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Asymptotic properties and expectation-maximization

algorithm for maximum likelihood estimates of the

parameters from Weibull-Logarithmic model

GUI Wen-hao1 ZHANG Huai-nian2

Abstract. In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri-

bution introduced by [6]. We investigate some new statistical characterizations and properties.

We develop the maximum likelihood inference using EM algorithm. Asymptotic properties of

the MLEs are obtained and extensive simulations are conducted to assess the performance of

parameter estimation. A numerical example is used to illustrate the application.

§1 Introduction

The statistical modeling of life time distribution has important applications in various prac-

tical problems such as biological and engineering sciences. Various distributions have been

introduced by mixing some useful life distributions and analyzed with respect to different char-

acteristics. [1] compounded an exponential distribution with a geometric distribution and pro-

posed an exponential geometric (EG) distribution which has decreasing failure rate function. [4]

extended the model to a Weilbull-geometric (WG) distribution by replacing exponential distri-

bution by a Weibull distribution. [14] studied an exponential logarithmic (EL) distribution and

discussed its properties. In this article, we consider a Weibull logarithmic (WL) distribution

which is obtained by mixing a Weibull distribution with a logarithmic distribution. This dis-

tribution was first introduced by [6] and is becoming increasingly popular for modeling lifetime

data.

[6] provided some basic properties of density function, distribution function, moment gener-

ating function, uncertainty measures and presented an example to calculate uncertainty mea-

sures. In this paper, we focus on the asymptotic properties and expectation-maximization

algorithm for maximum likelihood estimates of the parameters from this distribution.

Received: 2015-08-18.
MR Subject Classification: 62E15, 62F10.
Keywords: Maximum likelihood estimate, EM algorithm, Fisher information, Order statistics, Asymptotic

properties.
Digital Object Identifier(DOI): 10.1007/s11766-016-3391-2.
Supported by the program for the Fundamental Research Funds for the Central Universities (2014RC042,

2015JBM109).



426 Appl. Math. J. Chinese Univ. Vol. 31, No. 4

The rest of the paper is organized as follows: Section 2 studies the Weibull-Logarithmic

distribution and provides its basic statistical properties. In Section 3, we study the sampling

distributions of several extreme order statistics. Section 4 investigates the maximum likelihood

inference based on EM algorithm and the asymptotic properties of the MLEs. We also conduct

simulations in this Section. A real illustrative application is proposed in Section 5.

§2 Basic properties of Weibull-Logarithmic distribution

2.1 Model background

[6] obtained the Weibull-Logarithmic distribution by mixing Weibull and Logarithmic dis-

tribution. Here we further describe and explain the motivation as follows:

We consider a situation where failure of a unit occurs due to the presence of unknown

Z initial defects of same kind. Let Y1, Y2, . . . , YZ be the corresponding lifetimes and each

defect can be determined only after the failure, in which case it is repaired. Therefore, X =

min(Y1, . . . , YZ) models the time of the first failure.

In practice, the known Weibull distribution has various shapes of failure rate function and

is widely used for the inference of life information. Using Weibull distribution as a member of

the compounding distribution is a good trial. The Logarithmic distribution is commonly used

to fit species abundance data with long tails and it has many applications in various fields of

research such as ecology, economics, biology etc. See [11] for more details. It is attractive for

practitioners to take a compounding distribution for lifetime inference if its failure rate function

has many shapes.

Assume the failure times Y1, Y2, . . . , YZ follow a Weibull distribution with the following

probability density function:

f(y) = αβyα−1e−βyα

, y > 0, (1)

where α > 0, β > 0 are the shape and scale parameter respectively, where Z has a Logarithmic

distribution which has the following probability mass function:

p(Z = z) =
(1− p)z

−z ln p
, 0 < p < 1, z = 1, 2, · · · . (2)

Suppose that the variables Yi and Z are independent, then we have the probability density

function of X |Z = z,

f(x|z) = αβzxα−1e−βzxα

, x > 0,

then X follows Weibull-Logarithmic (WL) distribution and its probability density function is

given as follows

f(x) =
αβ(p− 1)xα−1

(p+ eβxα − 1) ln p
, x > 0. (3)

The cumulative distribution function of WL(α, β, p) is given by

F (x) = 1− ln
(
1− (1− p)e−βxα)

ln p
, x > 0. (4)
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2.2 Stochastic ordering

Stochastic order is basic concept in statistics and it measures the notion of one random

variable being “bigger” than the other. If FX(x) ≥ FY (x) for all real x, it is said that X is

less than Y in the ususal stochastic order (X ≺st Y ). If hX(x) ≥ hY (x) for all x ≥ 0, where

h(x) = f(x)/(1 − F (x)) is the hazard rate function, it is said that X is less than Y in the

hazard rate order (X ≺hr Y ). If fX(x)/fY (x) increases in x over the union of the supports of

X and Y , it is said that X is less than Y in the likelihood ratio order (X ≺lr Y ). It is clear

that X ≺lr Y ⇒ X ≺hr⇒ X ≺st Y , see [13] for more details.

Theorem 2.1. Let X ∼ WL(α, β, p1) and Y ∼ WL(α, β, p2), where 0 < p2 < p1 < 1, then we

have Y ≺lr X, Y ≺hr X and Y ≺st X.

Proof. Consider the ratio of two densities

U(x) =
fX(x)

fY (x)
=

(p1 − 1)
(
p2 + eβx

α − 1
)
ln p2

(p2 − 1) (p1 + eβxα − 1) ln p1
. (5)

Taking the derivative with respect to x,

U ′(x) =
αβ (p1 − 1) (p1 − p2)x

α−1eβx
α

ln p2
(p2 − 1) (p1 + eβxα − 1) 2 ln p1

. (6)

If p1 > p2, U
′(x) > 0, then U(x) is increasing at x. The proof is completed.

2.3 Mean, variance and median

Consider the WL distribution X ∼ WP (α, β, p), the kth moment of X is as follows, for

k = 1, 2, . . .

μk = E(Xk) = k

∫ ∞

0

xk−1F̄ (x)dx = −Γ
(
k+α
α

)
polylog(k+α

α , (1− p))

β
k
α ln p

, (7)

where polylog(.) is a polylogarithm function defined as:

polylog(s, z) =
∞∑

k=1

zk

ks
.

Therefore the mean and variance of the WL distribution are

E(X) = −Γ
(
α+1
α

)
polylog(α+1

α , (1− p))

β1/α ln p
, (8)

and

V ar(X) = −Γ
(
1 + 1

α

)2
polylog(1 + 1

α , (1− p))2 + Γ
(
α+2
α

)
polylog(α+2

α , (1− p)) ln p

β2/α(ln p)2
. (9)

Figures 1a and 1b display the population mean and variance of the WL(α, β = 1, p) distri-

bution.

The cdf of the WL(α, β, p) distribution is given in (4). The quantile xq = F−1(q) of the

WL(α, β, p) distribution is

xq =

(
1

β
ln

(
(1− p)pq

pq − p

))1/α

.
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(a) (b)

Figure 1: (a) Mean of the WL(α, β = 1, p) distribution; (b) Variance of the WL(α, β = 1, p)
distribution

In particular, the median (q = 1
2 ) of the WL(α, β, p) distribution is given by

xm =

(
ln
(√

p+ 1
)

β

)1/α

. (10)

Figures 2a and 2b display the population median of theWL(α, β = 1, p) andWL(α, β = 5, p)

distribution.

(a) (b)

Figure 2: (a) Median of the WL(α, β = 1, p) distribution; (b) Median of the WL(α, β = 5, p)
distribution.
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§3 Sampling distributions of order statistics

Suppose X1, X2, . . . , Xn form a random sample from the WL(α, β, p) distribution. It is

known that the sample mean (X1 + · · ·+Xn)/n converges to the normal distribution as n →
∞ based on the central limit theorem. In this section, we are interested in the asymptotic

distributions of the sample minima and maxima, that is, X1:n = min(X1, . . . , Xn) and Xn:n =

max(X1, . . . , Xn). These two order statistics show the lifetime of series and parallel system and

have useful applications in practice.

The probability density function of sample minima X1:n is

f1:n(x) = n[
ln
(
1− (1− p)e−βxα)

ln p
]n−1 αβ(p− 1)xα−1

(p+ eβxα − 1) ln p
, x > 0.

The probability density function of sample maxima Xn:n is

fn:n(x) = n[1− ln
(
1− (1− p)e−βxα)

ln p
]n−1 αβ(p− 1)xα−1

(p+ eβxα − 1) ln p
, x > 0.

Theorem 3.1. Suppose X1:n and Xn:n are the smallest and largest order statistics from the

WL(α, β, p) distribution, then we have

(1) lim
n→∞P (X1:n ≤ b∗nt) = 1− e−tα , t > 0, where the constant b∗n = [ 1β ln( (1−p)p1/n

p1/n−p
)]1/α.

(2) lim
n→∞P (Xn:n ≤ an+bnx) = e−e−x

,−∞ < x < ∞, where the constant an = [ 1β ln( (p−1)n
ln p )]1/α

and bn = a1−α
n /(αβ).

Proof. (1) We apply the asymptotic results for X1:n as follows (See [2]): For the sample minima

X1:n, we have, for t > 0, c > 0,

lim
n→∞P (X1:n ≤ a∗n + b∗nt) = 1− e−tc ,

(it is called Weibull type) where b∗n = F−1(1/n) − F−1(0) and a∗n = F−1(0) iff F−1(0) < ∞
and

lim
ε→0+

F (F−1(0) + εt)

F (F−1(0) + ε)
= tc.

As for the WL(α, β, p) distribution, its cdf is

F (x) = 1− ln
(
1− (1− p)e−βxα)

ln p
, x > 0.

Let F (x) = 0, we get x = 0. Thus F−1(0) = 0 is finite. Furthermore,

lim
ε→0+

F (0 + εt)

F (0 + ε)
= t lim

ε→0+

f(εt)

f(ε)
= tα.

Thus, we have c = α, a∗n = 0 and b∗n = F−1(1/n) = [ 1β ln( (1−p)p1/n

p1/n−p
)]1/α which is the 1

n th

quantile.

(2) For the sample maxima Xn:n,

P (Xn:n ≤ an + bnx) = Fn(an + bnx) = [1− (1− F (an + bnx))]
n 
 exp{−n(1− F (an + bnx))}

where −∞ < x < ∞. It is sufficient to prove that

n(1− F (an + bnx)) → e−x
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as n → ∞. In fact,

n(1− F (an + bnx)) = n
ln
[
1− (1− p)e−β(an+bnx)

α]

ln p


 n
−(1− p)e−β(an+bnx)

α

ln p


 n
−(1− p)e−βaα

n(1+α bn
an

x)

ln p

= e−x

as n → ∞. This completes the proof.

§4 Estimation and inference

4.1 Maximum likelihood estimation

In this section, we discuss the maximum likelihood estimation about the parameters (α, β, p)

of the WL distribution. Suppose yobs = {x1, x2, . . . , xn} forms a random sample from the

WL(α, β, p) distribution, then the log-likelihood function is

l = log

n∏

i=1

fX(xi)

= −
n∑

i=1

log
(
eβx

α
i + p− 1

)
+ (α− 1)

n∑

i=1

log (xi)

+n(log(α) + log(β) + log(1− p)− log(− log(p))). (11)

The scores functions are

∂l

∂α
= −

n∑

i=1

βxα
i log (xi) e

βxα
i

eβx
α
i + p− 1

+

n∑

i=1

log (xi) +
n

α
(12)

∂l

∂β
=

n

β
−

n∑

i=1

xα
i −

n∑

i=1

(1− p)xα
i

eβx
α
i + p− 1

(13)

∂l

∂p
= n

(
1

p− 1
− 1

p log(p)

)
−

n∑

i=1

1

eβx
α
i + p− 1

. (14)

Maximizing the likelihood function and the estimates of the parameters are obtained. Let

the scores functions be zeros and solve the equations. However, there do not exist analytical

roots. Therefore, the estimates can only be found by some numerical methods such as Newton-

Raphson procedure. [6] fixed the parameter α = α0 and provided two conditions for the

solutions. In the following, we present some more general theoretical results.

Theorem 4.1. Suppose li(α, β, p, yobs), i ∈ {1, 2, 3} denote the right hand side of equations

(12)–(14), respectively, and let x̃ = (1/n)
∑n

i=1 x
α
i , then the following properties hold:

(1) If β and p are given, then the root of l1(α, β, p, yobs) = 0, α̂, lies in the interval (0,∞) and

is unique.

(2) If α and p are given, then the root of l2(α, β, p, yobs) = 0, β̂, lies in the interval (px̃−1, x̃−1)
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and is unique.

(3) If α and β are known, then for
∑n

i=1 e
−βxα

i > n/2, the equation l3(α, β, p, yobs) = 0 has at

least one root.

Proof. (1) Noting that limα→0 l1(α, β, p, yobs) = ∞, limα→∞ l1(α, β, p, yobs) = −∞ as xi ≥ 1

for at least one i ∈ {1, 2, . . . , n}, limα→∞ l1(α, β, p, yobs) =
∑n

i=1 log (xi) < 0 as 0 < xi < 1 for

all i. Thus, there exists at least one root of l1(α, β, p, yobs) = 0 in the interval (0,∞). It can be

shown that

∂l1(α, β, p, yobs)

∂α
=

n∑

i=1

βxα
i log2 (xi) e

βxα
i

[
β(1 − p)xα

i + 1− p− eβx
α
i

]
(
eβx

α
i + p− 1

)
2

− n

α2
.

Since β(1 − p)xα
i + (1 − p)− eβx

α
i < βxα

i + 1− eβx
α
i < 0, thus, l1(α, β, p, yobs) is decreasing in

α, the root is unique.

(2) Let w(β) =
∑n

i=1
(1−p)xα

i

eβxα
i +p−1

. It is obvious that w(β) is a strictly decreasing function and

limβ→∞ w(β) = 0. Then,

l2(α, β, p, yobs) <
n

β
−

n∑

i=1

xα
i

and hence l2(α, β, p, yobs) < 0 when β > x̃−1.

Furthermore, we have limβ→0 w(β) = (1− p)/p
∑n

i=1 x
α
i . Then,

l2(α, β, p, yobs) >
n

β
−

n∑

i=1

xα
i − 1− p

p

n∑

i=1

xα
i =

n

β
− 1

p

n∑

i=1

xα
i

and hence l2(α, β, p, yobs) > 0 when β < px̃−1. Therefore, there exists at least one root of

l2(α, β, p, yobs) = 0 in the interval (px̃−1, x̃−1).

As for the uniqueness of the root, we consider

∂l2(α, β, p, yobs)

∂β
=

n∑

i=1

(1− p)x2α
i eβx

α
i

(
eβx

α
i + p− 1

)
2
− n

β2
.

For all β > 0, the function ∂l2(α, β, p, yobs)/∂β is not always monotonic. However, if β∗ is

a root of ∂l2(α, β, p, yobs)/∂β = 0, then
n∑

i=1

(1 − p)β∗x2α
i eβ

∗xα
i

(
eβ

∗xα
i + p− 1

)
2

=
n

β∗

and

l2(α, β
∗, p, yobs) =

n∑

i=1

xα
i e

β∗xα
i

[
β∗(1− p)xα

i + (1− p)− eβ
∗xα

i

]
(
eβ

∗xα
i + p− 1

)
2

.

Since β∗(1− p)xα
i + (1− p)− eβ

∗xα
i < β∗xα

i + 1− eβ
∗xα

i < 0, so for all β∗, l2(α, β∗, p, yobs) < 0

at its stationary points. Taking into account that limβ∗→∞ l2(α, β
∗, p, yobs) = −∑n

i=1 x
α
i < 0,

the uniqueness of the root is proven.

(3) It is clear that limp→0 l3(α, β, p, yobs) = ∞ and limp→1 l3(α, β, p, yobs) = n/2−∑n
i=1 e

−βxα
i

< 0, thus, there exists at least one solution of l3(α, β, p, yobs) = 0 for 0 < p < 1.
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4.2 An Expectation–Maximization (EM) algorithm

In the case of the model involves unobserved latent variables, an Expectation–Maximization

(EM) algorithm [8]) is a powerful tool to obtain maximum likelihood estimates of parameters.

The EM algorithm consists of two steps, an expectation (E) step and a maximization (M)

step. The E-step produces a function for the expectation of the log-likelihood and the M-step

calculates the parameters which maximize the function obtained on the previous E-step. The

estimates are then adopted to obtain the distribution of the latent variables in the next E-step.

Let X , Z denote the observed and the missing data. The density function of (X,Z) is

f(x, z) = p(z)f(x|z) = − (1− p)z

ln p
αβxα−1e−βzxα

, z = 1, 2, . . . , x > 0.

It is trivial to compute the conditional expectation of (Z|X) using the pdf

p(z|x) = (1− p)z−1
(
p+ eβx

α − 1
)
e−βzxα

, z = 1, 2, . . . ,

that is,

E(Z|X) =
1

1− (1 − p)e−βxα .

The iteration is completed with the M-step which is essentially-full data maximum likelihood,

with the Z ′s replaced by E(Z|X). Threfore, the iteration is as follows:

α(t+1) = n

[
n∑

i=1

log (xi)

(
βxα(t+1)

i

1− (1− p(t))e−β(t)xα(t)

i

− 1

)]−1

,

β(t+1) = n

[
n∑

i=1

xα(t+1)

i

1− (1 − p(t))e−β(t)xα(t)

i

]−1

,

p(t+1) =
n(p(t+1) − 1)

log(p(t+1))
∑n

i=1{1− (1− p(t))e−β(t)xα(t)

i }−1
.

4.3 Asymptotic properties of MLEs

By the classic statistics theory, under some regular conditions, the distribution of the MLE

converges to the multivariate normal distribution which has the mean (α, β, p) and its covariance

equals to the inverse of the Fisher matrix, see [7] for details. We can use the normal distribution

to construct approximate confidence intervals for α, β and p.

Let I = I(α, β, p; yobs) be the observed information matrix. The elements Iij , i, j = 1, 2, 3

are given as:

I11 =

n∑

i=1

β2x2α
i log2 (xi) e

βxα
i

eβx
α
i + p− 1

−
n∑

i=1

β2x2α
i log2 (xi) e

2βxα
i

(
eβx

α
i + p− 1

)
2

+

n∑

i=1

βxα
i log2 (xi) e

βxα
i

eβx
α
i + p− 1

+
n

α2
,

I12 = I21 =

n∑

i=1

xα
i log (xi) e

βxα
i

eβx
α
i + p− 1

+

n∑

i=1

βx2α
i log (xi) e

βxα
i

eβx
α
i + p− 1

−
n∑

i=1

βx2α
i log (xi) e

2βxα
i

(
eβx

α
i + p− 1

)
2

,
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I13 = I31 = −
n∑

i=1

βxα
i log (xi) e

βxα
i

(
eβx

α
i + p− 1

)
2
,

I22 =

n∑

i=1

x2α
i eβx

α
i

eβx
α
i + p− 1

−
n∑

i=1

x2α
i e2βx

α
i

(
eβx

α
i + p− 1

)
2
+

n

β2
,

I23 = I32 = −
n∑

i=1

xα
i e

βxα
i

(
eβx

α
i + p− 1

)
2
,

I33 = −
n∑

i=1

1
(
eβx

α
i + p− 1

)
2
− n

(
1

p2 log2(p)
+

1

p2 log(p)
− 1

(p− 1)2

)
.

Taking the expectation J = E[I(α, β, p; yobs)] with respect to the distribution of X , we

obtain the fisher information matrix:

J(θ, p) = n

⎛

⎜
⎝

J11 J12 J13

J21 J22 J23

J31 J32 J33

⎞

⎟
⎠

where

J11 = E
β2X2α log2 (X) eβX

α

eβXα + p− 1
− E

β2X2α log2 (X) e2βX
α

(eβXα + p− 1) 2
+ E

βXα log2 (X) eβX
α

eβXα + p− 1
+

1

α2
,

J12 = J21 = E
Xα log (X) eβX

α

eβXα + p− 1
+ E

βX2α log (X) eβX
α

eβXα + p− 1
− E

βX2α log (X) e2βX
α

(eβXα + p− 1) 2
,

J13 = J31 = −E
βXα log (X) eβX

α

(eβXα + p− 1) 2
,

J22 = E
X2αeβX

α

eβXα + p− 1
− E

X2αe2βX
α

(eβXα + p− 1) 2
+

1

β2
,

J23 = J32 = −E
XαeβX

α

(eβXα + p− 1) 2
,

J33 = −E
1

(eβXα + p− 1) 2
− 1

p2 log2(p)
− 1

p2 log(p)
+

1

(p− 1)2
.

The asymptotic variance–covariance matrix of the MLEs can be obtained from the inverse

of J(α, β, p), evaluated at α̂, β̂ and p̂. Note that the inverse of the observed information matrix

is a consistent estimator of J−1, thus another estimates can be calculated from it.

4.4 Simulation studies

In this section, we conduct a simulation study to assess the performance of the approximation

of the covariances and variances of the MLEs calculated from the information matrix.

For each value of (α, β, p), we compute the parameter estimates by the EM algorithm in

Section 4.2 with various initial values. The iteration is stopped when the absolute differences

between successive estimates are smaller than 10−5.
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Table 1 shows the simulated values of V ar(α̂), V ar(β̂), V ar(p̂), Cov(α̂, β̂), Cov(α̂, p̂) and

Cov(β̂, p̂) as well as the approximate values computed by averaging the values obtained from

the observed and expected information matrices.

It is clear that for large numbers of sample size n, the approximate values computed from the

expected and observed information matrices are almost equal to the corresponding simulated

ones. The approximation gets quite accurate as sample size n is larger. For large numbers

of sample size n, the covariances and variances of the MLEs computed from the observed

information matrix is close to that of the expected information matrix as expected.

We also conduct simulations to study the convergence of the proposed EM algorithm in

Section 4.2. For each of the three values of the parameters, 1000 samples of size 100 and 500

sampled from the WL distribution are generated.

Table 2 provides the averages of the 1000 MLEs, av(α̂), av(β̂), av(p̂) and their corresponding

standard errors. From Table 2, we can see that the convergence is satisfied in all cases, even

when the initial values are bad. The results verify the stability of the EM algorithm. The EM

estimates performed consistently. As expected, when n is larger, the standard errors of the

MLEs decrease.

§5 Applications

In this section, we apply our model to a real dataset, the stress-rupture data set. The data

set was previously studied by [3], [5], [10] and [12]. It consists of the life of fatigue fracture of

Kevlar 49/epoxy that are subject to the pressure at the 90% level.

We fit theWL(α, β, p), EL(β, p),WG(α, β, p) andWeibull(α, β) distributions to the dataset.

The performances of the distributions are discussed.

The mentioned probability density functions are given as follows:

EL : f(x|Θ1) =
1

− log(p)

β(1 − p)e−βx

1− (1− p)e−βx
, Θ1 = (β, p), x > 0,

WG : f(x|Θ2) =
αβα(1 − p)xα−1e−(βx)α

[1− pe−(βx)α]2
, Θ2 = (α, β, p), x > 0,

Weibull : f(x|Θ3) = αβxα−1e−βxα

, Θ3 = (α, β), x > 0.

We obtain the MLEs of the parameters and the results are shown in Table 3. We use the

Akaike information criterion (AIC) to assess the goodness of fit of the distributions. Given a

class of candidate distributions, the preferred model is the one with the smallest AIC value.

We also present the Kolmogorov-Smirnov (K-S) statistics and the corresponding p-values for

these distributions. Some other statistics such as the Cramer-Von Mises and Anderson-Darling

statistics ([9]) are also obtained.

From Table 3, for the fracture data set, AIC displays that WL model is a best fit. It has the

smallest AIC and the highest likelihood values. The K-S statistic and the other two statistics

also take the smallest values under the WL model. Figure 3 displays the probability-probability

(P-P) plot for the dataset.



GUI Wen-hao. The statistical properties and inference of Weibull-Logarithmic distribution 435

Table 1: The simulated values¨ , values obtained from expected information� , values obtained
from observed informationØ of covariances and variances of the MLEs

n (α, β, p) V ar(α̂) Cov(α̂, β̂) Cov(α̂, p̂) V ar(β̂) Cov(β̂, p̂) V ar(p̂)

50

(1, 1, 0.2)
0.0047 -0.0096 -0.0090 0.0234 0.0213 0.0227 ¨
0.0034 -0.0064 -0.0052 0.0167 0.0134 0.0143 �

0.0063 -0.0132 -0.0111 0.0333 0.0290 0.0321 Ø

(1, 2, 0.4)
0.0034 -0.0103 -0.0101 0.0452 0.0377 0.0403
0.0029 -0.0075 -0.0080 0.0347 0.0302 0.0359
0.0058 -0.0178 -0.0182 0.0718 0.0695 0.0827

(2, 1, 0.2)
0.0124 -0.0114 -0.0104 0.0138 0.0115 0.0110
0.0243 -0.0257 -0.0212 0.0325 0.0267 0.0258
0.0250 -0.0263 -0.0212 0.0329 0.0267 0.0254

(2, 2, 0.4)
0.0131 -0.0190 -0.0215 0.0427 0.0408 0.0451
0.0230 -0.0353 -0.0371 0.0719 0.0719 0.0896
0.0232 -0.0350 -0.0355 0.0703 0.0672 0.0799

200

(1, 1, 0.2)
0.0027 -0.0050 -0.0040 0.0119 0.0091 0.0079
0.0017 -0.0032 -0.0024 0.0081 0.0056 0.0047
0.0032 -0.0065 -0.0048 0.0156 0.0116 0.0100

(1, 2, 0.4)
0.0021 -0.0065 -0.0057 0.0260 0.0204 0.0178
0.0015 -0.0038 -0.0038 0.0171 0.0140 0.0146
0.0029 -0.0089 -0.0088 0.0354 0.0324 0.0343

(2, 1, 0.2)
0.0072 -0.0078 -0.0055 0.0102 0.0068 0.0050
0.0122 -0.0128 -0.0100 0.0159 0.0122 0.0104
0.0120 -0.0126 -0.0098 0.0155 0.0118 0.0101

(2, 2, 0.4)
0.0072 -0.0108 -0.0097 0.0244 0.0182 0.0159
0.0118 -0.0178 -0.0172 0.0352 0.0312 0.0320
0.0122 -0.0182 -0.0174 0.0357 0.0312 0.0315

1000

(1, 1, 0.2)
0.0021 -0.0042 -0.0031 0.0097 0.0069 0.0055
0.0011 -0.0021 -0.0016 0.0054 0.0039 0.0033
0.0020 -0.0042 -0.0033 0.0103 0.0078 0.0067

(1, 2, 0.4)
0.0011 -0.0030 -0.0028 0.0144 0.0109 0.0099
0.0010 -0.0025 -0.0026 0.0116 0.0096 0.0098
0.0019 -0.0060 -0.0060 0.0239 0.0218 0.0223

(2, 1, 0.2)
0.0062 -0.0063 -0.0049 0.0082 0.0059 0.0047
0.0082 -0.0086 -0.0067 0.0105 0.0080 0.0067
0.0082 -0.0085 -0.0065 0.0104 0.0078 0.0065

(2, 2, 0.4)
0.0047 -0.0070 -0.0083 0.0154 0.0149 0.0166
0.0074 -0.0118 -0.0132 0.0249 0.0253 0.0293
0.0073 -0.0116 -0.0128 0.0245 0.0246 0.0281
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Table 2: The means and standard errors of the EM estimator with initial values (α(0), β(0), p(0))
from 1000 samples

n (α, β, p) (α(0), β(0), p(0)) av(α̂) av(β̂) av(p̂) se(α̂) se(β̂) se(p̂)

100
(1, 1, 0.2) (1, 1, 0.2) 1.0020 0.9992 0.2208 0.0610 0.1331 0.1178
(1, 2, 0.4) (1, 2, 0.4) 1.0109 1.9881 0.4351 0.0679 0.2432 0.2301
(2, 2, 0.4) (2, 2, 0.4) 2.0194 1.9559 0.4539 0.1474 0.2332 0.2346

100
(1, 1, 0.2) (1.5, 1.5, 0.5) 1.0018 1.0207 0.2414 0.0769 0.1758 0.1520
(1, 2, 0.4) (1.5, 2.5, 0.5) 1.0019 2.0499 0.4904 0.0697 0.2481 0.2513
(2, 2, 0.4) (2.5, 2.5, 0.5) 2.0076 2.0221 0.4567 0.1310 0.2384 0.2251

500
(1, 1, 0.2) (1, 1, 0.2) 1.0008 0.9998 0.2136 0.0486 0.1087 0.0801
(1, 2, 0.4) (1, 2, 0.4) 1.0014 2.0152 0.4303 0.0510 0.1812 0.1818
(2, 2, 0.4) (2, 2, 0.4) 2.0019 1.9838 0.4034 0.0831 0.1554 0.1386

500
(1, 1, 0.2) (1.5, 1.5, 0.5) 0.9975 1.0269 0.2364 0.0547 0.1262 0.1040
(1, 2, 0.4) (1.5, 2.5, 0.5) 1.0076 1.9887 0.4114 0.0510 0.1737 0.1597
(2, 2, 0.4) (2.5, 2.5, 0.5) 2.0083 2.0117 0.4291 0.1004 0.1671 0.1534

Table 3: MLEs (with (SE)) of the WL, EL, WG and Weibull distributions for the fracture
dataset

Model Estimates log-lik AIC K-S stat. p-value Cramer Darling

WL 0.9267 1.0064 0.7901 −102.5598 211.1196 0.0891 0.8175 0.1958 1.1821
(0.1091) (0.2969) (0.3083)

EL 0.9255 0.8100 −103.9421 211.8842 0.0990 0.7052 0.1960 1.2922
(0.2034) (0.6218)

WG 0.9276 1.0037 0.2138 −102.6942 211.3884 0.0891 0.8175 0.1963 1.1845
(0.1230) (0.3829) (0.5686)

Weibull 0.9767 0.8823 −103.7927 211.5854 0.1089 0.5870 0.1977 1.3884
(0.0755) (0.0908)
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Figure 3: P-P plots for the fracture dataset



438 Appl. Math. J. Chinese Univ. Vol. 31, No. 4

References

[1] K Adamidis, S Loukas. A lifetime distribution with decreasing failure rate, Statist Probab Lett,

1998, 39(1): 35-42.

[2] B Arnold, N Balakrishnan, H Nagaraja. A First Course in Order Statistics, Classics in Applied

Mathematics, vol 54, SIAM, 1992.

[3] R Barlow, R Toland, T Freeman. A Bayesian analysis of the stress-rupture life of kevlar/epoxy

spherical pressure vessels, In: Accelerated Life Testing and Experts’ Opinions in Reliability, C A

Clarotti, D V Lindley, eds, 1988.

[4] W Barreto-Souza, A L de Morais, G M Cordeiro. The Weibull-geometric distribution, J Stat

Comput Simul, 2011, 81(5): 645-657.
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