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On vector variational-like inequalities and vector

optimization problems with (G, α)-invexity

JAYSWAL Anurag1 CHOUDHURY Sarita∗,1,2

Abstract. The aim of this paper is to study the relationship among Minty vector variational-

like inequality problem, Stampacchia vector variational-like inequality problem and vector op-

timization problem involving (G,α)-invex functions. Furthermore, we establish equivalence

among the solutions of weak formulations of Minty vector variational-like inequality problem,

Stampacchia vector variational-like inequality problem and weak efficient solution of vector op-

timization problem under the assumption of (G,α)-invex functions. Examples are provided to

elucidate our results.

§1 Introduction

Variational inequalities introduced by Stampacchia [19] represents a natural generalization

to the variational theory of boundary value problems for partial differential equations. Since

then, the study of variational inequalities and its generalizations has increased tremendously due

to its wide applications in many areas such as mechanics, physics, mathematical programming,

theory of control, complementarity problems and economics.

Another form of variational inequalities was presented by Minty [15], which have proved

to characterize a stronger notion of equilibrium than Stampacchia variational inequalities. Gi-

anessi [8,9] introduced vector variational inequalities in finite dimensional Euclidean space as

an extension of Stampacchia [19] and Minty [15] variational inequalities. Vector variational-like

inequalities have been a powerful tool to solve vector optimization problems. Hence, vector

variational inequality problems have been considerably generalized in different ways by many

researchers [5,6,10,11,13,14,17,18,20,22].

Yang et al. [21] established relations between a Minty vector variational inequality and a

vector optimization problem under pseudoconvexity or pseudomonotonicity assumptions. Gang
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and Liu [7] proved the relationship among Minty vector variational-like inequality problem, S-

tampacchia vector variational-like inequality problem and vector optimization problem using

the concept of pseudoinvexity or η-pseudomonotonicity. Thereafter, Al-Homidan and Ansari

[1] studied the relationship among generalized Minty vector variational-like inequality prob-

lem, generalized Stampacchia vector variational-like inequality problem and vector optimization

problem for nondifferentiable and nonconvex functions.

Convexity has been generalized in many ways for the purpose of weakening its limitations

in mathematical programming, see for instance [2,16]. Antczak [3] introduced a new class of

generalized convexity called G-invexity and further extended it to the vectorial case by defining

vector G-invexity [4]. Motivated by Antczak, Liu et al. [12] introduced the concept of (G,α)-

invexity. Inspired from the ongoing research work, we study in the paper the relationship

between solutions of Minty vector variational-like inequalities, Stampacchia vector variational-

like inequalities and the considered vector optimization problems under the assumption of

(G,α)-invexity.

This paper is organized as follows: In Section 2, we recall some definitions and establish

results which will be useful in the sequel of the paper. Section 3 is devoted to the study

of relationship among Minty vector variational-like inequality problem, Stampacchia vector

variational-like inequality problem and vector optimization problem involving (G,α)-invex func-

tions. An example is constructed to elucidate our result. In Section 4, we consider weak Minty

vector variational-like inequality problem, weak Stampacchia vector variational-like problem

and establish the relationship of their solutions with the weak efficient solution of vector op-

timization problem under the assumption of (G,α)-invexity. We present another example to

illustrate the established result. Finally, in Section 5, we conclude our paper.

§2 Notations and preliminaries

Definition 2.1. [2] Let X be a nonempty subset of Rn and u be any arbitrary point of X .

The set X is said to be invex at u ∈ X with respect to η : X ×X �→ Rn, if for each x ∈ X and

λ ∈ [0, 1], we have

u+ λη(x, u) ∈ X.

The set X is said to be invex with respect to η if X is invex at every u ∈ X with respect to η.

Throughout this paper, unless specifically stated otherwise, let X be a nonempty subset of

Rn, f = (f1, . . . , fm) : X �→ Rm be a vector-valued differentiable function defined on X , Ifi (X),

i = 1, . . . ,m, be the range of fi, that is, the image of X under fi. Let Gf = (Gf1 , . . . , Gfm) :

R �→ Rm be a differentiable vector-valued function such that any of its component Gfi :

Ifi (X) �→ R is a strictly increasing function on its domain. Let M = {1, . . . ,m} and 〈., .〉
denotes the scalar product in Rn. Let η : X ×X �→ Rn and αi : X ×X �→ R+ \ {0}, i ∈ M .

Definition 2.2. [12] Let f = (f1, . . . , fm) : X �→ Rm be a vector-valued differentiable function

defined on a nonempty open set X ⊂ Rn, Ifi(X), i ∈ M , be the range of fi. If there exists

a differentiable vector-valued function Gf = (Gf1 , . . . , Gfm) : R �→ Rm such that any of its
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component Gfi : Ifi (X) �→ R is a strictly increasing function on its domain, a vector-valued

function η : X × X �→ Rn and real function αi : X × X �→ R+(i ∈ M) such that, for all

x ∈ X(x �= u),

Gfi(fi(x)) −Gfi(fi(u))(>) ≥ αi(x, u)
〈
G′

fi(fi(u))∇fi(u), η(x, u)
〉
; i = 1, . . . ,m, (1)

then f is said to be a (strictly) vector (Gf , α)-invex function at u on X with respect to η. If

(1) is satisfied for each u ∈ X , then f is (strictly) vector (Gf , α)-invex on X with respect to η.

For more details on vector (G,α)-invex function, we refer to [12].

Definition 2.3. [1] A mapping η : X ×X �→ Rn is said to be skew if for all x, u ∈ X ,

η(x, u) + η(u, x) = 0.

Definition 2.4. [11] A mapping α : X ×X �→ R is symmetric if for all x, u ∈ X , we have

α(x, u) = α(u, x).

Condition C [1] Let X be an invex set of Rn with respect to η : X ×X �→ Rn. Then, for all,

x, u ∈ X and λ, λ1, λ2 ∈ [0, 1], we have

(a) η(u, u+ λη(x, u)) = −λη(x, u),

(b) η(x, u + λη(x, u)) = (1− λ)η(x, u),

(c) η(u + λ1η(x, u), u+ λ2η(x, u)) = (λ1 − λ2)η(x, u).

Condition D [11] Let X be an invex subset of Rn with respect to η and let αi, i ∈ M be scalar

valued mappings. Then, for all i ∈ M , x, y ∈ X and λ ∈ [0, 1], we have

(a) αi(u, u+ λη(x, u)) ≥ αi(x, u),

(b) αi(x, u + λη(x, u)) ≥ αi(x, u),

(c)
αi(u, u+ λη(x, u))

αi(u+ λη(x, u), u)
≥ αi(x, u).

Definition 2.5. [11] Let S be a nonempty subset of X and let Ti : X �→ 2X be a set-valued

mapping for every i ∈ M . The mapping T : (T1, . . . , Tm) is said to be V -invariant monotone

on S with respect to η and αi, i ∈ M , iff for all i ∈ M , x, y ∈ S, x∗
i ∈ Ti(x) and y∗i ∈ Ti(y), we

have

αi(x, y)〈y∗i , η(x, y)〉+ αi(y, x)〈x∗
i , η(y, x)〉 ≤ 0.

Definition 2.6. [2] Let S ⊂ Rn be a nonempty invex set with respect to η, and x and u

two arbitrary points of S. A set Pux is said to be a closed η-path joining the points u and

v = u+ η(x, u) (contained in S) if

Pux = {y = u+ λη(x, u) : λ ∈ [0, 1]}.
Analogously, an open η-path joining the points u and v = u+ η(x, u) (contained in S) we call

a set of the form

P 0
ux = {y = u+ λη(x, u) : λ ∈ (0, 1)}.

We prove the following mean value theorem which will be used to prove one of the important

results in the sequel.
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Theorem 2.1. Let X ⊂ Rn be a nonempty invex set with respect to η : X ×X �→ Rn and Pxy

be an arbitrary η-path contained in intX. Moreover, we assume that f : X �→ Rm is defined on

X and differentiable on intX. Then, for any x, y ∈ X, there exists zi ∈ P 0
xy, i ∈ M such that

the following relation

Gfi(fi(x+ η(y, x))) −Gfi(fi(x)) = 〈G′
fi(fi(zi))∇fi(zi), η(y, x)〉

holds for all i ∈ M . In other words, for any w = x+ η(y, x) ∈ X, there exists λ0
i ∈ (0, 1), zi =

x+ λ0
i η(y, x), i ∈ M such that

Gfi(fi(w)) −Gfi(fi(x)) = 〈G′
fi (fi(zi))∇fi(zi), η(y, x)〉,

i.e., Gfi(fi(x + η(y, x))) −Gfi(fi(x)) = 〈G′
fi (fi(zi))∇fi(zi), η(y, x)〉.

Proof. We define functions gi : [0, 1] �→ R, i ∈ M as follows

gi(λ) = Gfi(fi(x+ λη(y, x))) −Gfi(fi(x)) − λ[Gfi(fi(x+ η(y, x))) −Gfi(fi(x))], i ∈ M. (2)

Clearly gi(0) = 0, gi(1) = 0. Hence, using Rolle’s Theorem, it follows that there exists λ0
i ∈

(0, 1), i ∈ M such that

gi(1)− gi(0) = g′i(λ
0
i )(1 − 0), i ∈ M

⇒ g′i(λ
0
i ) = 0, i ∈ M. (3)

From relations (2) and (3), we obtain

η(y, x)TG′
fi(fi(x+ λ0

i η(y, x)))∇fi(x+ λ0
i η(y, x))−Gfi (fi(x+ η(y, x))) +Gfi(fi(x)) = 0

⇒ Gfi(fi(x+ η(y, x))) −Gfi(fi(x)) = 〈G′
fi (fi(x+ λ0

i η(y, x)))∇fi(x+ λ0
i η(y, x)), η(y, x)〉.

We set zi = x+ λ0
i η(y, x), i ∈ M . Since λ0

i ∈ (0, 1), zi ∈ P 0
xy for all i ∈ M and

Gfi(fi(x+ η(y, x))) −Gfi(fi(x)) = 〈G′
fi(fi(zi))∇fi(zi), η(y, x)〉, i ∈ M.

This completes the proof.

Lemma 2.1. Let f : X �→ Rm be a differentiable function defined on a nonempty invex set

X ⊂ Rn with respect to η. If f is a vector (Gf , α)-invex function with respect to η, then the

differential of Gfi is V -invariant monotone on X with respect to η and αi, i ∈ M , i.e., for all

x, y ∈ X, i ∈ M ,

αi(x, y)〈G′
fi (fi(y))∇fi(y), η(x, y)〉+ αi(y, x)〈G′

fi (fi(x))∇fi(x), η(y, x)〉 ≤ 0.

Proof. Since f is a vector (Gf , α)-invex function on the invex set X , we have

Gfi(fi(x)) −Gfi(fi(y)) ≥ αi(x, y)
〈
G′

fi(fi(y))∇fi(y), η(x, y)
〉
, i ∈ M. (4)

Changing the role of x and y in the above inequality, we get

Gfi(fi(y))−Gfi(fi(x)) ≥ αi(y, x)
〈
G′

fi(fi(x))∇fi(x), η(y, x)
〉
, i ∈ M. (5)

Adding (4) and (5), it follows that

αi(x, y)
〈
G′

fi(fi(y))∇fi(y), η(x, y)
〉
+ αi(y, x)

〈
G′

fi(fi(x))∇fi(x), η(y, x)
〉 ≤ 0, i ∈ M.

This completes the proof.

Lemma 2.2. Let f : X �→ Rm be a differentiable function defined on a nonempty invex

set X ⊂ Rn with respect to η. Assume that η satisfies Condition C and αi, i ∈ M satisfies
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Condition D. If f is a vector (Gf , α)-invex function with respect to η, then the following relation

Gfi(fi(y + λη(x, y))) ≤ λGfi(fi(x)) + (1− λ)Gfi (fi(y)), i ∈ M,

holds for all x, y ∈ X and λ ∈ [0, 1].

Proof. Since f is a vector (Gf , α)-invex function on the invex set X , we have

Gfi(fi(x)) −Gfi(fi(y)) ≥ αi(x, y)
〈
G′

fi(fi(y))∇fi(y), η(x, y)
〉
, i ∈ M.

We set ȳ = y + λη(x, y). Since X is an invex set, ȳ ∈ X for all x, y ∈ X . Thus replacing y by

ȳ in the above inequality, it follows that

Gfi(fi(x)) −Gfi(fi(ȳ)) ≥ αi(x, ȳ)〈G′
fi (fi(ȳ))∇fi(ȳ), η(x, y + λη(x, y))〉, i ∈ M.

In view of Conditions C(b) and D(b), the above inequality yields

Gfi(fi(x)) −Gfi(fi(ȳ)) ≥ (1 − λ)αi(x, y)〈G′
fi (fi(ȳ))∇fi(ȳ), η(x, y)〉, i ∈ M. (6)

Again by (Gf , α)-invexity of f , we have

Gfi(fi(y))−Gfi(fi(ȳ)) ≥ αi(y, ȳ)
〈
G′

fi(fi(ȳ))∇fi(ȳ), η(y, y + λη(x, y))
〉
, i ∈ M.

In view of Conditions C(a) and D(a), the above inequality yields

Gfi (fi(y))−Gfi(fi(ȳ)) ≥ −λαi(x, y)〈G′
fi (fi(ȳ))∇fi(ȳ), η(x, y)〉, i ∈ M. (7)

On multiplying (6) by λ, (7) by (1− λ) and then adding, we obtain

λGfi(fi(x)) + (1− λ)Gfi (fi(y))−Gfi(fi(ȳ)) ≥ 0, i ∈ M

⇒ Gfi(fi(y + λη(x, y))) ≤ λGfi (fi(x)) + (1− λ)Gfi (fi(y)), i ∈ M.

This completes the proof.

Lemma 2.3. Let φ be a real strictly increasing and differentiable function defined on interval

(a, b) ⊂ R. Then,

φ′(x) ≥ 0, ∀ x ∈ (a, b).

Let f : Rn �→ Rm be a vector-valued function. We consider the following vector optimization

problem:

(VOP) Minimize f(x) = (f1(x), . . . , fm(x))

subject to x ∈ X.

Definition 2.7. A point x̄ ∈ X is said to be an efficient solution of (VOP), if

f(y)− f(x̄) = (f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) /∈ −Rm
+ \ {0}, ∀ y ∈ X.

Definition 2.8. A point x̄ ∈ X is said to be a weakly efficient solution of (VOP), if

f(y)− f(x̄) = (f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) /∈ −intRm
+ , ∀ y ∈ X,

where int denotes interior of a set.

Clearly, every efficient solution is a weakly efficient solution to (VOP) but the converse is

not true in general.

Definition 2.9. A feasible point x̄ ∈ X is said to be a vector critical point for (VOP), if there

exists a vector ν ∈ Rm with ν ≥ 0 such that νT∇f(x̄) = 0.
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Gordan’s Theorem. For each given m × n matrix A, either Ax > 0 has a solution x ∈ Rn

or AT y = 0, y ≥ 0 has a solution y ∈ Rm but never both.

§3 Relationships between vector optimization problems and vector

variational-like inequality problems

In this section, we consider both Minty vector variational-like inequalities and Stampacchia

vector variational-like inequalities and establish the relationship of their solutions with the ef-

ficient solutions of vector optimization problems involving vector (G,α)-invex functions.

(MVVLIP) A Minty vector variational-like inequality problem is to find a point y ∈ X such

that

(〈∇f1(x̄), η(x̄, y)〉, . . . , 〈∇fm(x̄), η(x̄, y)〉) /∈ −Rm
+ \ {0}, ∀ x̄ ∈ X.

(SVVLIP) A Stampacchia vector variational-like inequality problem is to find a point x̄ ∈ X

such that

(〈∇f1(x̄), η(y, x̄)〉, . . . , 〈∇fm(x̄), η(y, x̄)〉) /∈ −Rm
+ \ {0}, ∀ y ∈ X.

Theorem 3.1. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X such that any η-path is contained in intX. Assume that η is skew and satisfies Condition C

and αi, i ∈ M is symmetric and satisfies Condition D. If f is (Gf , α)-invex with respect to η

on X and G′
fi
(fi(y)) > 0, ∀ i ∈ M, ∀ y ∈ X, then x̄ is an efficient solution of (VOP) if and

only if x̄ solves (MVVLIP).

Proof. Suppose x̄ ∈ X solves (MVVLIP) but it is not an efficient solution of (VOP). Then,

there exists z ∈ X such that

(f1(z)− f1(x̄), . . . , fm(z)− fm(x̄)) ∈ −Rm
+ \ {0}

⇒ fi(z)− fi(x̄) ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M .

Since Gfi : Ifi(X) �→ R, i ∈ M is a strictly increasing function on Ifi(X), therefore from

the above inequalities it follows that

Gfi (fi(z))−Gfi(fi(x̄)) ≤ 0, ∀ i ∈ M, (8)

with strict inequality for at least one i ∈ M .

We set z(λ) = x̄ + λη(z, x̄) for all λ ∈ [0, 1]. Since X is an invex set with respect to η,

z(λ) ∈ X for all λ ∈ [0, 1]. Using Lemma 2.2, we have

Gfi(fi(z(λ))) = Gfi(fi(x̄+ λη(z, x̄))) ≤ λGfi (fi(z)) + (1− λ)Gfi (fi(x̄)), ∀ i ∈ M

⇒ Gfi(fi(x̄+ λη(z, x̄))) −Gfi(fi(x̄)) ≤ λ[Gfi (fi(z))−Gfi(fi(x̄))], ∀ i ∈ M.

In particular for λ = 1, we have

Gfi(fi(x̄+ η(z, x̄)))−Gfi(fi(x̄)) ≤ [Gfi(fi(z))−Gfi(fi(x̄))], ∀ i ∈ M. (9)

By the mean value theorem (Theorem 2.1), there exists λi ∈ (0, 1) such that

Gfi(fi(x̄+ η(z, x̄))) −Gfi(fi(x̄)) = 〈G′
fi (fi(z(λi)))∇fi(z(λi)), η(z, x̄)〉, ∀ i ∈ M. (10)
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Combining (9) and (10), we get that

〈G′
fi(fi(z(λi)))∇fi(z(λi)), η(z, x̄)〉 ≤ [Gfi(fi(z))−Gfi(fi(x̄))], ∀ i ∈ M. (11)

Firstly, we suppose that λ1 = . . . = λm = λ. On multiplying both sides of the above inequality

by −λ, using skewness of η and Condition C, we obtain

〈G′
fi(fi(z(λ)))∇fi(z(λ)), η(z(λ), x̄)〉 ≤ λ[Gfi(fi(z))−Gfi(fi(x̄))], ∀ i ∈ M.

By (8), the above inequality yields

〈G′
fi(fi(z(λ)))∇fi(z(λ)), η(z(λ), x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since each component Gfi (i ∈ M) is strictly

increasing, it follows that

〈∇fi(z(λ)), η(z(λ), x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . This contradicts the fact that x̄ ∈ X solves

(MVVLIP). Hence we get the result.

Now, we consider the case when λ1, . . . , λm are not all equal. Without loss of generality, we

assume λ1 �= λ2. From (11), we have

〈G′
f1
(f1(z(λ1)))∇f1(z(λ1)), η(z, x̄)〉 ≤ [Gf1(f1(z))−Gf1(f1(x̄))] (12)

and

〈G′
f2
(f2(z(λ2)))∇f2(z(λ2)), η(z, x̄)〉 ≤ [Gf2(f2(z))−Gf2(f2(x̄))]. (13)

Since f is vector (Gf , α)-invex function with respect to η, then, by Lemma 2.1, the differential

of Gf1 and Gf2 are V -invariant monotone on X with respect to η and αi, i = 1, 2 respectively,

i.e., for all x, y ∈ X , we have

α1(z(λ2), z(λ1))〈G′
f1
(f1(z(λ1)))∇f1(z(λ1)), η(z(λ2), z(λ1))〉

+ α1(z(λ1), z(λ2))〈G′
f1
(f1(z(λ2)))∇f1(z(λ2)), η(z(λ1), z(λ2))〉 ≤ 0

and α2(z(λ2), z(λ1))〈G′
f2
(f2(z(λ1)))∇f2(z(λ1)), η(z(λ2), z(λ1))〉

+ α2(z(λ1), z(λ2))〈G′
f2
(f2(z(λ2)))∇f2(z(λ2)), η(z(λ1), z(λ2))〉 ≤ 0.

Using Condition C for η and symmetry of αi, i ∈ M in the above two inequalities, we obtain

(λ2 − λ1)α1(z(λ2), z(λ1))〈G′
f1 (f1(z(λ1)))∇f1(z(λ1)), η(z, x̄)〉

+ (λ1 − λ2)α1(z(λ2), z(λ1))〈G′
f1 (f1(z(λ2)))∇f1(z(λ2)), η(z, x̄)〉 ≤ 0 (14)

and (λ2 − λ1)α2(z(λ1), z(λ2))〈G′
f2 (f2(z(λ1)))∇f2(z(λ1)), η(z, x̄)〉

+ (λ1 − λ2)α2(z(λ1), z(λ2))〈G′
f2 (f2(z(λ2)))∇f2(z(λ2)), η(z, x̄)〉 ≤ 0. (15)

If (λ1 − λ2) > 0, dividing (14) by (λ1 − λ2)α1(z(λ2), z(λ1)), it follows that

〈G′
f1 (f1(z(λ1)))∇f1(z(λ1)), η(z, x̄)〉 ≥ 〈G′

f1(f1(z(λ2)))∇f1(z(λ2)), η(z, x̄)〉.
By (12), the above inequality yields

〈G′
f1(f1(z(λ2)))∇f1(z(λ2)), η(z, x̄)〉 ≤ [Gf1(f1(z))−Gf1(f1(x̄))]. (16)

If (λ2 − λ1) > 0, dividing (15) by (λ2 − λ1)α2(z(λ1), z(λ2)), it follows that

〈G′
f2 (f2(z(λ1)))∇f2(z(λ1)), η(z, x̄)〉 ≤ 〈G′

f2(f2(z(λ2)))∇f2(z(λ2)), η(z, x̄)〉.
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By (13), the above inequality yields

〈G′
f2(f2(z(λ1)))∇f2(z(λ1)), η(z, x̄)〉 ≤ [Gf2(f2(z))−Gf2(f2(x̄))]. (17)

Thus for the case λ1 �= λ2, we set λ̄ = min{λ1, λ2}. Hence, from (16) and (17), we conclude

that

〈G′
fi (fi(z(λ̄)))∇fi(z(λ̄)), η(z, x̄)〉 ≤ [Gfi(fi(z))−Gfi (fi(x̄))], i = 1, 2.

On continuing this process, we obtain λ∗ ∈ (0, 1) such that λ∗ = min{λ1, . . . , λm} and

〈G′
fi (fi(z(λ

∗)))∇fi(z(λ
∗)), η(z, x̄)〉 ≤ [Gfi (fi(z))−Gfi(fi(x̄))], ∀ i ∈ M.

Multiplying the above inequalities by −λ∗ and by using Condition C, skewness of η and (8),

we get

〈G′
fi (fi(z(λ

∗)))∇fi(z(λ
∗)), η(z(λ∗), x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since G′
fi
(fi(z(λ

∗))) > 0, it follows that

〈∇fi(z(λ
∗)), η(z(λ∗), x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . This contradicts the fact that x̄ solves (MVVLIP).

Hence we get the result.

Conversely, let x̄ be an efficient solution of (VOP). Then, for all y ∈ X , we have

f(y)− f(x̄) = (f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) /∈ −Rm
+ \ {0}. (18)

Suppose, contrary to the result, that x̄ does not solve (MVVLIP) with respect to η. Then,

there exists y ∈ X such that

〈∇fi(y), η(y, x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since αi : X×X �→ R+ \{0}, each component Gfi

is strictly increasing and by assumption G′
fi
(fi(y)) > 0, the above inequality can be rewritten

as

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(y, x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . By the skewness of η, it follows that

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(x̄, y)〉 ≥ 0, ∀ i ∈ M, (19)

with strict inequality for at least one i ∈ M . Since f is vector (Gf , α)-invex with respect to η,

we have

Gfi (fi(x̄))−Gfi(fi(y)) ≥ αi(x̄, y)
〈
G′

fi(fi(y))∇fi(y), η(x̄, y)
〉
, ∀ i ∈ M. (20)

From (19) and (20), we conclude that

Gfi(fi(x̄))−Gfi(fi(y)) ≥ 0, ∀ i ∈ M,

⇒ fi(y)− fi(x̄) ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . This contradicts the fact that x̄ is an efficient

solution of (VOP).

Theorem 3.2. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X. If f is vector (Gf , α)-invex with respect to η on X, G′
fi
(fi(y)) > 0, ∀ i ∈ M, ∀ y ∈ X and

x̄ solves (SVVLIP), then x̄ is an efficient solution of (VOP). Furthermore if η is skew, then x̄

solves (MVVLIP).
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Proof. Suppose, contrary to the result, that x̄ is not an efficient solution of (VOP). Then, there

exists y ∈ X such that

(f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) ∈ −Rm
+ \ {0}

⇒ fi(y)− fi(x̄) ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since Gfi : Ifi(X) �→ R, i ∈ M is a strictly

increasing function on Ifi(X), therefore from the above inequalities it follows that

Gfi(fi(y))−Gfi(fi(x̄)) ≤ 0, ∀ i ∈ M, (21)

with strict inequality for at least one i ∈ M . Since f is vector (Gf , α)-invex with respect to η,

we have

Gfi(fi(y))−Gfi(fi(x̄)) ≥ αi(y, x̄)
〈
G′

fi (fi(x̄))∇fi(x̄), η(y, x̄)
〉
, ∀ i ∈ M. (22)

On combining (21) and (22), we obtain

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(y, x̄)
〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since αi : X ×X �→ R+ \ {0} and G′
fi
(fi(x̄)) > 0,

the above inequality can be rewritten as

〈∇fi(x̄), η(y, x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . This implies there exists y ∈ X such that

(〈∇f1(x̄), η(y, x̄)〉, . . . , 〈∇fm(x̄), η(y, x̄)〉) ∈ −Rm
+ \ {0},

which contradicts the fact that x̄ solves (SVVLIP). Hence we get the result.

Suppose, contrary to the result, that x̄ is not a solution of (MVVLIP). Then, there exists

y ∈ X such that

〈∇fi(y), η(y, x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since αi : X×X �→ R+ \{0}, each component Gfi

is strictly increasing and by assumption G′
fi
(fi(y)) > 0, the above inequality can be rewritten

as

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(y, x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . By the skewness of η, it follows that

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(x̄, y)〉 ≥ 0, ∀ i ∈ M, (23)

with strict inequality for at least one i ∈ M . Since f is vector (Gf , α)-invex with respect to

η, by Lemma 2.1, the differential of Gfi is V -invariant monotone on X with respect to η and

αi, i ∈ M , respectively. Therefore for all y ∈ X , we have

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(y, x̄)
〉
+ αi(x̄, y)

〈
G′

fi (fi(y))∇fi(y), η(x̄, y)
〉 ≤ 0, ∀ i ∈ M.

By the skewness of η, the above inequalities imply

αi(x̄, y)
〈
G′

fi(fi(y))∇fi(y), η(x̄, y)
〉 ≤ αi(y, x̄)

〈
G′

fi(fi(x̄))∇fi(x̄), η(x̄, y)
〉
, ∀ i ∈ M. (24)

From (23) and (24), we conclude that

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(x̄, y)
〉 ≥ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . Since αi : X ×X �→ R+ \ {0}, G′
fi
(fi(x̄)) > 0 and
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η is skew, the above inequality can be rewritten as

〈∇fi(x̄), η(y, x̄)〉 ≤ 0, ∀ i ∈ M,

with strict inequality for at least one i ∈ M . This contradicts the fact that x̄ solves (SVVLIP).

This completes the proof.

Now, we present an example to illustrate the above theorem.

Example 3.1 Let X = {(x1, x2) ∈ R2 : x1 ≥ 1, x2 ≥ 1 ∧ x1 ≥ x2}. Consider the following

vector optimization problem:

(VOP) Minimize f(x) =
(
ln
(

x2
1

x2
2

)
, exp

(
x2

x1

))

subject to x ∈ X,

where f : X �→ R2 is a differentiable function. We define

Gf1(t) =
√
et, Gf2 (t) = ln(t), α1(x, x̄) =

x̄2

x2
, α2(x, x̄) =

x̄1

x1
and η(x, x̄) = x− x̄.

Then, f is (Gf , α)-invex with respect to η on X as shown below. Here,

G′
f1
(t) =

√
et

2
, G′

f2
(t) =

1

t

⇒ G′
f1
(f1(x)) =

(
x1

2x2

)
, G′

f2
(f2(x)) =

1

exp

(
x2

x1

)

and ∇f1(x) = 2

(
1

x1
,− 1

x2

)
,∇f2(x) = exp

(
x2

x1

)(
−x2

x2
1

,
1

x1

)
.

Now,

Gf1(f1(x))−Gf1 (f1(x̄)) − α1(x, x̄)
〈
G′

f1 (f1(x̄))∇f1(x̄), η(x, x̄)
〉

=

(
x1

x2

)
−
(
x̄1

x̄2

)
− x̄2

x2

〈(
x̄1

2x̄2

)
2

(
1

x̄1
,− 1

x̄2

)
, (x1 − x̄1, x2 − x̄2)

〉

=
x1x̄2 − x̄1x2

x2x̄2
− x̄2

x2

(
x1x̄2 − x̄1x2

x̄2
2

)

=
x1x̄2 − x̄1x2 − x1x̄2 + x̄1x2

x2x̄2

= 0.

Similarly,

Gf2(f2(x)) −Gf2(f2(x̄))− α2(x, x̄)
〈
G′

f2(f2(x̄))∇f2(x̄), η(x, x̄)
〉

=

(
x2

x1

)
−
(
x̄2

x̄1

)
− x̄1

x1

〈
1

exp

(
x̄2

x̄1

)exp

(
x̄2

x̄1

)(
− x̄2

x̄2
1

,
1

x̄1

)
, (x1 − x̄1, x2 − x̄2)

〉

=
x̄1x2 − x1x̄2

x1x̄1
− x̄1

x1

(−x1x̄2 + x̄1x2

x̄2
1

)

=
x̄1x2 − x1x̄2 + x1x̄2 − x̄1x2

x1x̄1

= 0.
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We observe that x̄ = (1, 1) solves the (SVVLIP), since

(〈∇f1(x̄), η(y, x̄)〉, 〈∇f2(x̄), η(y, x̄)〉)

=

(〈
2

(
1

x̄1
,− 1

x̄2

)
, (y1 − x̄1, y2 − x̄2)

〉
,

〈
exp

(
x̄2

x̄1

)(
− x̄2

x̄2
1

,
1

x̄1

)
, (y1 − x̄1, y2 − x̄2)

〉)

= (2(y1 − y2), e(y2 − y1)) /∈ −R2
+ \ {0}, ∀ y ∈ X.

Hence, by Theorem 3.2, x̄ = (1, 1) is an efficient solution of (VOP). Also, η is skew, therefore

x̄ solves (MVVLIP) which can be easily verified.

Remark 3.1 Every vector G-invex function is (G,α)-invex function with αi = 1 but the

converse may not hold in general. The function f considered in the above example clearly

verifies that it is not vector Gf -invex function at x̄ = (1, 1) with respect to the same η on X .

Also f defined in Example 3.1 is not V -invex at x̄ = (1, 1), since

f1(x) − f1(x̄)− α1(x, x̄) 〈∇f1(x̄), η(x, x̄)〉

= ln

(
x2
1

x2
2

)
− ln

(
x̄2
1

x̄2
2

)
− x̄2

x2

〈
2

(
1

x̄1
,− 1

x̄2

)
, (x1 − x̄1, x2 − x̄2)

〉

= ln

(
x2
1

x2
2

)
− ln

(
x̄2
1

x̄2
2

)
− 2x̄2

x2

(
x1x̄2 − x̄1x2

x̄1x̄2

)
.

At x̄ = (1, 1) and x = (2, 1),

f1(x) − f1(x̄)− α1(x, x̄) 〈∇f1(x̄), η(x, x̄)〉 = ln(4)− 2 = −0.613706.

Theorem 3.3. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X. If f is (Gf , α)-invex at x̄ with respect to η on X and x̄ is a vector critical point of (VOP)

then x̄ is a weak efficient solution of (VOP).

Proof. Let x̄ be a vector critical point of (VOP). Suppose, contrary to the result, that x̄ is not

a weak efficient solution of (VOP). Then, there exists y ∈ X such that

(f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) ∈ −intRm
+

⇒ fi(y)− fi(x̄) < 0, ∀ i ∈ M.

Since Gfi : Ifi (X) �→ R, i ∈ M is a strictly increasing function on Ifi(X), therefore from the

above inequalities it follows that

Gfi(fi(y))−Gfi(fi(x̄)) < 0, ∀ i ∈ M. (25)

By vector (Gf , α)-invexity of f with respect to η, we have

Gfi(fi(y))−Gfi(fi(x̄)) ≥ αi(y, x̄)
〈
G′

fi (fi(x̄))∇fi(x̄), η(y, x̄)
〉
, ∀ i ∈ M. (26)

On combining (25) and (26), we obtain

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(y, x̄)
〉
< 0, ∀ i ∈ M.

Since αi : X×X �→ R+\{0} and each component Gfi is strictly increasing, the above inequality

can be rewritten as

〈∇fi(x̄), η(y, x̄)〉 < 0, ∀ i ∈ M.

This implies that 〈∇f(x̄), η(y, x̄)〉m < 0 has a solution in Rn. Therefore, by Gordan’s Theorem,
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the above inequality implies that the system

λT∇f(x̄) = 0, λ ∈ Rm, λ ≥ 0,

has no solution for λ,which contradicts the fact that x̄ is a vector critical point of (VOP). This

completes the proof.

§4 Relationships between vector optimization problems and weak

vector variational-like inequality problems

In this section, we consider weak Minty vector variational-like inequalities and weak Stam-

pacchia vector variational-like inequalities and establish the relationship of their solutions with

the weak efficient solutions of vector optimization problems involving vector (G,α)-invex func-

tions.

(WMVVLIP) A weak Minty vector variational-like inequality problem is to find a point y ∈ X

such that

(〈∇f1(x̄), η(x̄, y)〉, . . . , 〈∇fm(x̄), η(x̄, y)〉) /∈ −intRm
+ , ∀ x̄ ∈ X.

(WSVVLIP) A weak Stampacchia vector variational-like inequality problem is to find a point

x̄ ∈ X such that

(〈∇f1(x̄), η(y, x̄)〉, . . . , 〈∇fm(x̄), η(y, x̄)〉) /∈ −intRm
+ , ∀ y ∈ X.

Theorem 4.1. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X. If f is vector (Gf , α)-invex at x̄ with respect to η on X such that η is skew and x̄ solves

(WSVVLIP), then x̄ is a weak efficient solution of (VOP).

Proof. Suppose, contrary to the result, that x̄ is not a weak efficient solution of (VOP). Then,

there exists y ∈ X such that

(f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) ∈ −intRm
+

⇒ fi(y)− fi(x̄) < 0, ∀ i ∈ M.

Since Gfi : Ifi (X) �→ R, i ∈ M is a strictly increasing function on Ifi(X), therefore from the

above inequalities it follows that

Gfi(fi(y))−Gfi(fi(x̄)) < 0, ∀ i ∈ M. (27)

By vector (Gf , α)-invexity of f with respect to η, we have

Gfi(fi(y))−Gfi(fi(x̄)) ≥ αi(y, x̄)
〈
G′

fi (fi(x̄))∇fi(x̄), η(y, x̄)
〉
, ∀ i ∈ M. (28)

On combining (27) and (28), we obtain

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(y, x̄)
〉
< 0, ∀ i ∈ M.

Since αi : X×X �→ R+\{0} and each component Gfi is strictly increasing, the above inequality

can be rewritten as

〈∇fi(x̄), η(y, x̄)〉 < 0, ∀ i ∈ M.
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This implies there exists y ∈ X such that

(〈∇f1(x̄), η(y, x̄)〉, . . . , 〈∇fm(x̄), η(y, x̄)〉) ∈ −intRm
+ ,

which contradicts the fact that x̄ solves (WSVVLIP). This completes the proof.

The following example is constructed to illustrate the above theorem.

Example 4.1 Let X = [−1, 0]. Consider the following vector optimization problem:

(VOP) Minimize f(x) = (ln(x2 + 1), tanx)

subject to x ∈ X,

where f : X �→ R2 is a differentiable function. We define

Gf1(t) = et, Gf2(t) = arctan(t),

α1(x, x̄) = α2(x, x̄) = 1 and η(x, x̄) = x− x̄.

Then, f is (Gf , α)-invex with respect to η at x̄ = 0 as shown below. Here,

G′
f1
(t) = et, G′

f2
(t) =

1

1 + t2

⇒ G′
f1
(f1(x)) = x2 + 1, G′

f2
(f2(x)) = cos2 x

and ∇f1(x) =
2x

x2 + 1
, ∇f2(x) = sec2 x.

Now,

Gf1(f1(x))−Gf1 (f1(x̄))− α1(x, x̄)
〈
G′

f1(f1(x̄))∇f1(x̄), η(x, x̄)
〉

= (x2 + 1)− (x̄2 + 1)−
〈
(x̄2 + 1)

(
2x̄

x̄2 + 1

)
, (x− x̄)

〉

= x2 ≥ 0.

Similarly,

Gf2(f2(x)) −Gf2(f2(x̄))− α2(x, x̄)
〈
G′

f2(f2(x̄))∇f2(x̄), η(x, x̄)
〉

= x− x̄− 〈cos2 x̄. sec2 x̄, (x− x̄)〉
= 0.

We observe that x̄ = 0 solves the (WSVVLIP), since

(〈∇f1(x̄), η(y, x̄)〉, 〈∇f2(x̄), η(y, x̄)〉)

=

(〈
2x̄

x̄2 + 1
, y − x̄

〉
,
〈
sec2 x̄, y − x̄

〉)

= (0, y) /∈ −intR2
+, ∀ y ∈ X.

Clearly, x̄ = 0 does not solve (SVVLIP). Since all the assumptions of Theorem 4.1 are satisfied,

x̄ = 0 is a weak efficient solution of (VOP).

Theorem 4.2. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X. If f is vector (Gf , α)-invex with respect to skew function η on X such that G′
fi
(fi(y)) > 0

and x̄ solves (WSVVLIP), then x̄ solves (WMVVLIP).

Proof. Suppose, contrary to the result, that x̄ is not a solution of (WMVVLIP). Then, there
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exists y ∈ X such that

〈∇fi(y), η(y, x̄)〉 < 0, ∀ i ∈ M.

Since αi : X × X �→ R+ \ {0}, each component Gfi is strictly increasing and by assumption

G′
fi
(fi(y)) > 0, the above inequality can be rewritten as

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(y, x̄)〉 < 0, ∀ i ∈ M.

In view of the skewness of η, it follows that

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(x̄, y)〉 > 0, ∀ i ∈ M. (29)

As f is vector (Gf , α)-invex with respect to η, by Lemma 2.1, the differential of Gfi is V -

invariant monotone on X with respect to η and αi, i ∈ M , respectively. Therefore for all

y ∈ X , we have

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(y, x̄)
〉
+ αi(x̄, y)

〈
G′

fi (fi(y))∇fi(y), η(x̄, y)
〉 ≤ 0, ∀ i ∈ M.

Again η is skew, the above inequalities imply

αi(x̄, y)
〈
G′

fi(fi(y))∇fi(y), η(x̄, y)
〉 ≤ αi(y, x̄)

〈
G′

fi(fi(x̄))∇fi(x̄), η(x̄, y)
〉
, ∀ i ∈ M. (30)

From (29) and (30), we conclude that

αi(y, x̄)
〈
G′

fi(fi(x̄))∇fi(x̄), η(x̄, y)
〉
> 0, ∀ i ∈ M.

Since αi : X × X �→ R+ \ {0}, each component Gfi is strictly increasing and η is skew, the

above inequality reduces to

〈∇fi(x̄), η(y, x̄)〉 < 0, ∀ i ∈ M,

which contradicts the fact that x̄ solves (WSVVLIP).

Theorem 4.3. Let X be an invex set with respect to η, where η satisfies Condition C, and let

∇f be continuous. If y ∈ X is a solution of (WMVVLIP), then y is a solution of (WSVVLIP).

Proof. The proof follows from Theorem 4.2 [20].

Theorem 4.4. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X. Assume that ∇f is a continuous function, η is skew and satisfies Condition C. If f is vector

(Gf , α)-invex with respect to η on X such that G′
fi
(fi(y)) > 0, then x̄ solves (WSVVLIP), if

and only if x̄ solves (WMVVLIP).

Proof. The proof follows from Theorem 4.2 and Theorem 4.3.

Theorem 4.5. Let f : X �→ Rm be a differentiable function defined on the nonempty invex set

X. If f is vector (Gf , α)-invex with respect to skew function η on X such that G′
fi
(fi(y)) > 0

and x̄ is a weak efficient solution of (VOP), then x̄ solves (WMVVLIP).

Proof. Suppose, contrary to the result, that x̄ is not a solution of (WMVVLIP). Then, there

exists y ∈ X such that

(〈∇f1(y), η(y, x̄)〉, . . . , 〈∇fm(y), η(y, x̄)〉) ∈ −intRm
+

⇒ 〈∇fi(y), η(y, x̄)〉 < 0, ∀ i ∈ M.
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Since αi : X × X �→ R+ \ {0}, each component Gfi is strictly increasing and by assumption

G′
fi
(fi(y)) > 0, the above inequality can be rewritten as

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(y, x̄)〉 < 0, ∀ i ∈ M.

By the skewness of η, it follows that

αi(x̄, y)〈G′
fi(fi(y))∇fi(y), η(x̄, y)〉 > 0, ∀ i ∈ M. (31)

By (Gf , α)-invexity of f with respect to η, we have

Gfi (fi(x̄))−Gfi(fi(y)) ≥ αi(x̄, y)
〈
G′

fi(fi(y))∇fi(y), η(x̄, y)
〉
, ∀ i ∈ M. (32)

From (31) and (32), we conclude that

Gfi(fi(x̄))−Gfi(fi(y)) > 0, ∀ i ∈ M.

Again, since each component Gfi is strictly increasing, the above inequality implies

fi(y)− fi(x̄) < 0, ∀ i ∈ M

⇒ (f1(y)− f1(x̄), . . . , fm(y)− fm(x̄)) ∈ −intRm
+

which contradicts the fact that x̄ is a weak efficient solution of (VOP).

§5 Conclusion

In this paper, we studied the relationship among Minty vector variational-like inequali-

ty problem, Stampacchia vector variational-like inequality problem and efficient solutions of

vector optimization problem involving (G,α)-invex functions. We constructed an example to

illustrate our derived result. Furthermore, we managed to establish equivalence among the

vector critical points, weak efficient points of the vector optimization problem and solutions of

the weak Stampacchia and weak Minty vector variational-like inequality problems under the

assumption of (G,α)-invexity. Our results generalize some well-known results.
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