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Some additive results on Drazin inverse

LIU Xiao-ji1 QIN Xiao-lan1 Julio Beńıtez2

Abstract. In this paper, we investigate additive results of the Drazin inverse of elements in

a ring R. Under the condition ab = ba, we show that a + b is Drazin invertible if and only if

aaD(a+ b) is Drazin invertible, where the superscript D means the Drazin inverse. Furthermore

we find an expression of (a + b)D. As an application we give some new representations for the

Drazin inverse of a 2 × 2 block matrix.

§1 Introduction and previous results

In this paper, R will denote a unital ring whose unity is �. Let us recall that an element
a ∈ R has a Drazin inverse [18] if there exists b ∈ R such that

bab = b, ab = ba, a − a2b is nilpotent.

The element b above is unique if it exists and is denoted by aD. The nilpotency index of
a−a2aD is called the Drazin index of a, denoted by ind(a). The notation aπ means �−aaD for
any Drazin invertible element a ∈ R. Observe that by the definition of the Drazin inverse, aaπ

is nilpotent. The subset of R composed of Drazin invertible elements will be denote by RD.
Drazin proved, [18], that if a, b ∈ RD and ab = ba = 0, then a + b ∈ RD and (a + b)D =

aD + bD. In recent years, many papers focused on the problem under some weaker conditions.
Hartwig et al., [19], expressed (A+B)D under the one-side condition AB = 0, where A and B are
complex square matrices. This result was extended to bounded linear operators on an arbitrary
complex Banach space by Djordjević and Wei in [15]. Again, it was extended for morphisms
on arbitrary additive categories by Chen et al. in [8]. More results on the Drazin inverse or
the generalized Drazin inverse can also be found in [3,5,6,8,9,11,12,15]. In particular we must
cite [13]: in this paper, the authors, under the commutative condition of AB = BA (when A

and B are Drazin invertible linear operators in Banach spaces), gave explicit representations of
(A + B)D in term of A, AD, B, and BD.
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In this paper, we assume that a and b are Drazin invertible elements which satisfy ab = ba

or aπb = 0 and anb = ban for some n ∈ �, and we conclude that a + b is Drazin invertible if
and only if aaD(a + b) is Drazin invertible. Also we obtain an explicit expression for (a + b)D.
As an application, we give additive results of block matrices under some conditions.

We give now some previous results which will be useful in proving our results.

Lemma 1.1. Let a, x ∈ R. If ax = xa and there exists n ∈ � such that an = 0, then � − xa

is invertible and (�− xa)−1 =
∑n−1

i=0 xiai.

Proof. Let y =
∑n−1

i=0 xiai. It is enough to verify (�− xa)y = y(�− xa) = �.

Lemma 1.2. Let x, y be two commuting nilpotent elements of R. Then x + y is nilpotent.

Proof. It is enough to recall (x + y)n =
∑n

k=0

(
n
k

)
xkyn−k for any n ∈ � since xy = yx.

Next theorem was proved by Drazin [18, Th. 1].

Theorem 1.1. Let a ∈ RD and b ∈ R. If ab = ba, then aDb = baD.

§2 Main results

Let us observe the expression for (a−b)D in [24, Th. 2.3]. If we assume that w = aaD(a+b)
instead of w = aaD(a − b)bbD, we will get a much simpler expression for (a + b)D.

Theorem 2.1. Let a, b ∈ R be Drazin invertible. If ab = ba, then w = aaD(a + b) is Drazin
invertible if and only if a + b is Drazin invertible. In this case, we have

(a + b)D = wD + aπ(�+ bDaaπ)−1bD = wD + aπ

⎛

⎝
ind(a)−1∑

i=0

(−bDa)i

⎞

⎠ bD. (1)

Proof. Recall that aaπ is nilpotent and its index of nilpotency is the Drazin index of a. Let
r = ind(a). Since ab = ba, by Theorem 1.1, aDb = baD and abD = bDa. From aDb = baD we
obtain aπb = baπ. Again by Theorem 1.1, aπ commutes with bD. Therefore, bDaπa = aπabD.
By Lemma 1.1 we get that �+ bDaaπ is invertible and

(�+ bDaaπ)−1 =
r−1∑

i=0

(−bDaaπ)i = �+ aπ
r−1∑

i=1

(−bDa)i.

In the rest of the proof, we will use frequently that {�, a, b, aD, bD} is a commutative family.

Assume that w is Drazin invertible and let us define

x = wD + aπ(�+ bDaaπ)−1bD.

From ab = ba and aDb = baD, we have w(a + b) = aaD(a + b)(a + b) = (a + b)w. By Theorem
1.1, we obtain wD(a + b) = (a + b)wD. Since r = ind(a), then (aaπ)r = 0, or equivalently,
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araπ = 0. We get

(a + b)aπ(�+ bDaaπ)−1bD

= (a + b)
[
�+ (−bDa)aπ + (−bDa)2aπ + · · · + (−bDa)r−1aπ

]
bDaπ

= (a + b)
[
�+ (−bDa) + (−bDa)2 + · · · + (−bDa)r−1

]
bDaπ

=
[
abD + a(−bDa)bD + a(−bDa)2bD + · · · + a(−bDa)r−1bD)

]
aπ

+
[
bbD + b(−bDa)bD + b(−bDa)2bD + · · · + b(−bDa)r−1bD

]
aπ

=
[
abD − (abD)2 + (abD)3 + · · · + (−1)r−2(abD)r−1 + (−1)r−1(abD)r

]
aπ

+
[
bbD − abD + (abD)2 + · · · + (−1)r−1(abD)r−1

]
aπ

= bbDaπ.

So, we get

(a + b)x = (a + b)
(
wD + aπ(�+ bDaaπ)−1bD

)
= (a + b)wD + bbDaπ. (2)

Since {�, a, b, aD, bD, w, wD} is a commutative family, we get x(a + b) = (a + b)x.

Next, we give the proof of x(a + b)x = x. From (2) we can write (a + b)x = x′ + x′′, where
x′ = wD(a + b) and x′′ = bDbaπ. Observe that

w + aπ(a + b) = aaD(a + b) + (�− aaD)(a + b) = a + b.

From waπ = (a + b)aaDaπ = 0 we get wDaπ = (wD)2waπ = 0, hence

xx′ =
(
wD + aπ(�+ bDaaπ)−1bD

)
wD(a + b)

= (wD)2(a + b) = wD(a + b)wD = wD (w + aπ(a + b))wD = wD

and
xx′′ =

(
wD + aπ(�+ bDaaπ)−1bD

)
bDbaπ

=
(
aπ(�+ bDaaπ)−1bD

)
bDbaπ

= (�+ bDaaπ)−1bDaπ

= x − wD.

So, we get x(a + b)x = x(x′ + x′′) = x.

Now we will prove that (a+ b)− (a+ b)2x is nilpotent. Since a+ b = w+aπ(a+ b), aπw = 0,
and aπwD = 0, we have

(a + b)2wD = (w + aπ(a + b))2 wD

=
(
w2 + 2waπ(a + b) + aπ(a + b)2

)
wD = w2wD = w − wwπ .

(3)

Also we have

(a + b)bDbaπ = (a + b)aπ(�− bπ) = aaπ + baπ − aaπbπ − aπbbπ. (4)
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From (2), (3), and (4) we get

(a + b) − (a + b)2x

= (a + b) − (a + b)
(
wD(a + b) + bbDaπ

)

= (a + b) − (w − wwπ + aaπ + baπ − aaπbπ − aπbbπ)

= (a + b) − [(a + b)aaD + (a + b)aπ − aaπbπ − aπbbπ − wwπ
]

= (a + b) − [(a + b) − aaπbπ − aπbbπ − wwπ ]

= aaπbπ + aπbbπ + wwπ .

Since aaπ, bbπ, and wwπ are nilpotent, and {aaπ, bbπ, wwπ} is a commuting family, then by
using Lemma 1.2 we get the nilpotency of (a + b) − (a + b)2x. Therefore, we have proved
a + b ∈ RD and (a + b)D = x, i.e., expression (1).

Conversely, let us assume a + b ∈ RD. Let y = aaD(a + b)D. We will prove that w =
aaD(a + b) ∈ RD and wD = y. Observe that Theorem 1.1 implies that {a, b, aD, bD, (a + b)D}
is a commuting family. Now, having in mind (aaD)2 = aaD, it is simple to prove wy = yw =
aaD(a + b)(a + b)D, y2w = y, and w2y − w = aaD

[
(a + b)2(a + b)D − (a + b)

]
, which leads to

the nilpotency of w2y − w. The proof is finished.

Corollary 2.1. Let a, b ∈ R be Drazin invertible. If ab = ba and baaπ = 0, then w = aaD(a+b)
is Drazin invertible if and only if a + b is Drazin invertible. In this case, we have

(a + b)D = wD + aπbD.

Proof. From baaπ = 0, we have bDaaπ = (bD)2baaπ = 0. It is enough to apply Theorem 2.1 to
prove this corollary.

Theorem 2.2. Let a, b ∈ R be Drazin invertible, aπb = 0 and anb = ban for some n ∈ �.
Then a + b is Drazin invertible if and only if w = aaD(a + b) is Drazin invertible. In this case,
we have

(a + b)D = wD.

Proof. From a ∈ RD, it is simple to prove that an ∈ RD and (an)D = (aD)n. In addition,
(an)π = �− an(an)D = �− (aaD)n = �− aaD = aπ. Since anb = ban, by Theorem 1.1 we get
(an)Db = b(an)D, and therefore, aπb = baπ and aaDb = baaD. Also, the following equality will
be useful:

w + aπ(a + b) = aaD(a + b) + (�− aaD)(a + b) = a + b. (5)
Since aaD commutes with a and b, we get waπ = aπw = 0.

Assume that w is Drazin invertible. We will prove that wD is the Drazin inverse of a + b,
i.e., we will prove wD(a + b) = (a + b)wD, (wD)2(a + b) = wD, and (a + b)2 − wD is nilpotent.

Since aaDb = baaD, we get

w(a + b) = aaD(a + b)(a + b) = (a + b)aaD(a + b) = (a + b)w.

By Theorem 1.1 we obtain wD(a + b) = (a + b)wD.
From waπ = 0 we get wDaπ = (wD)2waπ = 0. By using wDaπ = 0 and (5) we have

(wD)2(a + b) = (wD)2(w + aπ(a + b)) = (wD)2w + (wD)2aπ(a + b) = wD.
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Since a + b = w + aπ(a + b) and aπw = waπ = 0, we have

(a + b)2 = (w + aπ(a + b))2 = w2 + aπ(a + b)2.

Hence from aπwD = aπw(wD)2 = 0 we obtain

(a + b)2wD = (w2 + aπ(a + b)2)wD = w2wD = w − wwπ

= aaD(a + b) − wwπ = (�− aπ)(a + b) − wwπ

= a + b − aπa − aπb − wwπ .

From aπb = 0, we have a + b − (a + b)2wD = aπa + wπw.

From aπw = waπ , we have aπwD = wDaπ, so we get

aπwπ = aπ(�− wwD) = (�− wwD)aπ = wπaπ.

From waπ = aπw = 0 we obtain (aaπ)(wwπ) = 0 and (wwπ)(aaπ) = 0. Hence for any k ∈ �
we have

(
a + b − (a + b)2wD

)k
= (aπa + wπw)k = (aπa)k + (wπw)k.

Since aaπ and wwπ are nilpotent, it follows that (a + b) − (a + b)2wD is nilpotent. We have
just proved that a + b ∈ RD and (a + b)D = wD.

Assume that a + b ∈ RD, we will prove that w = aaD(a + b) ∈ RD and the Drazin inverse
of a + b is wD, i.e., (a + b)Dw = w(a + b)D,

(
(a + b)D

)2
w = (a + b)D, and w2(a + b)D − w is

nilpotent.

Since aaD commutes with a and b we have (a + b)w = w(a + b). By Theorem 1.1, one gets
(a + b)wD = wD(a + b).

Since a is Drazin invertible, we can write a = a1+a2 (this is the core-nilpotent decomposition
of a, see e.g [16, Ch. 2]), where a1 ∈ aaDRaaD and a2 ∈ aπRaπ is nilpotent. From aπb =
baπ = 0 we obtain b ∈ aaDRaaD. Hence a + b can be decomposed as

a + b = (a1 + b) + a2, a1 + b ∈ aaDRaaD, a2 ∈ aπRaπ. (6)

From (a + b)aaD = aaD(a + b) and Theorem 1.1 we get (a + b)DaaD = aaD(a + b)D, and
therefore,

(a + b)D = aaD(a + b)DaaD + aaD(a + b)Daπ + aπ(a + b)DaaD + aπ(a + b)Daπ

can be also decomposed as

(a + b)D = u + v, u ∈ aaDRaaD, v ∈ aπRaπ . (7)

From the definition of the Drazin inverse and (6), (7) we have that a1 + b, a2 ∈ RD and
(a1 + b)D = u, aD

2 = v. But, aD
2 = 0 because a2 is nilpotent. Therefore, (a + b)D = (a1 + b)D ∈

aaDRaaD. Now
(
(a + b)D

)2
w =

(
(a1 + b)D

)2
aaD(a + b)

=
(
(a1 + b)D

)2
(a + b) =

(
(a + b)D

)2
(a + b) = (a + b)D.

Now, let us prove that w2(a + b)D − w is nilpotent. We have proved that aaD commutes
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with a + b. Since aaD is an idempotent,

w2(a + b)D − w =
[
aaD(a + b)

]2
(a + b)D − aaD(a + b)

= aaD(a + b)2(a + b)D − aaD(a + b)

= aaD
[
(a + b)2(a + b)D − (a + b)

]
.

Since aaD commutes with a + b and (a + b)D, and (a + b)2(a + b)D − (a + b) is nilpotent, then
w2(a + b)D −w is nilpotent. Therefore, w ∈ RD and wD = (a + b)D. The proof is finished.

If (R, ·) is a ring with a unity �, then we can define a new multiplication in R by a � b =
ba. With this multiplication, (R,�) becomes a ring with the same unity �. We can apply
Theorem 2.2 to (R,�) and obtain a dual result.

§3 Applications

In this section, we give some formulas for the Drazin inverse of a 2 × 2 block matrix under
some conditions. Let �m×n be the set of all the m × n matrices over the complex field.

Let M be a matrix of the form

M =

[
A B

C D

]

, A ∈ �m×m, D ∈ �n×n. (8)

Campbell and Meyer, [2, Ch. 7] proposed the problem (open until now) to find an explicit
formula of the Drazin inverse of M in terms of the blocks of M . Several authors have investigated
this problem and they were able to find some partial answers (imposing some conditions on the
blocks of M). Here we write an exemplary list.

• B = 0 (or C = 0). See [2, Ch. 7] or [23].

• BC = 0, DC = 0 (or BD = 0), and D is nilpotent. See [20].

• BCA = 0, BD = 0, and DC = 0 (or BC is nilpotent). See [4].

• BCA = 0, BCB = 0, DCA = 0, and DCB = 0. See [25].

• BC = 0, BD = 0 and DC = 0. See [14].

• BC = 0 and DC = 0. See [10].

• BCA = 0, BCB = 0, ABD = 0, and CBD = 0. See [22];

• BC = 0 and BD = 0. See [17].

We will find several expressions for MD under some conditions involving the blocks A, B, C, D,
and the Drazin inverses of A and D. Let us recall that the Drazin inverse of any square complex
matrix always exists (see e.g., [1, Ch. 4]).

First, we will state some auxiliary lemmas.
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Lemma 3.1. (See [1, Ch. 4] or [2, Th. 7.8.4]). Let A ∈ �m×n, B ∈ �n×m. Then (AB)D =
A[(BA)D ]2B.

Lemma 3.2. (See [7] or [21]). Let A ∈ �m×n, B ∈ �n×m. Then
[

0 A

B 0

]D

=

[
0 (AB)DA

(BA)DB 0

]

.

Lemma 3.3. (See [2, Ch. 7] or [23]). Let M1 and M2 be of a form

M1 =

[
A 0
C B

]

, M2 =

[
B C

0 A

]

.

If r = ind(A) and s = ind(B), then

MD
1 =

[
AD 0
S BD

]

, MD
2 =

[
BD S

0 AD

]

,

where

S =

[
r−1∑

i=0

(BD)i+2CAi

]

Aπ + Bπ

[
s−1∑

i=0

BiC(AD)i+2

]

− BDCAD. (9)

Let M be a 2 × 2 block matrix represented as in (8). Let r = ind(A) and s = ind(D). To
state next lemma, we define the following matrices, being k a nonnegative integer.

Σk = (DD)2
r−1∑

i=0

(DD)i+kCAiAπ +Dπ
s−1∑

i=0

DiC(AD)i+k(AD)2 −
k∑

i=0

(DD)i+1C(AD)k−i+1. (10)

Lemma 3.4. (See [17]). Let M be a matrix of a form (8). If BC = 0 and BD = 0, then

MD =

[
AD (AD)2B
Σ0 DD + Σ1B

]

,

where Σ0 and Σ1 are defined in (10).

Lemma 3.5. Let X ∈ �n×n. Then (X2XD)D = XD, (X2XD)π = Xπ, and ind(X2XD) = 1.

Proof. The Jordan canonical form of X permits us to write X = S(C ⊕ N)S−1, where S and
C are nonsingular, and N is nilpotent. Evidently, XD = S(C−1 ⊕ 0)S−1. Now, it is evident
X2XD = S(C ⊕ 0)S−1, which leads to the affirmations of this lemma.

Using Theorem 2.1 and the previous lemmas, we get the following results.

Theorem 3.1. Let M be given by (8) and let r = ind(A).

(i) If AB = BD, DC = CA, and BDD = 0, then

MD =

[
AD (AD)2B
Φ0 DD + Φ1AADB

]

+
r−1∑

i=0

[
0 (BC)DB

(CB)DC 0

]i [
(−A)iAπ 0

0 (−D)iDπ

]

,

where
Φ0 = (DD)2CAπ − DDCAD

and
Φ1 = (DD)3CAπ − DDC(AD)2 − (DD)2CAD.
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(ii) If AB = BD, DC = CA, and BC = 0, then

MD =

[
AD −(AD)2B

−(DD)2C DD + (DD)3CB

]

.

Proof. (i) We can split the matrix M as M = P + Q, where

P =

[
A 0
0 D

]

, Q =

[
0 B

C 0

]

.

From AB = BD and DC = CA, we have PQ = QP . Applying Theorems 1.1 and 2.1, we
get

MD =
(
PPD(P + Q)

)D
+

[
r−1∑

i=0

(QD)i+1(−P )i

]

P π. (11)

Observe that
(
PPD(P + Q)

)D
=

[
A2AD AADB

DDDC D2DD

]D

.

From BDD = 0, the matrix PPD(P + Q) satisfies Lemma 3.4. In view of Lemma 3.5 we
get (recall that the index of matrices A2AD and D2DD is 1)

(
PPD(P + Q)

)D
=

[
AD (AD)2B
Φ0 DD + Φ1AADB

]

,

where
Φ0 = (DD)2CAπ − DDCAD

and
Φ1 = (DD)3CAπ − DDC(AD)2 − (DD)2CAD.

Also we have
r−1∑

i=0

(QD)i+1(−P )i =
r−1∑

i=0

[
0 (BC)DB

(CB)DC 0

]i [
(−A)i 0

0 (−D)i

]

.

The proof of (i) is finished.
(ii) Now, we split the matrix M as M = P + Q, where

P =

[
0 B

C 0

]

, Q =

[
A 0
0 D

]

. (12)

From AB = BD and DC = CA, we have PQ = QP . Hence we can use expression (11); but
now for matrices P and Q defined in (12).

Since BC = 0, it is easy to get P 3 = 0. Therefore, PD = 0 and (11) is reduced to

MD = QD − (QD)2P + (QD)3P 2.

Furthermore, we have

(QD)2P =

[
(AD)2 0

0 (DD)2

] [
0 B

C 0

]

=

[
0 (AD)2B

(DD)2C 0

]

.

and

(QD)3P 2 =

[
(AD)3 0

0 (DD)3

][
0 0
0 CB

]

=

[
0 0
0 (DD)3CB

]

.

The proof is finished.
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Theorem 3.2. Let M be given by (8). If BC = 0, ABDD = 0, CAπB = 0, and AB = BD,
then

MD =

[
AD (AD)2B
Σ0 DD + Σ1AADB − DDΣ0A

πB

]

,

where Σ0 and Σ1 are defined in (10).

Proof. We can split the matrix M as M = P + Q, where

P =

[
0 AπB

0 0

]

, Q =

[
A AADB

C D

]

.

From BC = 0, CAπB = 0, and AB = BD we have PQ = QP . Moreover it is trivial to
verify P 2 = 0, hence PD = 0. Applying Theorem 2.1, we get

MD = QD − (QD)2P. (13)

Matrix Q satisfies Lemma 3.4, so we get

QD =

[
AD (AD)2AADB

Σ0 DD + Σ1AADB

]

, (14)

where Σ0 and Σ1 are defined in (10). Evidently, (AD)2AADB = (AD)2B. Now,

QDP =

[
AD (AD)2B
Σ0 DD + Σ1AADB

][
0 AπB

0 0

]

=

[
0 0
0 Σ0A

πB

]

because ADAπ = 0. Therefore,

(QD)2P =

[
AD (AD)2B
Σ0 DD + Σ1AADB

][
0 0
0 Σ0A

πB

]

=

[
0 (AD)2BΣ0A

πB

0 (DD + Σ1AADB)Σ0A
πB

]

.

Observe that ADBDD = (AD)2ABDD = 0, which leads to

ADBΣ0 = ADB

(

(DD)2
r−1∑

i=0

(DD)iCAiAπ + Dπ
s−1∑

i=0

DiC(AD)i(AD)2 − DDCAD

)

= ADBDπ
s−1∑

i=0

DiC(AD)i(AD)2

= ADBDπC(AD)2

= ADB(I − DDD)C(AD)2

= ADBC(AD)2 = 0.

Thus,

(QD)2P =

[
0 0
0 DDΣ0A

πB

]

. (15)

To prove the theorem, it is enough consider (13), (14), and (15).

Next result generalizes Lemma 3.3

Theorem 3.3. Let M be a matrix written as in (8). If BC = 0, CB = 0, and AB = BD,
then

MD =

[
AD −B(DD)2

S DD

]

.



488 Appl. Math. J. Chinese Univ. Vol. 30, No. 4

where

S =
r−1∑

i=0

(DD)i+2CAiAπ +
s−1∑

i=0

DπDiC(AD)i+2 − DDCAD, (16)

r = ind(A), and s = ind(D).

Proof. We split the matrix M as M = P + Q, where

P =

[
0 B

0 0

]

, Q =

[
A 0
C D

]

.

From the hypotheses of the theorem we get PQ = QP . Since P 2 = 0, then PD = 0 and P π = I.
Thus, Theorems 2.1 and 1.1 imply

MD = QD − P (QD)2. (17)

By using Lemma 3.3 we can find an expression for QD:

QD =

[
AD 0
S DD

]

, (18)

where S is defined in (16). Now we have

PQD =

[
BS BDD

0 0

]

and QDP =

[
0 ADB

0 SB

]

.

By Theorem 1.1, we get BS = 0 and SB = 0 (in addition, we get BDD = ADB, but this
equlity will not be useful). Now,

P (QD)2 = (PQD)QD =

[
BDDS B(DD)2

0 0

]

and QD(PQD) =

[
0 ADBDD

0 SBDD

]

.

As before, by Theorem 1.1, we get

P (QD)2 =

[
0 B(DD)2

0 0

]

. (19)

To prove the theorem, it is enough to consider (17), (18), and (19).

Acknowledgement. The authors would like to thank the referees and the editors for their
suitable comments.

References

[1] A Ben-Israel, T N E Greville. Generalized Inverses, Theory and Applications, 2nd edition,

Springer-Verlag, 2003.

[2] S L Campbell, C D Meyer. Generalized Inverses of Linear Transformations, Pitman (Advanced

Publishing Program), Boston, MA, 1979.
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