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Some additive results on Drazin inverse

LIU Xiao-jit QIN Xiao-lan! Julio Benitez?

Abstract. In this paper, we investigate additive results of the Drazin inverse of elements in
a ring R. Under the condition ab = ba, we show that a + b is Drazin invertible if and only if
aa® (a+b) is Drazin invertible, where the superscript D means the Drazin inverse. Furthermore
we find an expression of (a + b)”. As an application we give some new representations for the

Drazin inverse of a 2 x 2 block matrix.

81 Introduction and previous results

In this paper, R will denote a unital ring whose unity is 1. Let us recall that an element

a € R has a Drazin inverse [18] if there exists b € R such that
bab = b, ab = ba, a — a?b is nilpotent.

The element b above is unique if it exists and is denoted by a”. The nilpotency index of
a—a?aP is called the Drazin index of a, denoted by ind(a). The notation a™ means 1 — aa® for
any Drazin invertible element a € R. Observe that by the definition of the Drazin inverse, aa™
is nilpotent. The subset of R composed of Drazin invertible elements will be denote by RP.

Drazin proved, [18], that if a,b € RP and ab = ba = 0, then a + b € RP and (a + b)P =
aP 4+ bP. In recent years, many papers focused on the problem under some weaker conditions.
Hartwig et al., [19], expressed (A+B)P under the one-side condition AB = 0, where A and B are
complex square matrices. This result was extended to bounded linear operators on an arbitrary
complex Banach space by Djordjevi¢ and Wei in [15]. Again, it was extended for morphisms
on arbitrary additive categories by Chen et al. in [8]. More results on the Drazin inverse or
the generalized Drazin inverse can also be found in [3,5,6,8,9,11,12,15]. In particular we must
cite [13]: in this paper, the authors, under the commutative condition of AB = BA (when A
and B are Drazin invertible linear operators in Banach spaces), gave explicit representations of
(A+ B)P in term of A, AP, B, and BP.
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In this paper, we assume that a and b are Drazin invertible elements which satisfy ab = ba
or a™b =0 and a™b = ba™ for some n € N, and we conclude that a + b is Drazin invertible if
and only if aa” (a + b) is Drazin invertible. Also we obtain an explicit expression for (a + b)”.
As an application, we give additive results of block matrices under some conditions.

We give now some previous results which will be useful in proving our results.

Lemma 1.1. Let a,z € R. If ax = za and there exists n € N such that o™ = 0, then 1 — za

is invertible and (1 — za)~' = S0 atal.

Proof. Let y = Z?gol x'a’. Tt is enough to verify (1 — za)y = y(1 — za) = 1.

Lemma 1.2. Let z,y be two commuting nilpotent elements of R. Then x 4y is nilpotent.

Proof. 1t is enough to recall (z 4+ y)" = Y>_;'_, (¥)z*y" =" for any n € N since zy = yz.

Next theorem was proved by Drazin [18, Th. 1].

Theorem 1.1. Let a € RP and b € R. If ab = ba, then aPb = ba®.

82 Main results

Let us observe the expression for (a —b)? in [24, Th. 2.3]. If we assume that w = aa® (a+b)
instead of w = aa®(a — b)bb?, we will get a much simpler expression for (a + b)P.

Theorem 2.1. Let a,b € R be Drazin invertible. If ab = ba, then w = aa®”(a + b) is Drazin
invertible if and only if a + b is Drazin invertible. In this case, we have
ind(a)—1
(a+b)P =wP +a™(1+b"aa™) P = w” +4a" Z (=bPa)" | bP. (1)
i=0

Proof. Recall that aa™ is nilpotent and its index of nilpotency is the Drazin index of a. Let
r = ind(a). Since ab = ba, by Theorem 1.1, a?b = baP and ab® = bPa. From aPb = baP we
obtain a™b = ba™. Again by Theorem 1.1, ™ commutes with b”. Therefore, b”a"a = a™abP.
By Lemma 1.1 we get that 1 + bPaa™ is invertible and

r—1 r—1
(1+bPaa™) ! = Z(—bDaa”)i =1+ad" Z(—bDa)i.
i=0 i=1

In the rest of the proof, we will use frequently that {1, a,b,a”,b"} is a commutative family.
Assume that w is Drazin invertible and let us define
r=wP +a™ (1 + b aa™)1oP.
From ab = ba and a”b = ba”, we have w(a + b) = aa®”(a + b)(a + b) = (a + b)w. By Theorem
1.1, we obtain w”(a + b) = (a + b)wP. Since r = ind(a), then (aa™)” = 0, or equivalently,
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a™ = 0. We get

(a+b)a™ (14 bPaa™) P

=(a+b)[1+ (=bPa)a™ + (=bPa)?a™ + -+ (—bDa)T_la”] bPa™

= (a+b) [L+ (=bPa) + (=bPa)® + -+ + (=bPa)" '] bPa”

= [ab” + a(=bPa)b? + a(—b"a)?b” + -+ a(—b"a)""'bP)] a
+ [0b7 + b(=bPa)b” + b(=bPa)?bP + - + b(=bPa) " 'bP] a

= [ab? — (abP)? + (ab”)® + -+ + (=1)""2(ab?)" "' + (=1)""*(ab”)"] a”
+ [bbP — ab® + (abP)? + -+ (=1)" " Hab?)" ] a”

=bb”a".

So, we get
(a+b)z = (a+b) (W’ +a™ (1 +b"aa™) 'b") = (a + b)w” + bb"a". (2)

Since {1,a,b,a”,b?, w,wP} is a commutative family, we get z(a + b) = (a + b)z.

Next, we give the proof of z(a + b)x = x. From (2) we can write (a + b)x = 2’ + 2", where
2’ = wP(a +b) and 2" = bPba”™. Observe that
w4+ a™(a+b) =aa”(a+b)+ (1 —aa®)(a+b) =a+b.
From wa™ = (a + b)aa”a™ = 0 we get wPa™ = (wP)?*wa™ = 0, hence
zz' = (WP +a™ (1 + b”aa™) '0P) wP (a +b)
= (wP)?*(a +b) = wP(a + b)w” = w? (w + a™(a + b)) w” = w”
and
(w +a"(1+ bDaa”)_lbD) bPba™
=(a"(1+ vPaa™)1oP) bPba”
= (1 +bPaa™)"'bPa"
=z —wP.

So, we get z(a + b)x = (2’ + 2") = .

Now we will prove that (a+b) — (a+b)?z is nilpotent. Since a+b=w+a"(a+b), a™w = 0,
and a™w? = 0, we have
(a +b)*wP = (w+ a"(a + b)) w”
= (w? +2wa™(a + b) + a™(a + b)*) w” = W’ = w — ww™. ®)
Also we have
(a+b)bPba™ = (a4 b)a™(1 — b™) = aa™ + ba™ — aa™b™ — a™bb". (4)
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From (2), (3), and (4) we get
(a+b) — (a+b)3x
=(a+b) — (a+b) (w”(a+0b)+ b a")
=(a+0b) — (w—ww™ + aa” + ba™ — aa™b™ — a"bb")
= (a+b) — [(a+Db)aa” + (a+b)a™ — aa™d" — a"bb" — ww" |
=(a+b)—[(a+bd)—aa™b™ —a"bb" — ww"|
=aa"™b" +a"bb"™ + ww™.

Since aa™,bb”™, and ww™ are nilpotent, and {aa™, bb™, ww™} is a commuting family, then by

—_ - O =

using Lemma 1.2 we get the nilpotency of (a + b) — (a + b)?z. Therefore, we have proved
a+beRP and (a +b)P =z, i.e., expression (1).

Conversely, let us assume a + b € R”. Let y = aa”(a + b)P. We will prove that w =
aaP(a +b) € RP and wP = y. Observe that Theorem 1.1 implies that {a,b,a”,b", (a + b)P}
is a commuting family. Now, having in mind (aa”)? = aa®, it is simple to prove wy = yw =
aa®(a + b)(a+b)P, y*w =y, and w?y — w = aa® [(a + b)*(a + b)” — (a + b)], which leads to
the nilpotency of w?y — w. The proof is finished.

Corollary 2.1. Let a,b € R be Drazin invertible. If ab = ba and baa™ = 0, then w = aa® (a+b)

is Drazin invertible if and only if a + b is Drazin invertible. In this case, we have
(a4 b)P =wP +a™bP.

Proof. From baa™ = 0, we have b”aa™ = (b”)%baa™ = 0. It is enough to apply Theorem 2.1 to

prove this corollary.

Theorem 2.2. Let a,b € R be Drazin invertible, a™b = 0 and a™b = ba™ for some n € N.
Then a+ b is Drazin invertible if and only if w = aa®” (a +b) is Drazin invertible. In this case,

we have
(a+0)P =wP.

Proof. From a € RP, it is simple to prove that a® € RP and (a")?” = (a”)". In addition,
(@)™ =1 —a"(a")” =1 - (aa”)" = 1 — aa® = a™. Since a"b = ba", by Theorem 1.1 we get
(a™)Pb = b(a™)P, and therefore, a™b = ba™ and aa”b = baa®. Also, the following equality will
be useful:

w+a"(a+b) =aa”(a+b)+ (1 —aa”)(a+b)=a+b. (5)

D commutes with a and b, we get wa™ = a™w = 0.

Since aa
Assume that w is Drazin invertible. We will prove that w® is the Drazin inverse of a + b,
i.e., we will prove w?” (a +b) = (a + b)w?, (wP)?*(a+b) = wP, and (a + b)? — w? is nilpotent.
Since aa”b = baa®”, we get
w(a 4 b) = aa”(a + b)(a +b) = (a + b)aa® (a + b) = (a + b)w.
By Theorem 1.1 we obtain w” (a + b) = (a + b)w?.
D)2

From wa™ = 0 we get wPa™ = (wP)?wa™ = 0. By using w”a™ = 0 and (5) we have

(wD)Q(a—i— b) = (wD)Q(w—i—a”(a—i— b)) = (wD)2w + (wD)Qa”(a—i— b) = w?.
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Since a + b =w + a™(a + b) and a"w = wa™ = 0, we have

(a4+b)? = (w+a"(a+b))? =w?+a"(a+b)>

D D)

= a™w(wP)? = 0 we obtain

(a+b)2wP? = (w? + a™(a + b)*)wP = ww? = w — ww™

Hence from a™w

=aaP(a+b) —ww™ = (1 —a™)(a+b) —ww”
=a+b—a"a—a"b—ww".

From a™b = 0, we have a 4+ b — (a + b)?w” = a™a + w™w.

From a™w = wa™, we have a™w?” = wPa™, so we get

a"w™ =a™(1 —ww”) = (1 —ww?)a™ = w™a™.
From wa™ = a™w = 0 we obtain (aa™)(ww™) = 0 and (ww™)(aa™) = 0. Hence for any k € N
we have

(a+b—(a+ b)QwD)]C = (a"a+w w)k = (a"a)* + (W w)k.
Since aa™ and ww™ are nilpotent, it follows that (a + b) — (a + b)?w? is nilpotent. We have
just proved that a +b € RP and (a + b)P = wP.

Assume that a +b € RP, we will prove that w = aa®”(a + b) € R” and the Drazin inverse
of a+bis w?, ie., (a+b)Pw=w(a+b)", ((a+ b)D)zw = (a+b)P, and w?(a + b)P —w is

nilpotent.

Since aa” commutes with a and b we have (a + b)w = w(a + b). By Theorem 1.1, one gets

(a+b)wP = wP(a+b).

Since a is Drazin invertible, we can write a = a1 +as (this is the core-nilpotent decomposition
of a, see e.g [16, Ch. 2]), where a; € aaP?RaaP and az € a™Ra™ is nilpotent. From a™b =
ba™ = 0 we obtain b € aa®Raa®. Hence a + b can be decomposed as

a+b= (a1 +0b)+as, ay +b € aa’Raa®, ay € a"Ra™. (6)
From (a + b)aa” = aa”(a + b) and Theorem 1.1 we get (a + b)Paa” = aa®?(a + b)P, and
therefore,

(a+b)P =aa”(a+b)Paa® + aa”(a +b)Pa™ + a™(a + b)Paa® +a™(a + b)Pa™
can be also decomposed as
(a+b)P =u+o, u € aa®Raa”, v € a"Ra™. (7)

From the definition of the Drazin inverse and (6), (7) we have that a; + b,az € R” and
(a1 +b)P =u, af = v. But, a? = 0 because ay is nilpotent. Therefore, (a+b)” = (a; +b)P €
aa®Raa”. Now

((a+ b)D)2w = ((a1 + b)D)QaaD(a +)
= (a1 +0)P)* (a+b) = (a+ b)) (a+b) = (a +b)".

Now, let us prove that w?(a + b)” — w is nilpotent. We have proved that aa” commutes
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D is an idempotent,

with a + b. Since aa
w*(a+b)P —w = [aa”(a + b)]2 (a+b)P —aaP(a +0)
=aa®(a+b)*(a +b)P —aa”(a +b)
=aa” [(a+b)*(a+b)P — (a+b)].
Since aa” commutes with a 4+ b and (a + b)?, and (a + b)%(a + b)P — (a + b) is nilpotent, then
w?(a+b)P —w is nilpotent. Therefore, w € RY and w? = (a+b)”. The proof is finished.

If (R,) is a ring with a unity 1, then we can define a new multiplication in R by a ® b =
ba. With this multiplication, (R,®) becomes a ring with the same unity 1. We can apply
Theorem 2.2 to (R, ®) and obtain a dual result.

83 Applications

In this section, we give some formulas for the Drazin inverse of a 2 x 2 block matrix under
some conditions. Let C™*"™ be the set of all the m x n matrices over the complex field.

Let M be a matrix of the form
A B
C D

Campbell and Meyer, [2, Ch. 7] proposed the problem (open until now) to find an explicit

M = . AeCm™™m DeCm, (8)

formula of the Drazin inverse of M in terms of the blocks of M. Several authors have investigated
this problem and they were able to find some partial answers (imposing some conditions on the
blocks of M). Here we write an exemplary list.

e B=0 (or C =0). See [2, Ch. 7] or [23].

e BC =0, DC =0 (or BD =0), and D is nilpotent. See [20].

e BCA=0,BD =0, and DC =0 (or BC is nilpotent). See [4].
e BCA=0,BCB=0,DCA=0,and DCB = 0. See [25].

e BC =0, BD =0 and DC = 0. See [14].

e BC' =0 and DC = 0. See [10].

e BCA=0,BCB=0,ABD =0, and CBD = 0. See [22];

e BC =0and BD =0. See [17].

We will find several expressions for M ” under some conditions involving the blocks A, B, C, D,
and the Drazin inverses of A and D. Let us recall that the Drazin inverse of any square complex
matrix always exists (see e.g., [1, Ch. 4]).

First, we will state some auxiliary lemmas.
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Lemma 3.1. (See [1, Ch. 4] or [2, Th. 7.8.4]). Let A € C™*", B € C"*™. Then (AB)P =
Al(BA)P?B.

Lemma 3.2. (See [7] or [21]). Let A € C™*™, B € C"*™. Then

D ,
0 A B 0 (AB)P A
B 0| | (BAPB 0 '
Lemma 3.3. (See [2, Ch. 7] or [23]). Let My and My be of a form
M, — A 0 , M, — B C '
C B 0 A
If r = ind(A) and s = ind(B), then
AP o ] BP s
D D
Ml = S BD ) M2 = 0 AD )
where ) .
S = Z(BD)i+2CAi AT + B™ ZBiC(AD)i+2 _ BDCAD. (9)
i=0 i=0

Let M be a 2 x 2 block matrix represented as in (8). Let r = ind(A) and s = ind(D). To
state next lemma, we define the following matrices, being k£ a nonnegative integer.

r—1 s—1 k
Y = (DD)2 Z(DD)i+kCAiA7r + D7 ZDlC(AD)l+k(AD)2 _ Z(DD)i+1C(AD)k7i+1. (10)
i=0 =0 =0
Lemma 3.4. (See [17]). Let M be a matriz of a form (8). If BC' =0 and BD = 0, then

)

Y DP+Y,B
where Lo and 31 are defined in (10).

Lemma 3.5. Let X € C"*". Then (X2XP)P = XP (X2XP)™ = X™, and ind(X?X7P) = 1.

Proof. The Jordan canonical form of X permits us to write X = S(C @ N)S~!, where S and
C are nonsingular, and N is nilpotent. Evidently, X© = S(C~! @ 0)S~!. Now, it is evident
X2XP = 8(C ®0)S~!, which leads to the affirmations of this lemma.

Using Theorem 2.1 and the previous lemmas, we get the following results.
Theorem 3.1. Let M be given by (8) and let r = ind(A).
(i) If AB = BD, DC = CA, and BDP =0, then

AP — AD (AP)2B . i 0 (BC)PB (—A)iA™ 0
| @ DP+®,AAPB | & | (CBPC 0 0 (=DyDm |’
where
®y = (DP)2CcA™ — DPCAP
and

o, = (DP)3CcA™ — DPC(AP)? — (DP)2CAP.
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(ii) If AB=BD, DC = CA, and BC =0, then
AP —(AP)B

MP =
—(DP)?C DP + (DP)*CB

Proof. (i) We can split the matrix M as M = P + @, where

A 0 0 B

o " “T|e o
From AB = BD and DC = CA, we have PQ = QP. Applying Theorems 1.1 and 2.1, we

get

P =

r—1
MP = (PPP(P+Q)" + [ (QP) ' (~P)| PT. (11)
i=0
Observe that b
AZAD  AAPB

(PPP(P+Q))" =

DDPC D2DP
From BDP = 0, the matrix PPP(P + Q) satisfies Lemma 3.4. In view of Lemma 3.5 we
get (recall that the index of matrices A2AP and D2DP is 1)

D D AP (AP)2B
(PPP(P+Q)" = &, DD+, AAPB |
where
®, = (DP)2cA™ — DPCAP
and

o, = (DP)3CA™ — DPC(AP)? — (DP)2CAP.

Also we have ‘

Dy i S 0o BOPB| [ (-4 o
;<QD)+(_P)_§ (CB)PC 0 0 (—D)i]

The proof of (i) is finished.

(ii) Now, we split the matrix M as M = P + @, where
0 B A 0
col “Tloop
From AB = BD and DC = CA, we have PQ = QP. Hence we can use expression (11); but
now for matrices P and @ defined in (12).

Since BC' = 0, it is easy to get P> = 0. Therefore, PP =0 and (11) is reduced to

MP = QP — Q)PP+ (QP)P*.

pP= : (12)

Furthermore, we have

ap | (AP)? 0 0 B| 0 (AP)2B
e 0 (DP)? ] c 0| l (DP)2C 0 '
nd
’ (QPYP? — (APY3 0 0 0 | _|o 0
- 0  (DP)3 0 CB| |0 (DPY¥CB |’

The proof is finished.
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Theorem 3.2. Let M be given by (8). If BC =0, ABDP =0, CA™B =0, and AB = BD,
then

AP (AP)?B

S DP +,AAPB — DPS,A™B
where Lo and 31 are defined in (10).

MP =

)

Proof. We can split the matrix M as M = P + @, where
0 A™B A AAPB
o o |© 9Tlc¢ b
From BC =0, CA™B = 0, and AB = BD we have PQQ = QP. Moreover it is trivial to
verify P? =0, hence PP = 0. Applying Theorem 2.1, we get
MP =QP —(QV)*P. (13)

Matrix @ satisfies Lemma 3.4, so we get

P =

AP APY2AAPB
Q= Al (1)
Yo DY +X,AA"B
where ¥ and 31 are defined in (10). Evidently, (AP)2AAP B = (AP)2B. Now,
QPP = AP (AP)2B 0 A™B _ 10 0
Yo DP+%,4APB 0 0 0 XpA™B
because AP A™ = 0. Therefore,
(QP)2P = AP (AP)?B 0 0 |0 (AP)?BYyA™B
| %y DP4+3%,4APB 0 SA™B | | 0 (DP+%,AAPB)%A™B
Observe that AP BDP = (AP)2ABDP = 0, which leads to
r—1 ) ‘ s—1 ‘ )
APBY, = APB ((DD)2 > (DP)ICA'A™ + D™ " D'C(AP) (AP)? - DDCAD>
i=0 i=0
s—1
= APBD™ > D'C(AP)'(AP)?
i=0
= APBD™C(AP)?
= APB(I — DDP)C(AP)?
= APBC(AP)? = 0.
Thus,
0 0
Py p = 15
@) 0 DPYgA™B (15)

To prove the theorem, it is enough consider (13), (14), and (15).
Next result generalizes Lemma 3.3

Theorem 3.3. Let M be a matriz written as in (8). If BC =0, CB =0, and AB = BD,
then
AD —B(DD)2

MP =
S DP
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where ) .
S=> (DP)"2CA'A™ + 3 " DTD'C(AP)"*? — DPCAP, (16)
=0 1=0

r =ind(A), and s = ind(D).

Proof. We split the matrix M as M = P 4+ @), where
0 B A 0

0 0 C D ] '

From the hypotheses of the theorem we get PQ = QP. Since P? = 0, then PP = 0 and P™ = I.
Thus, Theorems 2.1 and 1.1 imply

P= . Q=

MP = QP - P(QP)*. (17)
By using Lemma 3.3 we can find an expression for Q:
AP0
D , 18
=1 o ] (18)
where S is defined in (16). Now we have
BS BDP APB ]
PP = S and QPP = 0 .
0 0 0 SB

By Theorem 1.1, we get BS = 0 and SB = 0 (in addition, we get BD” = AP B, but this
equlity will not be useful). Now,

BDPS B(DP)? [0 APBDP
P Dy2 _ P D D _ d D P Dy _
@) = (PQ")Q e and  QP(PQ™) = | | T
As before, by Theorem 1.1, we get
B DD 2
PPy =| o P00 ] (19)

To prove the theorem, it is enough to consider (17), (18), and (19).
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