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Optimal dividend and capital injection problem with a

random time horizon and a ruin penalty in the dual model

ZHAO Yong-xia1 YAO Ding-jun2

Abstract. In the dual risk model, we consider the optimal dividend and capital injection

problem, which involves a random time horizon and a ruin penalty. Both fixed and proportional

costs from the transactions of capital injection are considered. The objective is to maximize

the total value of the expected discounted dividends, and the penalized discounted both capital

injections and ruin penalty during the horizon, which is described by the minimum of the time

of ruin and an exponential random variable. The explicit solutions for optimal strategy and

value function are obtained, when the income jumps follow a hyper-exponential distribution.

Besides, some numerical examples are presented to illustrate our results.

§1 Introduction

In this paper, the company surplus is described as a dual jump-diffusion model

Xt = x− ct+ St + σBt, t ≥ 0, (1)

where x ≥ 0 is the initial surplus, the constant c > 0 is the rate of expense, and the process {Bt}
is a standard Brownian motion and σ > 0. The income process {St =

∑Nt

i=1 Yi} is a compound
Poisson process with parameter λ, and is independent of {Bt}. Let p(y)(y ≥ 0) and ν denote
the probability density and the expectation of Y , respectively. The drift of the surplus per
unit of time is denoted by μ = λν − c. The dual model seems appropriate for companies with
continuous expenses and stochastic gains. For companies such as pharmaceutical or petroleum
companies, the jump can be interpreted as the net present value of future income from an
invention or discovery.

Dividend payment and capital injection are two important approaches to control the asset
process. In the dual model, Avanzi et al.(2007), and Avanzi and Gerber (2008) studied how to
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calculate the expectation of the discounted dividends until ruin. When dividends are maximized,
ruin is usually certain. In some cases, it may be profitable to rescue the company by injecting
some capitals. This idea goes back to Borch (1974). Yao et al. (2010, 2011) considered
the optimal dividend and capital injection problem in the dual model. Avanzi et al. (2011)
discussed the same problem in the dual model with diffusion. For the general dual model
(spectrally positive Lévy model), the optimal dividend and capital injection problems were
studied in Bayraktar et al. (2013, 2014), Yin et al. (2014) and Zhao et al. (2014). In addition,
transaction cost, which usually includes two part - proportional cost and fixed cost -, is also
an important factor in business activities. In Avanzi et al. (2011), proportional costs were
involved into the optimal dividend problem. In Yao et al (2010, 2011) and Zhao et al. (2014),
both proportional and fixed costs on capital injection were considered.

Similar to Albrecher and Thonhauser (2012), and Zhao et al. (2014), we assume that the
surplus process is killed by an exponential random time with a parameter γ in this paper. We
consider a ruin penalty P ∈ R if ruin occurs before stopping the business, as in Thonhauser and
Albrecher (2007), Liang and Young (2012). In addition, both proportional and fixed transaction
costs on capital injection are considered. The the optimal strategy and the value function are
obtained by stochastic control theory. when the compound Poisson positive jumps follow a
hyper-exponential distribution, we derive the closed form solution to value function. When
the random time horizon tends to infinity (or γ tends to zero) and the penalty for ruin tends
to zero, the optimal problem is simplified into the usual optimal problem such as that in Yao
et al. (2011), Peng et al. (2012) and so on. Furthermore if the fixed transaction costs tend
to zero, the optimal problem becomes that in Avanzi et al. (2011). Although Zhao et al.
(2014) discussed the more general dual model, we apply the more simple method by the merit
of compound Poisson hyper-exponential jumps to solve the optimal problem, i.e., we use the
roots of characteristic equation and the properties of polynomial instead of the complicated
fluctuation theory of Lévy process. In addition, the ruin penalty was not considered in Zhao et
al. (2014).

§2 General optimal control problem

2.1 Definitions

We assume a complete filtered probability space (Ω,F , {Ft},P), where {Ft} satisfies the
usual conditions, such that {Xt} in (1) is adapted to the filtration {Ft}. Let {Lt} denote
the dividend process. The capital injection process {Gt =

∑∞
n=1 I{τn≤t}ξn} is described by a

sequence of increasing stopping times {τn, n = 1, 2, · · · } and a sequence of random variables
{ξn, n = 1, 2, · · · }, which are associated with the timings and the amounts of capital injection.
With a control strategy π = (Lπ;Gπ) = (Lπ; τπ

1 , · · · , τπ
n · · · ; ξπ

1 , · · · , ξπ
n · · · ), the dynamics of

the controlled surplus process Xπ = {Xπ
t } are given by

Xπ
t = x− ct+ St + σBt − Lπ

t +
∑

τn≤t

ξπ
n , t ≥ 0. (2)
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Definition 2.1. A strategy π is said to be admissible if

(i) {Lπ
t } is an increasing, {Ft}-adapted cádlág process, and ΔLπ

t ≤ Xπ
t−;

(ii) τπ
n is a stopping time with respect to {Ft} and 0 ≤ τπ

1 < τπ
2 < · · · < τπ

n < · · · a.s.;

(iii) ξπ
n is nonnegative and measurable with respect to Fτπ

n
, n = 1, 2, · · · ;

(iv) P ( lim
n→∞ τπ

n ≤ T ) = 0, ∀T ≥ 0.

Π denotes the set of admissible control strategies. The time ruin for Xπ is defined by T π =
inf{t ≥ 0 : Xπ

t ≤ 0}. When capital injection occurs, the fixed and proportional transaction costs
are considered. We assume that (φ−1)ξ and K > 0 are respectively proportional costs and fixed
costs to meet the capital injection of amount ξ, where φ > 1. To reflect the damage done by
ruin, we incorporate a monetary penalty P into the performance function if ruin occurs. When
P > 0, we think it as a penalty for ruin, the monetary cost when an insurer ruins. If P = 0, it is
in the case of no penalty. If P < 0, we think it as the salvage value of the insurer; for example,
an insurer’s brand name or agency network might be of value to a potential buyer of the insurer.
In addition, we assume that the time horizon is an exponentially distributed random variable
ζ ∼ Exp(γ) independent of {St} and {Bt}. In other words, we apply exponential killing at a
constant rate γ to the risk reserve. Furthermore, we assume that the remaining at the stopping
time is paid out as dividends if ζ > T π. Under these assumptions, the performance function
associated with a strategy π ∈ Π is defined by

V (x;π) = Ex

[∫ ζ∧T π

0

e−δsdLπ
s + e−δζXπ

ζ 1{ζ<T π} − Pe−δT π

1{ζ≥T π}

−
∑

τπ
n≤ζ∧T π

e−δτπ
n (K + φξπ

n)

⎤

⎦ ,

where Ex is the conditional expectation given the initial surplus x, and the force of interest
δ > 0 reflects the time preference of investors. By the similar arguments in Albrecher and
Thonhauser (2012), we can rewrite V (x;π) as

V (x;π) = Ex

[∫ T π

0

e−(δ+γ)sdLπ
s +

∫ T π

0

γe−(δ+γ)sXπ
s ds− Pe−(δ+γ)T π

−
∑

τπ
n≤T π

e−(δ+γ)τπ
n (K + φξπ

n)

⎤

⎦ .

(3)

Our objective is to find the value function defined by

V (x) = sup
π∈Π

V (x;π), (4)

and the optimal strategy π∗ ∈ Π such that V (x) = V (x;π∗).

2.2 Property of the value function

Proposition 2.1. The value function V (x) defined by (4) is increasing for x ≥ 0 with

x− y ≤ V (x) − V (y) ≤ φ(x − y) +K, 0 ≤ y ≤ x, (5)
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and satisfies the following conditions

x− P ≤ V (x) ≤ x+
λν

δ + γ
+ |P |1{P≤0}, x ≥ 0. (6)

Proof. By the optimality of the value function, it is easy to prove the inequalities in (5). To
prove the inequalities in (6), we construct the strategy π̄ as follows: the total initial reserve is
paid out immediately as dividends, and then the ruin occurs. Given the initial reserve x, the
associated performance function is V (x; π̄) = x− P . Hence, the first inequity of (6) holds.

For the uncontrolled surplus process {Xt} in (1), we have

Ex

[∫ t

0

e−(δ+γ)sdXs

]

≤ Ex

[∫ t

0

e−(δ+γ)sdSs

]

≤ λν

δ + γ
.

By Itô formula, we get, for π ∈ Π,

e−(δ+γ)(t∧T π)Xπ
t∧T π = x− (δ + γ)

∫ t∧T π

0

e−(δ+γ)sXπ
s ds+

∫ t∧T π

0

e−(δ+γ)sdXπ
s .

Taking expectation on both sides in the above equation yields

Ex

[

−
∫ t∧T π

0

e−(δ+γ)sdXπ
s +

∫ t∧T π

0

γe−(δ+γ)sXπ
s ds

]

≤ x.

Hence, by Fatou Lemma,

V (x;π) ≤ lim sup
t→∞

Ex

[∫ t∧T π

0

e−(δ+γ)sdXs −
∫ t∧T π

0

e−(δ+γ)sdXπ
s +

∫ t∧T π

0

γe−(δ+γ)sXπ
s ds

−Pe−(δ+γ)(t∧T π)
]
≤ x+

λν

δ + γ
+ |P |1{P≤0}.

The second inequality of (6) is obtained by (4). The proof is completed.

2.3 Comparison Theorem

By the standard stochastic optimal control theory (see, e.g., Fleming and Soner (2006)), if
the value function V (x) is sufficiently smooth, it satisfies the following Hamilton-Jacobi-Bellman
(HJB) equation

max{Lv(x), 1 − v(x),Mv(x) − v(x)} = 0, (7)
where the operators L and M are given by, respectively,

Lv(x) =
σ2

2
v′′(x) − cv′(x) − (λ + δ + γ)v(x) + λ

∫ ∞

0

v(x + y)p(y)dy + γx,

Mv(x) = sup
y≥0

{v(x+ y) −K − φy}.

Theorem 2.1. (Comparison Theorem) Let v(x) ∈ C2((0,∞)) be an increasing and
concave function satisfying

max{Lv(x), 1 − v(x),Mv(x) − v(x)} ≤ 0, x > 0, (8)

with v(0) ≥ −P . Then we have v(x) ≥ V (x).

Proof. For a policy π ∈ Π, we define Λt = {s ≤ t : Lπ
s− �= Lπ

s } and Λ′
t = {s ≤ t : Gπ

s− �= Gπ
s } =
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{τπ
i : τπ

i ≤ t, i = 1, 2, · · · }. By Itô formula for semimartingales, we have

e−(δ+γ)(t∧T π)v(Xπ
t∧T π )

=v(x) +
∫ t∧T π

0

e−(δ+γ)s(Lv(Xπ
s ) − γXπ

s )ds+
∑

τπ
n≤t∧T π

e−(δ+γ)τπ
n [v(Xπ

s− + ξπ
n) − v(Xπ

s−)]

−
∫ t∧T π

0

e−(δ+γ)sv′(Xπ
s−)dLπ

s +
∑

s∈Λt∧T π

e−(δ+γ)s[v(Xπ
s ) − v(Xπ

s−) − v′(Xπ
s−)ΔXπ

s ] +Dt∧T π ,

(9)
where {Dt∧T π} is a martingale with respect to {Ft} and Ex[Dt∧T π ] = 0. Since the function v

is increasing and concave, by the mean value theorem, we have v(y) − v(x) − (y − x)v′(x) ≤ 0
for x, y ≥ 0. Noting that Lv(x) ≤ 0, v′(x) ≥ 1, v(x + y) − v(x) ≤ φy +K and v(0) ≥ −P , we
obtain, by (9)

−Pe−(δ+γ)(t∧T π) ≤v(x) −
∫ t∧T π

0

e−(δ+γ)sγXπ
s ds−

∫ t∧T π

0

e−(δ+γ)sdLπ
s

+
∑

τπ
n≤t∧T π

e−(δ+γ)τπ
n (φξπ

n +K) +Dt∧T π .

Taking expectations and letting t → ∞ on both sides of the above inequality, for any π ∈ Π,
we have v(x) ≥ V (x;π), and so v(x) ≥ V (x).

Theorem 2.2. If P ≤ − μ
δ+γ , then V (x) = x − P for x ≥0 and the optimal strategy is

immediately to pay all the surplus as dividends and to declare ruin, and then to claim the
salvage value −P .

Proof. Let v(x) = x − P for x ≥ 0, and then v is increasing, concave and satisfies max{1 −
v(x),Mv(x) − v(x)} ≤ 0 with v(0) ≥ −P . By for all x ≥ 0

Lv(x) = −c+ λν − δx+ P (δ + γ) = μ− δx+ P (δ + γ) ≤ 0, (10)

we have V (x) ≤ v(x) by Theorem 2.1. Considering the strategy to pay all the surplus as
dividends and to declare ruin, and then to claim the salvage value −P , we obtain V (x) ≥ v(x)
for x ≥ 0. The result is proved.

Remark 2.1. The above theorem shows that the business is not profitable if P ≤ − μ
δ+γ . It

had better pay all surplus as dividends immediately, and stop the business, and then claim the
salvage. This strategy is called take-the-money-and-run. Conversely, if v(x) = x−P is the
value function defined in (4), it satisfies the HJB equation (7). The inequity in (10) shows that
P ≤ − μ

δ+γ . Therefore,

V (x) = x− P if and only if P ≤ − μ
δ+γ .

Particularly, when P = 0, V (x) = x if and only if μ ≤ 0.

In order to ensure that the optimal strategy is non-trivial, we assume P > − μ
δ+γ in the

following sections.
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§3 Two suboptimal control problems

3.1 Optimal problem without capital injection

We consider the optimal problem without capital injection. Let Πp = {πp : πp = (Lπp ; 0) ∈
Π} ⊂ Π denote the set of admissible strategies for this suboptimal problem. The associated
value function is defined by

Vp(x) = sup
πp∈Πp

V (x;πp)

= sup
πp∈Πp

Ex

[∫ T πp

0

e−(δ+γ)sdLπp
s +

∫ T πp

0

γe−(δ+γ)sXπp
s ds− Pe−(δ+γ)T πp

]

.

(11)

We will try to find the value function Vp(x) and the corresponding optimal strategy π∗
p ∈ Πp

such that Vp(x) = V (x;π∗
p). If the value function Vp(x) is sufficiently smooth, it satisfies the

following HJB equation, for x > 0,

max{Lv(x), 1 − v(x)} = 0, with v(0) = −P. (12)

Theorem 3.1. If an increasing and concave function g(x) ∈ C2((0,∞)) satisfies the HJB
equation (12), we have
(i) For any strategy πp ∈ Πp, g(x) ≥ Vp(x);
(ii) Moreover, if there exists a point x∗p > 0 such that

Lg(x) = 0, x ∈ (0, x∗p], g(x) = x− x∗p + g(x∗p), x ∈ (x∗p,∞), (13)

then g(x) = Vp(x) = V (x;π∗
p), where π∗

p = (Lπ∗
p , 0) ∈ Πp is the optimal strategy such that

X
π∗

p

t = x− ct+ σBt + St − L
π∗

p

t ,

dL
π∗

p

t = (X
π∗

p

t− − x∗p)1{X
π∗

p
t− >x∗

p}
+ dM

π∗
p

t ,

M
π∗

p

t =
∫ t

0

1{X
π∗

p
s =x∗

p}
dM

π∗
p

s ,

(14)

here (X
π∗

p

t− − x∗p)1{X
π∗

p
t− >x∗

p}
represents the dividend distributed at time t if the surplus process

jumps above the barrier x∗p, and M
π∗

p

t is the local time of the process {Xπ∗
p

t } at the barrier x∗p
representing dividends due to oscillations of the Brownian Motion when the surplus is at the
barrier.

Proof. The proof of (i) is similar to that of Theorem 2.1. Now we only give the proof of (ii).
Under the strategy π∗

p defined by (14), (9) can be written as

e−(δ+γ)(t∧T
π∗

p )g(X
π∗

p

t∧T
π∗

p
) = g(x) +

∫ t∧T
π∗

p

0

e−(δ+γ)s(Lg(Xπ∗
p

s ) − γX
π∗

p
s )1{0≤X

π∗
p

s ≤x∗
p}
ds

+
∑

s∈Λ
t∧T

π∗
p

e−(δ+γ)s[g(X
π∗

p
s ) − g(X

π∗
p

s−) − g′(X
π∗

p

s−)ΔX
π∗

p
s ]1{X

π∗
p

s−>x∗
p,X

π∗
p

s =x∗
p}

−
∫ t∧T

π∗
p

0

e−(δ+γ)sg′(X
π∗

p

s−)1{X
π∗

p
s−≥x∗

p}
dL

π∗
p

s +D
t∧T

π∗
p .
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Due to (13), the above equation becomes

e−(δ+γ)(t∧T
π∗

p )g(X
π∗

p

t∧T
π∗

p
) = g(x) −

∫ t∧T
π∗

p

0

e−(δ+γ)sγX
π∗

p
s ds−

∫ t∧T
π∗

p

0

e−(δ+γ)sdL
π∗

p
s +D

t∧T
π∗

p .

(15)
Taking expectations and letting t→ ∞ on both sides of the above equation, and by g(0) = −P
and Ex[D

t∧T
π∗

p ] = 0, we obtain g(x) = V (x;π∗
p) = Vp(x).

Corollary 3.1. If an increasing and concave function g(x) ∈ C2((0,∞)) satisfies (13) for some
x∗p > 0 with the boundary condition g(0) = −P , we have g(x) = Vp(x) = V (x;π∗

p) where π∗
p is

given by (14).

Proof. Since g(x) ∈ C2((0,∞)) and (13) holds, we have g′(x∗p) = 1 and g′′(x∗p) = 0. Due to the
concavity of g, we obtain g′(x) ≥ 1 for x ∈ (0, x∗p]. Letting x = x∗p in (13) yields that

Lg(x∗p) = μ− (δ + γ)g(x∗p) + γx∗p = 0. (16)

Hence, for x > x∗p, Lg(x) = μ− (δ + γ)g(x∗p) + rx∗p − δ(x − x∗p) = −δ(x− x∗p) < 0. The results
are obtained by (ii) of Theorem 3.1.

3.2 Optimal problem with forced capital injections to prevent ruin

In this subsection, we require that the company survives forever by forced capital injections.
Let Πq denote the set of admissible strategies of this suboptimal problem, i.e.,

Πq = {πq = (Lπq ;Gπq) : πq ∈ Π such that Xπq

t > 0 for all t ≥ 0}.

The value function Vq(x) is defined by

Vq(x) = sup
πq∈Πq

V (x;πq)

= sup
πq∈Πq

Ex

[∫ ∞

0

e−(δ+γ)sdLπq
s +

∫ ∞

0

γe−(δ+γ)sXπq
s ds−

∞∑

n=1

e−(δ+γ)τ
πq
n (K + φξπq

n )

]

.

(17)

We will search for the optimal strategy π∗
q ∈ Πq and the value function Vq(x) = V (x;π∗

q ). If the
value function Vq(x) is sufficiently smooth, it satisfies the following HJB equation, for x > 0,

max{Lv(x), 1 − v(x),Mv(x) − v(x)} = 0, with Mv(0) ≤ v(0). (18)

Theorem 3.2. If an increasing and concave function h(x) ∈ C2((0,∞)) satisfies the HJB
equation (18), we have
(i) For any strategy πq ∈ Πq, h(x) ≥ Vq(x);
(ii) Moreover, if there exists two points x∗q > η > 0 such that

Lh(x) = 0, x ∈ (0, x∗q ], h(x) = x− x∗q + h(x∗q), x ∈ (x∗q ,∞), (19)

and
h(0) = h(η) − φη −K, h′(η) = φ, (20)
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then h(x) = Vq(x), where π∗
q = (Lπ∗

q , Gπ∗
q ) ∈ Πq is the associated optimal strategy such that

X
π∗

q

t = x− ct+ σBt + St − L
π∗

q

t +G
π∗

q

t ,

dL
π∗

q

t = (X
π∗

q

t− − x∗q)1{X
π∗

q
t− >x∗

q}
+ dM

π∗
q

t , M
π∗

q

t =
∫ t

0

1{X
π∗

q
s =x∗

q}
dM

π∗
q

s ,

τ
π∗

q

1 = inf{t ≥ 0 : X
π∗

q

t− = 0}, τ
π∗

q
n = inf{t > τ

π∗
q

n−1;X
π∗

q

t− = 0}, n = 2, 3, · · · ,
ξ

π∗
q

n = η, n = 1, 2, · · · .

(21)

Proof. The proof of (i) is similar to that of Theorem 2.1. Now we only give the proof of (ii).
For the strategy π∗

q given in (21), we have
∑

τ
π∗

q
n ≤t

e−(δ+γ)τ
π∗

q
n [h(X

π∗
q

s− + ξ
π∗

q
n ) − h(X

π∗
q

s−)] =
∑

τ
π∗

q
n ≤t

e−(δ+γ)τ
π∗

q
n [h(ξ

π∗
q

n ) − h(0)]

=
∑

τ
π∗

q
n ≤t

e−(δ+γ)τ
π∗

q
n (φξ

π∗
q

n +K),

the second equality is due to (20). Similar to (15), equation (9) can be written as

e−(δ+γ)th(X
π∗

q

t ) =h(x) −
∫ t

0

e−(δ+γ)sγX
π∗

q
s ds−

∫ t

0

e−(δ+γ)sdL
π∗

q
s

+
∑

τ
π∗

q
n ≤t

e−(δ+γ)τ
π∗

q
n (φξ

π∗
q

n +K) +Dt.

We have lim
t→∞ e−(δ+γ)th(X

π∗
q

t ) = 0 by h(X
π∗

q

t ) ≤ h(x∗q). Taking expectation and letting t → ∞
on both sides of the above equation yield h(x) = V (x;π∗

q ) = Vq(x).

Corollary 3.2. If an increasing and concave function h(x) ∈ C2((0,∞)) satisfies (19) and (20)
for 0 < η < x∗q , we have h(x) = Vq(x) = V (x;π∗

q ) where π∗
q is given by (21).

Proof. By the proof of Corollary 3.1, we know Lh(x) < 0 for x ∈ (x∗q ,∞) and h′(x) ≥ 1 for
x ∈ (0, x∗q ]. Since h is increasing and concave, the function F (y) = h(x + y) − φy − K is
increasing in (0, η − x] and decreasing in [η − x,∞) for 0 ≤ x ≤ η. Then

Mh(x) =

⎧
⎨

⎩

h(η) − φ(η − x) −K, 0 ≤ x ≤ η,

h(x) −K, η < x <∞,
(22)

which together with the boundary condition h(0) = h(η) − φη −K yields that Mh(x) < h(x)
for x > 0 and Mh(0) = h(0). The results are obtained by (ii) of Theorem 3.2.

3.3 General optimal problem

By the definitions of Vp, Vq and V , we can get the relationship V (x) ≥ max(Vp(x), Vq(x)).
By Lemma 5.1 in Zhao et al. (2014), we give the following results.

Lemma 3.1. For each initial capital x ≥ 0, if the functions g(x) and h(x) satisfy the conditions
of Theorem 3.1 and Theorem 3.2, respectively, we have
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(i) If Mg(0) ≤ g(0), then g(x) = V (x) and the optimal strategy π∗ = π∗
p is given by (14);

(ii) If h(0) ≥ −P , then h(x) = V (x) and the optimal strategy π∗ = π∗
q is given by (21);

(iii) In particular, if conditions in (i) and (ii) hold, then g(x) = h(x) = V (x) and the optimal
strategy π∗ = π∗

p or π∗ = π∗
q .

§4 Hyper-exponential jumps

In this section, we construct a closed form solution of the value function when the income
jumps follow a hyper-exponential distribution, i.e.,

p(y) =
m∑

i=1

wiαie
−αiy, y ≥ 0, (23)

with
∑m

i=1 wi = 1, wi > 0 for i = 1, · · · ,m, and 0 < α1 < α2 < · · · < αm < ∞. This
distribution has the merit that many calculations can be performed explicitly. Moreover, they
can be used to approximate ‘completely monotone’ probability distribution functions, including
some long-tailed distributions such as the Pareto and Weibull.

It is easy to show that the characteristic equation
σ2

2
s2 − cs− (λ+ δ + γ) + λ

m∑

i=1

wi
αi

αi − s
= 0,

has exactly m+ 2 roots denoted by r0, r1, · · · , rm+1 satisfying the following condition

r0 < 0 < r1 < α1 < · · · < rm < αm < rm+1. (24)

These roots play an important role in constructing smooth solutions to optimal problems.

4.1 Solution to the optimal problem without capital injections

According to Corollary 3.1, we focus on constructing an increasing and concave function
g(x) ∈ C2((0,∞)) satisfying (13) for some xp ≥ 0. In the case of hyper-exponential jumps, it is
reasonable to construct a candidate solution to the value function defined in (11) as follows

g(x) =
m+1∑

k=0

Ck(xp)erkx +Ax+B, (25)

where rk, k = 0, · · · ,m+1 are the roots of the characteristic equation. We need to determine the
values of A, B and the point xp, and the associated m+2 coefficients Ck(xp), k = 0, · · · ,m+1.
Substituting (25) into the equation Lg(x) = 0 and comparing the coefficients of constant term,
x, erkx and eαix yield that

A =
γ

γ + δ
, B =

γμ

(γ + δ)2
,

m+1∑

k=0

Ck(xp)erkxp
αirk
αi − rk

+
γ

γ + δ
= 1, i = 1, · · · ,m. (26)
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Combining with the boundary conditions g(0) = −P , g′(xp) = 1 and g′′(xp) = 0, we have
m+1∑

k=0

Ck(xp) +
γμ

(γ + δ)2
= −P, (27)

m+1∑

k=0

rkCk(xp)erkxp +
γ

γ + δ
= 1,

m+1∑

k=0

r2kCk(xp)erkxp = 0. (28)

By solving equations (26) and (28), the coefficients Ck(xp) can be obtained

Ck(xp) = − δ

rk(γ + δ)
e−rkxp

m∏

i=1

rk − αi

αi

m+1∏

j=0,j 
=k

rj
rk − rj

, k = 0, 1, · · · ,m+ 1. (29)

By (24), for all xp > 0, we have

C0(xp) < 0, lim
xp→∞C0(xp) = −∞;

Ck(xp) > 0, lim
xp→∞Ck(xp) = 0, k = 1, · · · ,m+ 1.

(30)

The point xp is determined by equation (27) which can be written as

−
m+1∑

k=0

δ

rk(γ + δ)
e−rkxp

m∏

i=1

rk − αi

αi

m+1∏

j=0,j 
=k

rj
rk − rj

+
γμ

(γ + δ)2
= −P. (31)

Now, we show that the existence and uniqueness of the solution to equation (31). Let us define
a function in xp as

f(xp) =
m+1∑

k=0

Ck(xp) +
γμ

(γ + δ)2
+ P, (32)

then equation (31) is equivalent to f(xp) = 0. By (30), we obtain

lim
xp→∞ f(xp) = −∞, f ′(xp) = −

m+1∑

k=0

rkCk(xp) < 0. (33)

Hence, f(xp) is a decreasing function in xp. From (16) and (29), we have

f(0) =
m+1∑

k=0

Ck(xp)erkxp +
γμ

(γ + δ)2
+ P =

μ

γ + δ
+ P.

Due to the continuity of f(xp), we obtain that (31) has a unique solution x∗p > 0 if and only if
P > − μ

γ+δ , which coincides with that in Remark 2.1.
Finally, we show that the function g(x) satisfies all conditions of Corollary 3.1. By the

above construction of g(x), we only need to prove that g(x) is increasing and concave for x ≥ 0.
Because of the same signs of rk and Ck(x∗p), k = 0, · · · ,m+ 1, we obtain

g′(x) =
m+1∑

k=0

rkCk(x∗p)e
rkx +

γ

γ + δ
> 0, (34)

g′′′(x) =
m+1∑

k=0

r3kCk(x∗p)e
rkx > 0, (35)

which together with g′′(x∗p) = 0 yields the increase and concavity of g(x).

Remark 4.1. By (31) and (33), we have that x∗p is an increasing function with respect to
P ∈ (− μ

δ+γ ,∞). In other words, when the penalty for ruin is higher, instead of paying more
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dividend, the company had better reserve more money to guard against financial risks.

4.2 Solution to the optimal problem without ruin

According to Corollary 3.2, we construct a candidate solution to the value function defined
in (17) as follows, for some xq > 0,

h(x) =
m+1∑

k=0

Ck(xq)erkx +
γ

γ + δ
x+

γμ

(γ + δ)2
, 0 ≤ x ≤ xq. (36)

The crucial levels xq and η are determined by conditions (20), i.e.,
m+1∑

k=0

rkCk(xq)erkη +
γ

γ + δ
= φ, (37)

m+1∑

k=0

Ck(xq)erkη −
m+1∑

k=0

Ck(xq) = η(φ − γ

γ + δ
) +K. (38)

We will prove that there exists a unique pair (x∗q , η) solution to the above equations with
0 < η < x∗q . For convenience, we first define a function

ψ(y) =
m+1∑

k=0

rkCk(y) +
γ

γ + δ
, y ≥ 0. (39)

Then, making the change of variable y = xq − η, we can rewrite (37) as ψ(y) = φ. Recalling
the boundary conditions and (30), we obtain

ψ(0) =
m+1∑

k=0

rkCk(0) +
γ

γ + δ
= h′(xq) = 1 < φ, lim

y→∞ψ(y) = +∞,

ψ′(0) = −
m+1∑

k=0

r2kCk(0) = −h′′(xq) = 0, ψ′′(y) =
m+1∑

k=0

r3kCk(y) > 0.

Then ψ(y) is continuous, increasing and convex. Furthermore, there exists a unique x1 > 0
such that ψ(x1) = φ, i.e., η = xq −x1. We define another function with respect to xq as follows

f1(xq) =
m+1∑

k=0

Ck(xq)erk(xq−x1) −
m+1∑

k=0

Ck(xq) − (xq − x1)(φ− γ

γ + δ
) −K, xq ≥ x1. (40)

Then equation (38) can be rewritten as f1(xq) = 0. Noting that

f1(x1) = −K < 0, lim
xq→∞ f1(xq) = +∞, f ′

1(xq) = ψ(xq) − φ ≥ ψ(x1) − φ = 0,

we know that there exists a unique x∗q > x1 such that f1(x∗q) = 0, and so η = x∗q − x1 is also
determined.

Finally, similar to (34) and (35), we can show that the function h(x) is increasing and
concave for x ∈ (0, x∗q ]. According to Corollary 3.2, the function h(x) is the value function of
optimal problem without ruin, and π∗

q in (21) is the optimal strategy.

Remark 4.2. From (5.12) in Peng et al. (2012), we know η = inf{x > 0 :
∫ x

0 [ψ(y+x1)−φ]dy =
K}. Then the larger fixed cost K results in higher amount of capital injection, further higher
dividend barrier x∗q. Due to (40), larger proportional cost φ results in higher dividend level x∗q .
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When K or φ increases, the transaction costs increase, the company had better increase the
dividend barrier to guard against risks.

4.3 Solution to the general optimal problem

Lemma 4.1. Assuming that g(x) and h(x) are respectively the value functions constructed in
Subsection 4.1 and 4.2, we have
(i) Mg(0) ≤ g(0) if and only if x∗p ≤ x∗q ;
(ii) h(0) ≥ −P if and only if x∗p ≥ x∗q.

Proof. (i) Since Mg(0)− g(0) = maxy≥0{g(y) − φy −K − g(0)} and g′(y) − φ < 0 for x ≥ x∗p,
we have

0 ≤ η̃ = arg max[g(y) − φy −K − g(0)] < x∗p.
Because of the concavity of g(x), we know η̃ = 0 if and only if g′(0) ≤ φ. Due to

g′(0) =
m+1∑

k=0

rkCk(x∗p) +
γ

γ + δ
= ψ(x∗p) ≤ φ = ψ(x1)

and the increase of ψ where ψ is given by (39), we have Mg(0)− g(0) = −K < 0 if and only if
x∗p ≤ x1 ≤ x∗q . If 0 < η̃ < x∗p, g′(η̃) = φ i.e., ψ(x∗p − η̃) = φ, then x∗p − η̃ = x1. By the definition
of f1 in (40) and the increase of f1, we have Mg(0)− g(0) = f1(x∗p) ≤ 0 = f1(x∗q) if and only if
x∗p ≤ x∗q .
(ii) Recalling the definition of f in (32), we have h(0) =

∑m+1
k=0 Ck(x∗q) + γμ

(γ+δ)2 = f(x∗q) − P .
Because of the decrease of f and f(x∗p) = 0, we obtain h(0) = f(x∗q) − P ≥ f(x∗p) − P if and
only if x∗p ≥ x∗q .

Similar to Theorem 5.1 in Zhao et al. (2014), by Lemma 3.1 and Lemma 4.1, we obtain the
following results. For the general control problem , we have
(i) If x∗p ≤ x∗q , the value function V (x) = Vp(x) and the optimal control strategy π∗ = π∗

p is
given by (14);
(ii) If x∗p > x∗q , the value function V (x) = Vq(x) and the optimal control strategy π∗ = π∗

q is
given by (21).
In other words, the value function V (x) = max{Vp(x), Vq(x)} and the optimal dividend barrier
x∗ = min{x∗p, x∗q}.

§5 Numerical illustrations

In this section, a series of numerical examples are provided to illustrate the results and to
show the impacts of the penalty P , the transaction costs φ and K, and the killing rate γ on the
optimal control problem. Based on the numerical results, some interesting economic insights
are given. In the following examples, we assume c = 1, δ = 0.05, λ = 1.5, σ = 2, and

p(y) =
1
2
× 2

3
× e−

2
3 y +

1
2
× 2 × e−2y, y ≥ 0.

• Influences of the penalty P
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We first consider the impact of the penalty P on the optimal strategy. Let γ = 0.05, φ = 1.1
and K = 0.25, then μ

δ+γ = 5. Due to Theorem 2.2, we have x∗ = x∗p = 0 as P ∈ (−∞,−5].
From (37) and (38), we otain x∗q = 5.3447. We give the values of x∗p for the different values of
the penalty P in Table 1. Table 1 shows that x∗p increases with the increase of P , and that the
optimal strategy π∗ switches from π∗

p to π∗
q with the increase of the penalty. In other words, it

is more advisable for the company to inject capital to avoid ruin for large penalty. Here, the
maximum penalty P that the company can afford is −1.7451. That is, when P > −1.7451, we
have x∗ = x∗q = 5.3447 and V (x) = Vq(x), or else x∗ = x∗p and V (x) = Vp(x).

Table 1: The influences of P on x∗p and x∗

P ↑ (−∞,−5] -4 -3 -2 -1.7451 -1.5 -1 0 0.5

x∗
p ↑ 0 1.9459 3.6458 5.0357 5.3447 5.6264 6.1586 7.0784 7.4791

x∗
q ≡ 5.3447 5.3447 5.3447 5.3447 5.3447 5.3447 5.3447 5.3447 5.3447

x∗ ↑ x∗
p x∗

p x∗
p x∗

p x∗
p = x∗

q x∗
q x∗

q x∗
q x∗

q

• Influences of the transaction costs φ and K
Here, we set γ = 0.05 and P = −1.5. By Table 1, the level of the optimal dividend barrier

x∗p = 5.6264. From Table 2, the dividend barriers x∗q and x∗ increase with the increase of φ or
K, while the amount of capital injection η increases when φ decreases or K increases. There is
a reasonable economic explanation for this phenomenon. Larger φ or K means higher costs of
capital injection, the company had better reserve more money instead of paying more dividends
in order to reduce or avoid capital injection, which calls for the higher dividend barrier. While
φ decreases or K increases, it is advisable to increase the amount of capital injection η so as
to cut down costs of capital injection. The optimal strategy π∗ switches from π∗

q to π∗
p with

the increase of φ or K. Furthermore, when K = 0.25 and φ ≥ 1.1319 or when φ = 1.1 and
K ≥ 0.3260, the optimal strategy π∗ ≡ π∗

p, i.e., the company prefer declaring ruin to injecting
capital whenever it is on the edge of ruin for large enough transaction costs.

Table 2: The influences of φ and K on η, x∗q and x∗

K = 0.25 φ = 1.1

φ ↑ 1.05 1.1 1.1319 1.2 K ↑ 0.25 0.3 0.3260 0.35

η ↓ 2.6710 2.3208 2.1744 1.9518 ↑ 2.3208 2.5112 2.6025 2.6825

x∗
q ↑ 4.8193 5.3447 5.6264 6.1393 ↑ 5.3447 5.5351 5.6264 5.7064

x∗ ↑ x∗
q x∗

q x∗
q = x∗

p x∗
p ↑ x∗

q x∗
q x∗

q = x∗
p x∗

p

• Influences of the killing rate γ
Finally, we discuss the effects of γ on the dividend barriers x∗p, x

∗
q and x∗, and on the value

function. Let φ = 1.1, K = 0.25. By Theorem 2.2, if P ≤ −10, the value function V (x) = x−P
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and the optimal strategy is take-the-money-and-run for all γ ≥ 0. As γ → ∞, if P ≤ 0 the
value function V (x) → x − P , or else V (x) → x. Now assuming P = 0.1, we plot Figure 1 as
follows. The left figure in Figure 1 shows that as γ increases, x∗p, x∗q and η decrease, and that
the optimal strategy π∗ switches from π∗

q to π∗
p. When γ increases, it is earlier to kill the surplus

process, and so it calls for the lower levels of dividend barriers for paying more dividends before
stopping the business. When γ = 0, 0.05, 0.4, we obtain the levels of optimal dividend barriers
x∗ = x∗q = 5.4143, x∗ = x∗q = 5.3447 and x∗ = x∗q = 4.9532. The right figure in Figure 1 shows
that as expected the value function decreases with increasing γ due to expected earlier killing
of the surplus process.

Figure 1: LEFT: The influences of γ on the optimal dividend barriers. RIGHT: The value
function V (x) as γ changes.
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