and (13) into (3), at x = 0, l we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂W1

∂x = 0,

∂W2

∂x = −∂W1

∂X ,

∂W3

∂x = −∂W2

∂X ,

· · ·

(17)

Equation (14) with (17) has a solution

W1 = ρA(X,T1, T2) cos(kax), ρ = (1 + k2a 1)T . (18)



112 Appl. Math. J. Chinese Univ. Vol. 32, No. 1

Here ka is defined in Lemma 1.3 and ka = jmπ/l. It is obvious that the vector ρ is defined up

to a constant one. By (18), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = μ
2uc

A2(1 + k2a)
2 +

[
∂A
∂T1

(1 + k2a)− χ1Ah(uc)k
2
a

]
cos(kax)

+
[
d′(uc)A

2(1 + k2a)
2k2a − χmh′(uc)A

2(1 + k2a)k
2
a +

μ
2uc

A2(1 + k2a)
2
]
cos(2kax)

+
[
2d(uc)(1 + k2a)

∂A
∂X ka − χm2h(uc)

∂A
∂X ka

]
sin(kax),

F2 = ∂A
∂T1

cos(kax) + 2ka
∂A
∂X sin(kax).

By a simple computation, the adjoint equation of (14) has a solution

W 1 = (W 11 W 21)
T = ρA(X,T1, T2) cos(kax), ρ =

(
1 + k2a

χmh(uc)k2a
1

)T

, (19)

where ρ is the kernel of the adjoint of the operator below

K(χm)|w1 =

⎛
⎜⎝ −d(uc)k

2
a − μ χmh(uc)k

2
a

1 −k2a − 1

⎞
⎟⎠ .

Then the solvability condition of (15), i.e.,

〈F,W 1〉 = 0, (20)

where 〈·, ·〉 denotes the inner product on L2[0, 2π
km

]. We should point out that, notice of the

Neumann boundary condition (3), the Fredholm alternative need to be used on the interval

[0, 2π
km

]. Then we can obtain a solution of (1)-(3) on the whole domain l by using the refection

and periodic extension. It is easy to check that equation (20) leads to χ1 = 0, T1 = 0. According

to the expression of F , (15) has a solution in the form of⎧⎨
⎩

W12 = A2(b11 + b12 cos(2kax)) +
∂A
∂X b13 sin(kax),

W22 = A2(b21 + b22 cos(2kax)) +
∂A
∂X b23 sin(kax),

(21)

where bij (i = 1, 2, j = 1, 2, 3) satisfy the following equations, respectively,

κ0(χm)(b11, b21)
T =

(
μ

2uc
(1 + k2a)

2

0

)
,

κ2(χm)(b12, b22)
T =

(
(1 + k2a)

2k2ad
′(uc)− χmh′(uc)(1 + k2a)k

2
a +

μ
2uc

(1 + k2a)
2

0

)
,

κ1(χm)(b13, b23)
T =

(
2d(uc)(1 + k2a)ka − 2χmh(uc)ka

2ka

)

and

κp(χm) =

(
−p2k2ad(uc)− μ p2k2aχmh(uc)

1 −p2k2a − 1

)
, p = 0, 1, 2.
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Now G can be simplified as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G1 =
[
(1 + k2a)

∂A
∂T2

− χ2h(uc)k
2
aA+G

(1)
1 A3 −G

(2)
1

∂2A
∂X2

]
cos(kax)

+G
(3)
1 A ∂A

∂X sin(2kax) +G∗,

G2 =
(

∂A
∂T2

− ∂2A
∂X2 − 2b23ka

∂2A
∂X2

)
cos(kax) + 8kab22A

∂A
∂X sin(2kax),

where G∗ satisfies 〈G∗,W 11〉 = 0,

G
(1)
1 =

2μ

uc
(1 + k2a)(b11 +

1

2
b12) +

[
d′(uc)(b11 +

1

2
b12) + d′′(uc)

1

8
(1 + k2a)

2

]
(1 + k2a)k

2
a

− χmh′(uc)k
2
a

[
b11 − 1

2
b12 + b22(1 + k2a)

]
− χm

1

8
h′′(uc)(1 + k2a)

2k2a,

G
(2)
1 = d(uc)(1 + k2a + 2b13ka)− χmh(uc)(1 + 2b23ka),

G
(3)
1 =

μ

uc
(1 + k2a)b13 + 8d(uc)kab12 + 2d′(uc)(kab13 + 1 + k2a)(1 + k2a)ka

− χm8h(uc)kab22 − χmh′(uc)
[
kab13 + (2 + kab23)(1 + k2a)

]
ka.

Applying the solvability condition of (16), i.e., 〈G,W 1〉 = 0, we have the amplitude equation

of the pattern
∂A

∂T2
= δ

∂2A

∂X2
+ τA− γA3, (22)

where

τ =
χ2h(uc)(1 + k2a)k

2
a

(1 + k2a)
2 + χmh(uc)k2a

, γ =
(1 + k2a)G

(1)
1

(1 + k2a)
2 + χmh(uc)k2a

,

δ =
χmh(uc)(1 + 2b23ka)k

2
a + (1 + k2a)G

(2)
1

(1 + k2a)
2 + χmh(uc)k2a

,

G
(4)
1 =

4

3kal

(
8kab22 +

1 + k2a
χmh(uc)k2a

G
(3)
1

)
[(−1)jm − 1].

We know that (22) is the typical Ginzburg-Landau equation. By the “tanh” method, we can

find the following exact solution of (22) in R

A(X,T2) =
1

2

√
τ

γ

(
1− tanh

(√
τ

δ

Y − Y0

2
√
2

))
, (23)

where Y = X − cT2, c = 3
√
τδ/2. It is a traveling wave solution of (22) connecting 0 and√

τ/γ.

§3 Simulation and discussion

In this section, simulation will show that the local perturbation of the steady state (uc, uc)

propagates through the whole domain in the form of a traveling wave and equation (22) can

excellently capture the envelope evolution and the progressing of the perturbation as a wave.
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We take the system parameters as D = 0.1, μ = 0.9, uc = 0.3, α = 1.3 and β = −0.1.

The size of the domain is chosen as l = 4π and the small parameter ε = 0.12. Then by

a numerical computation, we have that the first admissible mode jm = 6 as well as τ =

0.9068, γ = 70.5696, δ = 0.3388, ρ = (3.25 1)T , χm = 5.8435, ka = 1.5. Thus the amplitude

of the stationary pattern is approximately equal to ερ
√
τ/γ + ε2(b11 + b12 b21 + b22)

T τ/γ =

(0.0472 0.0110)T . The chemotactic coefficient χ is given by χ = (1+ ε2)χm = 5.9276. We have

perturbed the steady state (uc, uc) = (0.3, 0.3) at the left end of the spatial interval, see Fig 1.

Figure 1: (Color online) A modulated progressing wave by which the pattern invades the whole
domain. The red dashed line is u = uc + ε(1 + k2a)A(X,T2) + ε2(b11 + b12)A

2(X,T2), where
A(X,T2) is a numerical solution of (22) with the initial data 1

2

√
τ/γ(1 − tanh(

√
τ/(8δ)X)).

The blue solid line is a numerical solution of system (1) with the initial data (u0 v0)
T =

(uc uc)
T + ερA(X, 0) cos(kax).

In our numerical simulations, we find a traveling wave solution (u, v) connecting (0, 0) and

(uc, uc) = (0.3, 0.3) for χ < χm, see Fig 2, and a traveling wave solution (u, v) connecting the

constant steady state (uc, uc) = (0.3, 0.3) and the non-constant steady state with the amplitude

ε(1 + k2a, 1)
√
τ/γ + ε2(b11 + b12, b21 + b22)τ/γ = (0.0472, 0.0110) for χ > χm, see Fig 3. The

former can be strictly proved by the method in [5,6] and is left for interested readers. The
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theoretical study for the latter is in progress and will be presented in future papers.

Figure 2: A traveling wavefront u connecting 0 to uc = 0.3. The initial data is (u0 v0)
T =

ερA(X, 0). All the parameters are the same as in Fig.1 except χ = 4 < χm, l = 40 and the
running time is T2 = 0.5

Figure 3: A traveling wave solution u connecting uc = 0.3 to a stationary pattern with the
amplitude 0.0472. The initial data is (u0 v0)

T = (uc uc)
T + ερA(X, 0). All the parameters are

the same as in Fig.1 except χ = (1 + 0.122)χm = 5.9276 > χm, l = 40 and the running time is
T2 = 0.025
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