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Boundedness of parammetric Marcinkiewicz integrals on

weighted Hardy spaces

SHI Xian-liang* SUN Jie

Abstract. In this paper, several new results on the boundedness of parammetric Marcinkiewicz

integrals on the weighted Hardy spaces and the weak weighted Hardy spaces are established.

81 Introduction and results

Let n > 2. S™~! denotes the unit sphere in R” equipped with the normalized Lebesgue
measure do. Assume that Q € L1(S"~!) satisfies the following

Q(Az) = Q(z), YA>0, (1.1)
/ Q(z")do(2') = 0, (1.2)
Sn—l
where 2/ = I;ﬁl for any  # 0. In 1960, L. Hérmander [7] studied the following parametric
Marcinkiewicz integral operator xf,
0o , dt 2
b)) = (1P ) (1)
where 0 < p <n and
Qz —y)
P ()= [ F)dy. (14)
@ lz—y|<t |IL‘ - y|nfp

When p = 1, we shall denote g, simply by po.

For the case where p = 1, the Marcinkiewicz integral puq was first introduced by E. M. Stein
n [12]. He proved that if Q € Lip,(S™1)(0 < a < 1), then ugq is an operator of type (p, p) for
1 < p <2 and weak type (1,1). In 1962, A. Benedek, A. P. Calderén and R. Panzone [1] showed
the type (p,p) boundedness of g for 1 < p < co. In 1999, A. Torchinsky and S. L. Wang [13]
considered the weighted case. They proved that if Q € Lip,(S™ 1)(0 < a < 1), then for all
1 <p<ooand w € Ay, po is bounded on LP(R™). In 1999, S. Sato [10] gave the L (R"™)
boundedness of 15,0 < p < n), when @ € L°°(S""!) and w € 4,,1 < p < occ.

Received: 2014-10-27.

MR Subject Classification: 42B20, 42B30.

Keywords: parammetric Marcinkiewicz integral, weight function, weighted Hardy space, weak weighted
Hardy space.

Digital Object Identifier(DOI): 10.1007/s11766-015-3329-0.

Supported by the National Natural Science Foundation of China (11071065 and 11171306).

* Corresponding author.



254 Appl. Math. J. Chinese Univ. Vol. 30, No. 3

In 2009, X. F. Shi and Y. S. Jiang [11] studied the L% (R™) boundedness of uf, for the case
where Q € L1(S"1)(1 < ¢ < c0). Precisely, they proved the following

Theorem A. Let 0 < p < n. Suppose that Q € LI(S"1)(1 < ¢ < o) and satisfies (1.2). If
wi € Ap, where 1 < p < co. Then there exists a constant C > 0 independent of f such that

16 (£)]

rz, < Cllfllze,
where ¢’ = qzl.
We say that the function (2 satisfies the L9—Dini condition if Q € L4(S"~1),¢ > 1, and
' wq(6)
/ dé < oo,
0 6

where wy(d) denotes the integral modulus of continuity of order ¢ of © defined by

@)= s ([ 100a) - 010

lvl<é
and + is a rotation in R™ with |y| = ||y — I||.
In 2003, Y. Ding and M. Y. Lee [2] studied the boundedness of Marcinkiewicz integral on
weighted Hardy spaces. They got the following
Theorem B. Suppose that Q satisfies (1.1), (1.2) and Li—Dini condition, 1 < q¢ < oco. If
wl € Ay, then there exists a constant C > 0 independent of f such that

e (Flly < Cllfllmy.-
In 2002, Y. Ding, S. Z. Lu and Q. Y. Xue [4] considered the boundedness of Marcinkiewicz
integral on weak Hardy space. They obtained the following

1
q

Theorem C. Suppose that Q satisfies (1.1), (1.2) and

" wi (6)
/ 5 (14 |logd|)?dé < oo, for some o > 1. (1.5)
0
Then there exists a constant C' > 0 such that
[ua(Hllwer < Cllfllwa- (1.6)

In 2014, Y. Hu and Y. S. Wang [8] considered the boundedness of Marcinkiewicz integral on
weak weighted Hardy space. They established the following

Theorem D. Suppose that Q satisfies (1.1), (1.2) and

1)
where 1 < g < co. If wi € Ay, then there exists a constant C' > 0 such that

lua(Hllwey, < Cllfllw -

1
/ wq(0) (14 |logd|)?dd < oo, for some o > 1, (1.7)
0

In this paper, we discuss the boundedness of parametric Marcinkiewicz integrals uf,(0 < p <
n) on the weighted Hardy and weak weighted Hardy spaces (see Section 2 for the definitions).
We established the following results.

Theorem 1.1. Let 0 < p < n. Suppose that Q satisfies (1.1), (1.2) and L1—Dini condition,
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l<g<oo. If w? € Ay, then there exists a constant C > 0 independent of f such that
e (Hllzy, < Clf

u) -

Theorem 1.2. Let 0 < p < n. Suppose that Q satisfies (1.1), (1.2) and

/1 “a) (1 1 1o 8[)ds < oo, (1.8)
0

H1.

w

)
where 1 < g < c0. If w? € Ay, then there exists a constant C > 0 independent of f such that

e (Fllwey, < Cllfllwy -

Remark 1.1. Theorem 1.1 is a generalization of Theorem B.

Remark 1.2. Condition (1.8) is weaker than condition (1.7). So Theorem 1.2 improved and
generalized Theorem D. By a similar discussion we can see that in Theorem C condition (1.5)
can be replaced by the following weaker condition

/01 ”1(55) (1+ |log 6])dd < cc. (1.9)

Precisely, we have the following
Theorem 1.3. Suppose that ) satisfies (1.1), (1.2) and (1.9). Then (1.6) holds.

Throughout this paper, the letter C, sometimes with additional parameters, will stand for
positive constants, not necessarily the same one at each occurrence but is independent of the
essential variables.

§2 Preliminaries and Lemmas

A non-negative locally integrable function is called a weight function.

Definition 2.1. Let w be a weight function, 1 < p < co. If there is a constant C' > 0, such
that for every cube @ C R™,

IQI/ )da) IQI/ ) <o

then we say w € A,. We say w € Ay, if there is a constant C > 0, such that for every cube
Q@S R7,

0| / z)dz < Cessemfw( x),
where and throughout this paper, @ denoteb the cube with sides parallel to the axes.

A weight function w € A if it satisfies the A, condition for some 1 < p < co. The smallest
constant satisfying the fomulas above is called A, constant of w, we denote it by [w]a,. It is
well-known that if w € A4, for 1 < p < oo, then w € A, for all r > p and w € A, for some
1 < g < p. We thus use ¢, :=inf{g >1:w e A4,} to denote the critical index of w.

As usual, we denote [|f||rrw) = (Jga [f(z)[Pw(z ydz)r, for 1 < p < oo, and p = o0,
[flloeqwy = IIfllLe- I fllwrz, = supyso Aw({z : [f(2)] > A})P < oo. Let @ be a cube in R™,
write w(Q) = [, w(z)dz
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Definition 2.2. 1’/ Tet 0 <p <1< ¢ <o00,p# q. Assume that w € A, and [z] denotes the
greatest integer that is not greater than z. For s € Z satisfying s > s = [n(qw/p — 1)], a real-
valued function a(z) is called w(p, ¢, s) atom centered at z¢ with respect to w(or w-(p,q,s)atom),
if

(1) a € LI (R™) and is supported in cube @ centered at xo;

(2) flall o) < w(Q)5™;
(

3) [gn z%a(z)dz = 0,0 < |af < s.

Lemma 2.1. P! Let 0 < p <1< ¢ < o00,p#q. Assume that w € A,. For each f € HE(R"),
there exists a sequence {a;} of w—(p, q, [n(qw/p—1)])-atoms and a sequence {\;} of real numbers
with 37 (NP < Ol fe such that f = 37, Nia; both in the sense of distributions and in the
H? norm.

Recall the definition of weak weighted Hardy space.
Let w € Aoo,0 <p <1and N = [n(qw/p—1)]. Define

Inw={peSR"): sup sup (14 [z)¥V"HD(z)| <1},
T€R™ |a|<N+1

where a = (ay,- -+, ) € (NU{O})", |a| = |a1|+- - +|a,| and DY@ = dllp/ 0z, - -+, 028n).
For fixed f € /(R") the grand maximal function of f is defined by

Gu(f)(@) = sup sup [(pr* f)(y)]-

PEIN w |x—y|<t
Then we can define the weighted weak Hardy space W HE (R"™) by
WHE(R") ={fe S (R"): Gynf e WLE(R")}.

Moreover, we set || flw sy = [1Guflwrg-

Lemma 2.2. ) Let 0 < p < 1 and w € Aos. For every f € W HE (R™), there exists a sequence
of bounded measurable functions {fr}52 _. such that
(i) = pe . [k in the sense of distributions.
(ii) Each fi can be further decomposed into fi, = >, b, where {b}} satisfies

(a) Each bY is supported in a cube Q% with Y, w(QF) < 27*F and Y, Xqr < c. Here xg
denotes the characteristic function of the set E and ¢ ~ || fllwwe ;

(b) ||b¥|| L < C2%, where C > 0 is independent of i, k;

(¢) Jgn bFx®dx =0 for every multi-index || < [n(qw/p — 1)].
Conversely, if f € ' (R™) has a decomposition satisfying (i) and (ii), then f € WHE(R™).
Moreover, we have || fllw gz, ~ c.

Lemma 2.3. 16 Letw € A, withp > 1. Then, for any cube Q, there exists an absolute constant
C > 0 such that

w(2Q) < Cw(Q).

In general, for any A > 1, we have
w(AQ) < CA"Pw(Q),
where C' > 0 does not depend on Q and .
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Lemma 2.4. 0 Let w e Ay with ¢ > 1. Then, for all r > 0, there exists an constant C' > 0
such that

/ W) 40 < (0, 2r).
|| >r |.13| 1
Lemma 2.5. 3] Let 0 < p < n and ¢ > 1. Suppose that Q satisfies (1.1) and the L9-Dini
condition. Then, given R >0, 0 < ag <1 and |y| < aoR, we have

_ q 1/q . lyl/R
R<a<2r | [T —y|["7P  |x[nTP R /2Rt

where C' is independent of R and y, and may depend on ag,n,q,p and w.

83 Proof of the Theorems

Proof of Theorem 1.1. Tt is sufficient to show that there exists a constant C' > 0, such that for
1, =C

Assume that w is a w — (1, 00, 0)-atom, let Q* = 24/nQ. Denote by o and d the center and
the side length of cube Q, we see

lb@les = [ el [ ot = 1411

Next we estimate I. Since w9 € Aj, then w € A;. By Holder’s inequality, Theorem A and
Lemma 2.3, we have

any w — (1,00, 0)-atom a, || (a)]

I < (/ bale) u(@)do) (| wlaide)'

IA
\
?

) tw(e)de) s / w(a)da)
(@ w(@)

IN A
Q Q
EY
=
€8
g

To estimate II, we see

|z—z0|+v/nd
L
@9 \Jo e—yl<t [T —
-y
@9 \Jja—aq|+v/nd

Qz —y)
a(y)dy
/wy<t |.13 - y|n—p ( )
= I +11,.

For y € Q and z € (Q*)¢, we have |z — y| ~ | — x| ~ |z — zo| + v/nd. Thus

1 1 d
o=y~ (o — ol + v/ndyz | = fo - yl2ert”
Appling Minkowski’s inequality, we have

Qz —y) le—zo|+v/nd g\ 1/2
I, < /Q )v/Q|$— I""’|a(y)|</z_y (2041 dyw(z)dz

/ /Q e |z —y|"+2| w(z)dz|a(y)|dy

2 at

2
12041 ) w(z)dz

Qz —y)
/| Yl a(y)dy

Zoat

2
12041 ) w(z)dzx

A

IN
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Qx — 1 w(z)d 1
cat [(f PN Manicf M aay
Q )e |z — | 2 @)e |z —y[" 2

Qz — y)|? 1 w(x)? 1
cat [ o= ilanyi [ MO alay.
Q k 02 rQn2eQr o —y| T @ |z —y["Te

Since w? € Ay, then w € A; C A1+21 . It follows from Lemma 2.3 and Lemma 2.4 that

q 1/q’
ez
Q| —y|"t2

IN

IN

< Cd)™ ™ (w (@) (3.1)
< C(d)” o "2 w? (Q)V
<C(d)” 20 infyeq w(z).

By Q € L9(S™"™ 1), we obtain
Oz — q 28+ /nd Q)2
/2 Q(z y)l1 de/Q / | (a;2| " Ho(a)dr < C275d 3 Q% g

k1 Q*\ 2k Q* |x—y|”+2 k\/nd gn-1 rhta
(3.2)

Using Holder’s inequality and combining (3.1) and (3.2), we get

/ [z - y)1| w(z)dx

@ |z —y|*2 /
Oz — )9 q
< / (= y)ll dr)h / w(x) ) (3.3)
(@) [ =yl (@) |z —y["*2
< Cd™ 2 infeq w(x).

It follows from (3.3) that
1 < Cd> / d=> inf w(z)|a(y)ldy < C||a||L3?/ w(y)dy < C. (3.4)
Q v Q

Now we estimate IIz. Sincet > |z—xg|++/nd ~ |x—x¢| for x € (Q*)°, then Q C {y : |[y—x| < t}.
By the vanishing moment condition of ¢ and Lemma 2.5, we get

1
Q(x — zp) ° dt \?
I, < C/ / a(y / dyw(x)dx
o |J;—y|" b " o — zo|n—r la(y)| el 27 ()
@ |a: - I" o | —ao| P | o — ol

Qz —y) B Q(z — o)

1

< C/ / , la(y)|w(z)dzdy

Q j;) 29 nd<|a|<2i+1ynd (20y/nd)P ||l —y["=F |z — 30| P

1
= 1 Qx —y Qz — z0) |* a

< C/ |a(y)|z 2 /nd p(/. ) \ ’n—)p - ( no_)p dx)

Q =0 ( \/n ) 27 /nd<|z|<2it1\/nd |Z‘ - y| |Z‘ - .130|

1
X (/ w(x)q/dx) ’ dy
27\/nd<|a:|<2j+1\/nd

<

—n -
C/ la(y |Z (23 27\/nd) +p{|;/j\/n2|
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+/ q(é)dé}(wq'(W“\/nQ));’ dy
ly—zol 5 lv=zol §
27+l /nd = 27 \/nd

Since w? € Ay, and then by Lemma 2.3, we have

(w22 mQ)) ¢ < O[T 2yn) Q)] 1
< C(27+2/n) ¢ |Q| <|22|/Qw(x)q/dx> ! (3.5)

< 027 |Q|v infyeqw(z).
It follows from (3.5) and Lemma 1 that

1
I, < C/ |a(y)|(C+/ wq(0) dd) inf w(z)dy < C||a||Loo/ w(y)dy < C. (3.6)
Q 0 6 TEQ w Q

By combining the estimates of (3.4) and (3.6), we get I < C. Thus from the inequality I < C,
we conclude that [|ugall,r < C. This completes the proof of Theorem 1.1. O
Proof of Theorem 1.2. For any given v > 0, we may choose ko € Z such that 2F0 < ~ < 2ko+1,
For every f € WHJ, we write

ko o)
Z o= Bt Y. =R+ B,

k=—00 k=—o00 k=ko+1
where Fy = S50 ST bE By = 00 kst 2i UF, and {b}'} satisfied (a)-(c) in Lemma 2.2. We
see

ywle €R": b (H@)] > 7} < ywle € R uh(R)@)] > )
tywle € R : [ (F)(@)] > )
P+ P.

To estimate P, first we claim

1 1
1Bl < OV 311 m

holds. Since ||b¥|| L~ < C2F and by Lemma 2.2, we have
7122, <Z > ||b 2
Nl oo (QF) 2
<CZ]E‘)__OQ2’““—5|f|g 1 7
; ngrmzw—ko)(l—;?—ué 2
<oy I

1
< Oy
Since w? € Ay, then w? € Ay. It follows from (3.7) and Theorem A that

4 -
P < szlluﬁ(ﬂ)lligﬂ < Oy IR, < Clliflway,-

w

w

k—kq

Now we estimate P,. Denote Ay, = U2, ., U; QF, where QF = Q(a¥,(3) »" /ndF). Then



260 Appl. Math. J. Chinese Univ. Vol. 30, No. 3

we see

Py < y{w € Auy, [y (F2) @) > | | +7w{ € (Aw)", () @)| > ) } = P+ 4.
Since w € A; and by Lemma 2.2, Lemma 2.3, we get

Py *vzk ko +1Z
Cﬂyzk ko+1 % . koziw(Qﬁ)

k—koo—k 3.9
<Ol Wb, (3.9
o k—ko

<O G TN

<Clflway-
Using Chebyshev’s inequality, we have

< C |18y (Fy) (2)|w(z)dz < C Z Z/ (z)|w(z)dz.
(Akg)® k=ko+1 i

Denote J = f(AkO)C |, (bF) (z)|w(z)dz. We get

w—z¥ | /nd 2 1/2
J < / (/ e / Qe —y_) bf(y)dy Qdfrl) / w(z)dx
(Arg)e \Jo o—yl<t [T —y["P t2
e Qz — 2 oar \'V?
+ / (/ / (@ ny_) by (y)dy| +1) w(z)dz
(Arg)e \Jjz—ab|tynd | Jjz—y)<t |2 —y[* 7P =P
= Jl + JQ
Since y € QF, x € QF, then |z — y| ~ |& — z¥| ~ |z — 2¥| + /ndF. Thus

1 1 di;c
20 k Ky2p = c 2p+1°
[z =yl (o — 27| + nd7)? |z —yl|*
Using Minkowski’s inequality, we have

e—afl+vndf gy N\ 1/2
d d
/Ak )e /Qk |z —y |n p ( )|</|Iy| t2f’+1) yw(x)dx
2 Qx —
(o
? (Akg)© |x - y| 2

Similar to the estimate of II; in Theorem 1.1, we have

T CM@A(G)" A it w@lQ] < CPu@i()" . (310)
TE

i

Ji

IA

IN

Select R;? =21(3) e v/n. Similar to the estimate of (3.5) in Theorem 1, we have
1/q
(w ( MQ’f)) < C(RY)« (dby o inf w(z). (3.11)
T€QY
Since z € (Q¥)°, |z — 2¥| ~ | — x¥| + \/nd¥, then QF C {y : |z — y| < t}. By the vanishing
moment condition of b¥ and applying Minkowski’s inequality, the estimate of (3.11), Lemma
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2.5, we have

)

Y s w2 ey
@he) @t |$—y|" ? 1};&—%“" o™
dt
(/m z"H—x/ dkt2p+1> dyw(z)dx
/ Z / Qz —y)
Q4 dek REdt<|o—ab|<RE, ak| |7 = Y|" P
(af x?)

w(z)dz|bf (y)|dy

Tl -t

- 1 Qz —y)
5 i
Il ijgo (REdE)? \ JREar<jo—ab|<ri, a5 | |2 = y["P
Q(a:—a:’?) q 1/q 1/q (3.12)
_|x—a:’?|"l"’ dx) ( (0! )) w
ly—a¥|
k gk ™ —n ly — a7 nkak we(0)
= ”kaLw/ Z dek (i) +,,( REdP +/ww 9
z j= 0 J R?Jrldi”
(Rk) (dk)q mfwer w(z)dy
k—kq
1,2 en (G " 0 (6)
< k : n q
<C2 /Q?zlean?w(x)dy{;Qj(g) —l—/o 5 dé}
k—kq (g)k_nko W, (5)
<cru@{@ "+ [0 V),
0
It follows from (3.10) and (3.12) that
k—kq
2000 ()", (6)
" " q
Py <Czk k+1z { +/0 ) d5}
k—kq
oo 2 k—ko 0o (§) n wq(5) (313)
<Cllflwm Yy, ) +Clwm S, L[ ) as
=U+W
Next we estimate V. We see
Vo= Clflwm Y /
<2>ﬁ
:cnanH;U(/s 2”q§5>d5+2/33 g5 ...
O O
o O wy(9)
_ q 3.14
C”f”WHlZ _1p/(2)pil 5 do ( )
3
§>53
< Ol flwm Y / Y1+ 1og apas

wq(d
<Oty [ )<1+ log 85
0
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By (3.13) and (3.14), we get

1
wq(0
U+V <Cllflwmy +Cllflw, [ 00 1+ 10g8)as < Cllillwmy. (15)
0
By combining the estimates of (3.8),(3.9) and (3.15), we get yw{z € R" : |ud(f)(z)] > v} <
C||f|lw sz - This completes the proof of Theorem 1.2. O
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