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Some properties of the psi function and evaluations of γ

QIU Song-liang ZHAO Xue

Abstract. In this paper, the authors show some monotonicity and concavity of the classical

psi function, by which several known results are improved and some new asymptotically sharp

estimates are obtained for this function. In addition, applying the new results to the psi function,

the authors improve the well-known lower and upper bounds for the approximate evaluation of

Euler’s constant γ.

§1 Introduction and notation

For real and positive values of x, the real Euler gamma and psi functions are defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt, ψ(x) =
Γ′(x)
Γ(x)

, (1)

respectively. For their extensions to complex variables and for their basic properties, the reader

is referred to [1,6,15]. It is well known that these functions have many applications to various

fields of mathematics [1,6,15] as well as to some other disciplines. During the past several

decades, many authors have obtained various properties and inequalities for these functions (see

[2-18] and bibliographies in these papers). Keeping with this tradition, we here present some

monotonicity and concavity of the psi function, from which its asymptotically sharp estimates

follow. Applying our new results to the psi function, we improve the known approximate

evaluations of Euler’s constant γ.

It is well known that Euler’s constant [1,6.1.3 & 6.3.2]

γ = lim
n→∞ dn, dn − γ = ψ(n+ 1)− logn (2)

for n ∈ N, where dn =
∑n

k=1(1/k)− logn. S.R. Tims and J.A. Tyrrell [17] obtained the bounds

1

2(n+ 1)
< dn − γ <

1

2(n− 1)
, n ≥ 2,

which was improved by R.M. Young [18] as
1

2(n+ 1)
< dn − γ <

1

2n
, n ∈ N. (3)
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In 1995, G.D. Anderson et al.[5] proved
1− γ

n
< dn − γ <

1

2n
, n ∈ N, (4)

while H.Alzer [4,Theorem 3] improved (4) to the following double inequality
1

2(n+ α)
≤ dn − γ <

1

2(n+ β)
, n ∈ N, (5)

where α = 1/[2(1− γ)] and β = 1/6.

In [16,Theorem 2.1], it is proved that for x ≥ 1,

log x− 1

2x
− 1

12x2
< ψ(x) ≤ log x− 1

2x
− 2γ − 1

2x2
(6)

from which the following estimates follow [16,Corollary 2.13]

1

2n
− α

n2
< dn − γ ≤ 1

2n
− β

n2
, n ∈ N, (7)

with equality if n = 1, where the constants α = 1/12 and β = γ − (1/2) are best possible.

In the sequel,let ζ(x) stand for the Riemann zeta function. We now state our results.

Theorem 1.1. (1) Let α = (π2/6) + γ − 2 = 0.2221 · · · , β = (π2/6) + 1 − 2ζ(3) = 0.2408 · · ·
and f1(x) ≡ x2ψ′(x+ 1)− xψ(x+ 1) + log Γ(x+ 1). Define the function f2 on (0,∞) by

f2(x) = [f1(x) − α]/ log x for x �= 1,

f2(1) = lim
x→1

f2(x) = f ′
1(1) = β.

Then f1 and f2 are strictly increasing on (0,∞) with ranges f1((0,∞)) = (0,∞) and f2((0,∞))

= (0, 1/2). However, f1 is neither convex nor concave on (0,∞). In particular,

α+ β log x ≤ f1(x) ≤ α+
1

2
log x (8)

for x ∈ [1,∞), and

max{0, α+ β log x} ≤ f1(x) ≤ α (9)

for x ∈ (0, 1]. Equality holds in each instance if and only if x = 1.

(2) Let f3(x) = 2[xψ(x + 1) − log Γ(x + 1)] − x2ψ′(x + 1), c = 2ζ(3)/3 = 0.8013 · · · , C =

f3(1) = 2(1− γ) + 1− (π2/6) = 0.2006 · · · and D = f ′
3(1) = −ψ′′(2) = 2[ζ(3)− 1] = 0.4041 · · · .

Then f3 is convex on (0,∞), f4(x) ≡ f3(x)/ log(x + 1) is strictly increasing from (0,∞) onto

(0,∞), while f5(x) ≡ f3(x)/x
3 is strictly decreasing from (0,∞) onto (0, c). In particular, for

all x > 0,

P (x) ≤ f3(x) ≤ Q(x), (10)

where P (x) = Cx3 (C+D(x−1)) and Q(x) = min{cx3, Dx} (min{Cx3, C+x−1} for 0 < x < 1

(1 ≤ x <∞, respectively), with equality in each instance if and only if x = 1.

(3) Let f6(x) = [f3(x) − C]/ logx for x �= 1 and f6(1) = limx→1 f6(x) = D. Then f6 is

strictly increasing on (0,∞) with f6((0, 1)) = (0, D) and f6([1,∞)) = [D,∞). In particular,

x2ψ′(x+ 1) + max{0, C +D log x} ≤ 2[xψ(x+ 1)− log Γ(x+ 1)] ≤ C + x2ψ′(x+ 1) (11)

for x ∈ (0, 1], and

2[xψ(x + 1)− log Γ(x+ 1)] ≥ C +D log x+ x2ψ′(x + 1) (12)

for x ∈ [1,∞). Equality holds in each instance if and only if x = 1.
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(4) Let f7(x) = x2ψ′(x+ 1)/[xψ(x+ 1)− log Γ(x + 1)]. Then for x ∈ (0,∞),

1 = f7(∞) = inf{f7(x) : 0 < x <∞} < f7(x) < sup{f7(x) : 0 < x <∞} = f7(0
+) = 2. (13)

�

Our following result improves (6) and (7).

Theorem 1.2. (1) The function f8(x) ≡ x4[ψ(x) − log x + 1/(2x) + 1/(12x2)] is strictly

increasing from (0,∞) onto (0, 1/120). Moreover, f8 is neither convex nor concave on (0,∞),

and f9(x) ≡ f8(x)/x
2 is strictly decreasing from (0,∞) onto (0, 1/12).

(2) The function f10(x) ≡ x2[(1/120)− f8(x)] is strictly increasing from (0,∞) onto

(0, 1/252). In particular,

log x− 1

2x
− 1

12x2
+

1

120x4
− 1

252x6
< ψ(x) < log x− 1

2x
− 1

12x2
+

1

120x4
(14)

for x ∈ (0,∞).

(3) For n ∈ N,

1

2n
− 1

12n2
+

1

120n4
− b

n6
< dn − γ ≤ 1

2n
− 1

12n2
+

1

120n4
− a

n6
, (15)

where the constants a = f10(1) = γ − (23/40) = 0.00221 · · · and b = 1/252 = 0.00396 · · · are

best possible. The equality holds if and only if n = 1. �

§2 Preliminary results

In this section, we establish a technical lemma needed for the proofs of our main results. In

the sequels, we shall often apply the expression [1,6.3.21]

ψ(x) = log x− 1

2x
− 2

∫ ∞

0

t

(t2 + x2)(e2πt − 1)
dt (16)

for x ∈ (0,∞), by which the following formulas hold:

ψ′(x) =
1

x
+

1

2x2
+ 4x

∫ ∞

0

t

(t2 + x2)2(e2πt − 1)
dt, (17)

ψ′′(x) = − 1

x2
− 1

x3
+ 4

∫ ∞

0

t(t2 − 3x2)

(t2 + x2)3(e2πt − 1)
dt (18)

and

ψ′′′(x) =
2

x3
+

3

x4
+ 48x

∫ ∞

0

t(x2 − t2)

(t2 + x2)4(e2πt − 1)
dt. (19)

Lemma 2.1. (1) For each a ∈ (0, 1), the function F1(x) ≡ x(ex/a − eax)/[(eax − 1)(ex/a − 1)]

is strictly decreasing from (0,∞) onto (0, (1− a2)/a).

(2) The function F2(x) ≡ x2[ψ′(x+ 1) + xψ′′(x+ 1)] is strictly increasing from [0,∞) onto

[0, 1/2). However, the function F3(x) ≡ F2(x)/x is not monotone on (0,∞).

Proof. (1) By l’Hpital Rule, one can obtain F1(0) = (1− a2)/a. It is easy to get F1(∞) = 0.

Set t = ex/a ∈ (1,∞), b = a2, F4(t) = (t − tb) log t, F5(t) = (tb − 1)(t − 1) and F6(t) =

[b(1 − b) log t + t1−b + 1 − 2b]/[(1 + b)t + 1 − b]. Then F4(1) = F5(1) = F ′
4(1) = F ′

5(1) =
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F6(1)− (1 − b) = F6(∞) = 0, F1(x) = aF4(t)/F5(t), and

F ′
4(t)

F ′
5(t)

=
(1− btb−1) log t− tb−1 + 1

(1 + b)tb − btb−1 − 1
,
F ′′
4 (t)

F ′′
5 (t)

=
1

b
F6(t), (20)

[(1 + b)t− b+ 1]2F ′
6(t) = F7(t), (21)

where

F7(t) = (1− b)[(1 + b)t− b+ 1](t−b + bt−1)− (1 + b)[t1−b + b(1− b) log t+ 1− 2b]

= −b(1 + b)t1−b + (1 − b)2t−b + b(1− b)2t−1 − b(1− b2) log t− (1 + b)(1− b+ b2).

It is easy to obtain the limiting values F7(1) = 0 and F7(∞) = −∞. Since

t2F ′
7(t) = −b(1− b)(t1−b + 1)[(1 + b)t+ (1− b)] < 0

for all t ∈ (1,∞) and a ∈ (0, 1), F7 is strictly decreasing from (1,∞) onto (−∞, 0). Hence

the monotonicity of F1 follows from (20), (21) and the so-called Monotone l’Hôpital’s Rule [6,

Theorem 1.25].

(2) Since [1, 6.3.5],

ψ(x + 1) = ψ(x) + 1/x, (22)

it follows from (17) and (18) that

F2(x) = x2
{[
ψ′(x)− 1

x2

]
+ x

[
ψ′′(x) +

2

x3

]}
=

1

2
+ 8x3

∫ ∞

0

t(t2 − x2)

(t2 + x2)3(e2πt − 1)
dt.

Putting t = xu, we have

F2(x) =
1

2
+ 8

∫ ∞

0

xu(u2 − 1)

(1 + u2)3(e2πxu − 1)
du

=
1

2
− 8

∫ 1

0

xu(1 − u2)

(1 + u2)3(e2πxu − 1)
du + 8

∫ ∞

1

xu(u2 − 1)

(1 + u2)3(e2πxu − 1)
du

=
1

2
− 8

∫ 1

0

xu(1 − u2)

(1 + u2)3(e2πxu − 1)
du + 8

∫ 1

0

xu(1− u2)

(1 + u2)3(e2πx/u − 1)
du

=
1

2
− 8

∫ 1

0

xu(1− u2)(e2πx/u − e2πxu)

(1 + u2)3(e2πxu − 1)(e2πx/u − 1)
du

=
1

2
− 4

π

∫ 1

0

u(1− u2)

(1 + u2)3
F1(2πx)du,

where F1 is as in part (1) with a = u, so that the monotonicity of F2 follows from part (1).

By part (1),

F2(∞) =
1

2
, F2(0

+) =
1

2
− 4

π
I, where I =

∫ 1

0

(1− u2)2

(1 + u2)3
du.

Set u = tan v. Then, (1 − u2)2/(1 + u2)3 = (cos4 v)(2 cos2 v − 1), du = (cos−2 v)dv and

I = 2

∫ π/2

0

cos4 vdv −
∫ π/2

0

cos2 vdv =
π

8
,

so that F2(0
+) = 0.

Finally, the conclusion for F3 follows from the fact that F3(0) = F3(∞) = 0. �
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3 Proof of the main results

In this section, we prove the main theorems stated in Section 1.

Proof of Theorem 1.1. (1) Clearly, f1(0) = 0. By the asymptotic properties of Γ(x) and ψ(x)

(see [1, 6.4.12, 6.3.18 & 6.1.41]), one can obtain f1(∞) = ∞.

Differentiation gives

f ′
1(x) = x[ψ′(x+ 1) + xψ′′(x+ 1)] = F3(x),

where F3 is as in Lemma 2.1(2). Hence, by Lemma 2.1(2), f1 is strictly increasing from (0,∞)

onto (0,∞), and is neither convex nor concave on (0,∞).

Clearly, f1(1) = α. Let G1(x) = f1(x) − α and G2(x) = log x. Then G1(1) = G2(1) = 0,

f2(x) = G1(x)/G2(x) and G′
1(x)/G

′
2(x) = F2(x), where F2 is as in Lemma 2.1(2). Hence the

monotonicity of f2 follows from Lemma 2.1(2) and [6, Theorem 1.25]. The remaining conclusions

in part (1) are clear.

(2) Clearly, f3(0) = 0. By [1, 6.3.18, 6.1.41 & 6.4.12], one can obtain the limiting value

f3(∞) = ∞. Differentiation and [1, 6.4.1 & 6.4.10] give

f ′
3(x) = −x2ψ′′(x+ 1) = 2x2

∞∑
n=1

1

(n+ x)3
=

∫ ∞

0

u/x

eu/x − 1
ue−udu, (23)

which is clearly strictly increasing from (0,∞) onto (0, 1), and hence the convexity of f3 follows.

By (23), we have

f ′
3(x)

d
dx [log(x+ 1)]

= (x + 1)f ′
3(x) = (x+ 1)

∫ ∞

0

u/x

eu/x − 1
ue−udu, (24)

which is strictly increasing on (0,∞), and hence the monotonicity of f4 follows from [6,Theorem

1.25].

Clearly, f4(0
+) = 0, and by [1,6.4.13 & 6.4.14], f4(∞) = ∞.

It follows from (23) that

f ′
3(x)

d
dx(x

3)
= −1

3
ψ′′(x+ 1) =

2

3

∞∑
n=1

1

(n+ x)3
, (25)

which is clearly strictly decreasing from (0,∞) onto (0, c), and hence the monotonicity of f5

follows from [6,Theorem 1.25]. By (25), the l’Hôpital’s Rule and [1,6.4.2 & 6.4.13], f5(0
+) = c

and f5(∞) = −(1/3) limx→∞ ψ′′(x+ 1) = 0.

By the monotonicity of f ′
3, we have

0 < f ′
3(x) < f ′

3(1) = D, for x ∈ (0, 1), (26)

and

D ≤ f ′
3(x) < 1, for x ∈ [1,∞). (27)

Integrating (26) from 0 to x, we obtain

0 < f3(x) ≤ Dx, for x ∈ (0, 1). (28)

Similarly, integrating (27) from 1 to x, we obtain

D(x− 1) ≤ f3(x)− f3(1) ≤ x− 1, for x ∈ [1,∞). (29)
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On the other hand, it follows from the monotonicity of f5 that

Cx3 < f3(x) < cx3, for x ∈ (0, 1), (30)

and

0 < f3(x) ≤ Cx3, for x ∈ [1,∞). (31)

The double inequality (10) now follows from (28)–(31). The equality case is clear.

(3) By differentiation and (23),
d
dx [f3(x)− C]

d
dx (log x)

= x

∫ ∞

0

u/x

eu/x − 1
ue−udu, (32)

which is strictly increasing on (0,∞), and hence so is f6 by [6,Theorem 1.25]. The remaining

conclusions in part (3) are clear.

(4) Applying l’Höpital’s Rule and [1, 6.4.12 & 6.4.13], we have

f7(0
+) = 2 + lim

x→0

xψ′′(x+ 1)

ψ′(x+ 1)
= 2, f7(∞) = 2 + lim

x→∞
xψ′′(x+ 1)

ψ′(x+ 1)
= 1. (33)

By part (1),

x2ψ′(x+ 1) > xψ(x + 1)− log Γ(x+ 1), x ∈ (0,∞). (34)

(13) now follows from (33), (34) and (10). �

In [2, Lemma 2.1], it was proved that
∞∑

n=1

n− x

(n+ x)3
> 0 for x ∈ [1, 4),

which can now been improved to the following conclusion by Theorem 1.1(1).

Corollary 3.1. For all x > 0,

0 <

∞∑
n=1

n− x

(n+ x)3
<

1

2x2
. (35)

Proof. By [1, 6.4.10],

xf ′
1(x) = x2[ψ′(x+ 1) + xψ′′(x+ 1)] = F2(x) = x2

∞∑
n=1

n− x

(n+ x)3
,

and hence (35) follows from Lemma 2.1(2). �

Remark 3.2. Theorem 1.1(1) also improves Lemma 2.6 in [2] and simplifies its proof.

Proof of Theorem 1.2. (1) By (22),

f8(0
+) = lim

x→0
x4

[
ψ(x+ 1)− 1

x
− log x+

1

2x
+

1

12x2

]
= 0,

while f8(∞) = 1/120 by [1,6.3.18].

Differentiation gives

f ′
8(x) = 4x3[ψ(x) − log x] + x4

[
ψ′(x)− 1

x

]
+

3

2
x2 +

x

6
. (36)

Hence, by (16) and (17), it follows from (36) that

H1(x) ≡ 1

x
f ′
8(x) =

1

6
− 4

∫ ∞

0

t

e2πt − 1
H2(x, t)dt, (37)
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where H2(x, t) = x2(x2 + 2t2)/(t2 + x2)2. Clearly, H1(0
+) = 1/6. Since [1, 6.4.1]

ψ(n)(x) = (−1)n+1

∫ ∞

0

tne−xt

1− e−u
dt, (38)

H1(∞) =
1

6
− 4

∫ ∞

0

t

e2πt − 1
dt =

1

6
− 1

π2

∫ ∞

0

ue−u

1− e−u
du

=
1

6
− 1

π2
ψ′(1) =

1

6
− 1

π2

∞∑
n=1

1

n2
= 0,

where u = 2πt. It is easy to show that H2 is strictly increasing in x on (0,∞) so that H1 is

strictly decreasing from (0,∞) onto (0, 1/6). The monotonicity of f8 now follows from (37).

It is easy to obtain the limiting values f ′
8(0

+) = f ′
8(∞) = 0 by (36). Hence f ′

8 is not

monotonic on (0,∞), so that f8 is neither convex nor concave on (0,∞).

Since
f ′
8(x)

d
dx(x

2)
=

1

2x
f ′
8(x) =

1

2
H1(x),

the result for f9 follows from [6, Theorem 1.25] and the monotonicity of H1.

(2) Let y = 1/x, H3(y) = (1/120)− f8(1/y), and H4(y) = y2. Then H3(0
+) = H4(0) = 0,

f10(x) = H3(y)/H4(y), and

H ′
3(y)

H ′
4(y)

=
1

2y3
f ′
8

(
1

y

)
=

1

2
H5(x) ≡ 1

2
x3f ′

8(x). (39)

By (37),

H5(x) = x4H1(x) =
1

6
x4 − 4

∫ ∞

0

t

e2πt − 1
H6(x, t)dt,

where H6(x, t) = x4H2(x, t) = x6(x2 + 2t2)/(t2 + x2)2. Let H7(x) = H5(
√
x). Then

1

x
H ′

7(x) = H8(x) ≡ 1

3
− 8

∫ ∞

0

t

e2πt − 1
H9(x, t)dt, (40)

where H9(x, t) = x(3t4 + 3xt2 + x2)/(t2 + x)3. Since

∂H9

∂x
=

3t6

(t2 + x)4
,

H9 is strictly increasing in x on (0,∞) so that H8 is strictly decreasing on (0,∞). Clearly,

H8(0
+) = 1/3. On the other hand, we have

H8(∞) =
1

3
− 8

∫ ∞

0

t

e2πt − 1
dt =

1

3
− 2

π2

∫ ∞

0

ue−u

1− e−u
dt

with u = 2πt, and hence by (38),

H8(∞) =
1

3
− 2

π2
ψ′(1) =

1

3
− 2

π2

∞∑
n=1

1

n2
= 0.

Therefore, by (40),H7 is strictly increasing on (0,∞), and so isH5. This yields the monotonicity

of f10 by (39) and [6,Theorem 1.25].

Clearly, f10(0
+) = 0. By [1.6.3.18],

f10(∞) = − lim
x→∞x6

[
ψ(x) − log x+

1

2x
+

1

12x2
− 1

120x4

]
=

1

252
.

The double inequality (14) is clear.
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(3) Since

f10(n) = n6

{
1

120n4
−
[
ψ(n)− logn+

1

2n
+

1

12n2

]}

= n6

{
1

120n4
−
[
ψ(n+ 1)− logn− 1

2n
+

1

12n2

]}

= n6

[
1

120n4
− (dn − γ) +

1

2n
− 1

12n2

]

by (2) and (22), we have

a = f10(1) ≤ f10(n) < b, n ∈ N

by part (2). Hence
a

n6
≤ 1

120n4
− (dn − γ) +

1

2n
− 1

12n2
<

b

n6

for n ∈ N, with equality if and only if n = 1. This yields the double inequality (15) and its

equality case. �
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