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Hyper-exponential jump-diffusion model under the

barrier dividend strategy

DONG Ying-hui CHEN Yao ZHU Hai-fei

Abstract. In this paper, we consider a hyper-exponential jump-diffusion model with a constant

dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber-

Shiu function are obtained via martingale stopping.

§1 Introduction

In recent years, the ruin problem and the issue of dividend payment strategies have been
received remarkable attention in the actuarial literature. Under a barrier strategy, when the
surplus of an insurance company reaches a barrier level, premium income no longer goes into
the surplus but is paid out as dividends to shareholders. Such a dividend-payment strategy was
first discussed in De Finetti (1957) for a Bernoulli model. In this paper, we consider the classical
problem of dividend payouts from a firm according to a dividend-barrier strategy, where the
excess of the firm asset value above a threshold barrier will be automatically paid out to the
shareholders.

Given a filtered complete probability space {Ω,�, {�t}, P}, all random variables and stochas-
tic processes of this paper are assumed to be defined on it. Consider the surplus process of the
insurance company modeled by:

Xt = u + ct + σWt +
N(t)∑

i=1

Zi=̂u + ct + σWt + St, (1.1)

where u > 0 is the initial surplus, c > 0 is a constant, σ > 0 is a diffusion coefficient, {Wt; t ≥ 0}
is a standard Brownian motion, {N(t); t ≥ 0} is a Poisson process with intensity λ > 0, {Zi, i ≥
1} is a sequence of independent and identically distributed random variables. Furthermore, it
is assumed that {N(t); t ≥ 0}, {Zi, i ≥ 1} and {Wt; t ≥ 0} are mutually independent. If the
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jumps {Zi, i ≥ 1} are negative, then the risk model (1.1) reduces to the classical risk process
perturbed by diffusion introduced by Gerber (1970) in insurance mathematics. In this paper,
we consider a modified version of (1.1), in which the jumps are assumed to be two-sided. As
explained in Labbé, et al. (2012), if Zi is negative, then it is interpreted as a claim, while it
represents income from deceased annuitant if Zi is positive. Many authors considered this kind
of models, see for example, Zhang, et al. (2010) and Yuen and Yin (2011).

In recent years, studies of an insurance risk model have in general been focusing on analyzing
the Gerber-Shiu expected discounted penalty function, which was first introduced by Gerber
and Shiu (1998), and Gerber and Laudry (1998) to analyze the quantities, such as the time of
ruin, the surplus immediately before ruin and the deficit at ruin, in a unified manner. It has
proven to be a powerful analytical tool. The Gerber-Shiu function has been fully studied in
the compound Poisson risk models, and the one-sided jump-diffusion models with and without
dividend. Interestingly, Zhou (2005) made use of the fluctuation theory of Lévy processes to
obtain a representation of the Gerber-Shiu function for the Cramér-Lundberg risk model with
the barrier dividend strategy. But it is in general not easy to give a closed-form formula for the
Gerber-Shiu function in a two-sided jump-diffusion model with the dividend strategy.

The double exponential jump-diffusion model is a special case of the jump-diffusion model
with two-sided jumps which has been studied in finance by many authors due to its analytical
tractability. By connecting the ruin problem of the ex-dividend risk process with the first
passage problem of the Lévy process reflected at its running maximum, Bo, et al. (2012) gave the
explicit expressions for the Laplace transform of the ruin time and the distribution of the deficit
at ruin under the double exponential jump-diffusion model with a barrier dividend strategy.
The hyper-exponential jump-diffusion model is a generalization of the double exponential jump-
diffusion model. In fact, the hyper-exponential distribution is rich enough to approximate
many other distributions, including any discrete distribution, the normal distribution, and
various heavy-tailed distributions such as Gamma, Weibull and Pareto distributions. In this
paper, motivated by Bo, et al. (2012), we consider the Gerber-Shiu function under the hyper-
exponential jump-diffusion model with a barrier dividend strategy.

Assume the jump distribution has the common density function given by

f(x) = p
m∑

i=1

piαie
−αix1{x≥0} + q

m∑

i=1

qiβie
βix1{x<0}, (1.2)

where 0 < p, q < 1, p + q = 1,
m∑

i=1

pi =
m∑

i=1

qi = 1 with 0 < pi, qi < 1 for i = 1, · · · , m and

βm > · · · > β2 > β1 > 0, αm > αm−1 > · · · > α1 > 0. Let Dt be the aggregate dividends paid
from 0 to t. Under the barrier dividend strategy, Dt can be expressed as follows,

Dt = sup
0≤s≤t

(Xs − b)+, (1.3)

where b > 0 is a constant. Since the risk model (1.1) is a cádlág process, it is separable and
hence Dt is well-defined. Let

Xb
t = Xt − Dt ≤ b

be the surplus process regulated by the dividend payment Dt. Furthermore, the dividend



DONG Ying-hui, et al. Hyper-exponential jump-diffusion model under the barrier dividend strategy 19

process Dt can be rewritten as

Dt =
∫

[0,t]

1{Xb
t =b}dDt.

Define the ruin time as τ̂u = inf{t : Xb
t ≤ 0}, with τ̂u = +∞, if Xb

t > 0 for all t.

From now on, {Px : x ∈ R} denotes probabilities such that under Px, X0 = x with proba-
bility one. Ex[.] denotes the expectation operator associated to Px.

Define the Gerber-Shiu function, introduced by Gerber and Landry (1998), as

Ψ(u) = Eu[e−δτ̂uη(|Xb
τ̂u
|)1{τ̂u<∞}], (1.4)

where δ > 0 is interpreted as the force of interest or the variable of a Laplace transform and η(.)
is a non-negative function defined on [0,∞). We remark that the penalty function η(.) is not
necessarily continuous at 0. The function Ψ(u) embraces various quantities of ruin including
the probability of ultimate ruin and the distribution of the deficit at ruin. For example, if we
let η(x) = 1, then Ψ(u) = Eu[e−δτ̂u1{τ̂u<∞}] is the Laplace transform of the ruin time. If we let
η(x) = 1{x=0}, then Ψ(u) = Eu[e−δτ̂u1{τ̂u<∞,Xb

τ̂u
=0}] is the Laplace transform of the ruin time

due to oscillation. If we let η(x) = 1{x>0}, then Ψ(u) = Eu[e−δτ̂u1{τ̂u<∞,|Xb
τ̂u

|>0}] is the Laplace
transform of the ruin time due to a jump. Furthermore, in order to know the distribution of the
deficit at ruin, we should consider η(x) = 1{x>l}, l > 0. Then the Gerber-shiu function becomes
Ψ(u) = Eu[e−δτ̂u1{τ̂u<∞,|Xb

τ̂u
|>l}]. These special cases have attracted a lot of attention.

In this paper, we shall obtain the explicit formula for Ψ(u) and study several of its special
case. The rest of the paper is organized as follows. In Section 2 we present some prelimi-
nary results. In Section 3 we derive the closed-form formula for the Gerber-Shiu function via
martingale stopping. In Section 4, conclusions are given.

§2 Preliminary results

Define the Laplace exponent of Xt − u as

g(s) =
ln E[es(Xt−u)]

t
=

1
2
σ2s2 + cs − λ + λ

m∑

i=1

(
ppiαi

αi − s
+ λ

qqiβi

βi + s
). (2.1)

In risk theory, the equation
g(s) = δ, δ > 0 (2.2)

is called the generalized Lundberg equation for the perturbed compound Poisson risk model
with two-sided jumps. The roots of equation (2.2) play an important role in deriving the formula
for the Gerber-Shiu function. Cai and Kou (2011) gave the following result.

Lemma 2.1. For δ > 0, equation (2.2) has exactly m+1 roots r1, r2, · · · , rm+1, on the left-half
complex plane, and exactly m + 1 roots rm+2, · · · , r2m+2, on the right-half complex plane, with
−∞ < r1 < −βm < r2 < −βm−1 < · · · < −β1 < rm+1 < 0 < rm+2 < α1 < · · · < αm <

r2m+2 < +∞.

Define Yt = Mt − Xt as the process X reflected at its running supremum M, where

Mt = sup
0≤s≤t

Xs ∨ 0.
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Define the entrance time of Y into [b,∞) as

τb = inf{t : Yt ≥ b}, (2.3)

with inf ∅ = ∞. By the spatial homogeneity of the surplus process X , Bo, et al. (2012) obtained
the following results concerning the Laplace transform of the ruin time and the deficit at ruin.

Lemma 2.2. For δ > 0 and a nonnegative measurable function η(.)

Eu[e−δτ̂uη(|Xb
τ̂u
|)1{τ̂u<∞}] = Eu−b[e−δτbη(Yτb

− b)], 0 < u < b. (2.4)

In particular, the Laplace transform of the ruin time is given by

Eu[e−δτ̂u ] = Eu−b[e−δτb ]. (2.5)

For l ≥ 0, the deficit at ruin satisfies

Eu[e−δτ̂u1{Xb
τ̂u

<−l}] = Eu−b[e−δτb1{Yτb
−b>l}]. (2.6)

Therefore, it suffices to derive the expectation Eu−b[e−δτbη(Yτb
− b)]. To this end, we first

investigate the property of the overshoot Yτb
− b. Note that, either a downward jump of X or

the component ct + σWt may lead Y to cross b. Define the events A0, A1, A2, · · · , Am by

A0 = {Yτb
= b},

Ai = {Y crosses b by a downward jump of an Exp(βi) − distributed random variable}.
Lemma 2.3. For any x > 0, we have

P (τb ≤ t, Yτb
− b ≥ x, Ai) = e−βixP (τb ≤ t, Yτb

− b > 0, Ai). (2.7)

In particular,

P (Yτb
− b ≥ x|Yτb

− b > 0, Ai) = e−βix. (2.8)

Furthermore,

P (τb ≤ t, Yτb
− b ≥ x|Yτb

− b > 0, Ai)

= P (τb ≤ t|Yτb
− b > 0, Ai)P (Yτb

− b ≥ x|Yτb
− b > 0, Ai). (2.9)

Proof. The proof is similar to that of Proposition 2.1 in Kou and Wang (2003). It suffices to
show that (2.7), since (2.8) can be easily obtained by letting t → +∞ in (2.7). Since x > 0, the
overshoot can only occur in the jump times of the Poisson process N. Ti, i = 1, 2, · · · denote
the arrival times of the Poisson process N. Then

P (τb ≤ t, Yτb
− b ≥ x, Ai) =

∞∑

n=1

P (τb = Tn ≤ t, Yτb
− b ≥ x, Ai)=̂

∞∑

n=1

Pn.

We can compute Pn as follows,

Pn = P ( min
0≤s<Tn

Ys − b < 0, YTn − b ≥ x, Tn ≤ t, Ai)

= E[P (YTn − b ≥ x, Ai|�T−
n

, Tn)1{ min
0≤s<Tn

Ys−b<0,Tn≤t}]

= E[P (YT−
n
− ZTn − b ≥ x,−ZTn ∼ Exp(βi)|�T−

n
, Tn)1{ min

0≤s<Tn
Ys−b<0,Tn≤t}]

= e−βixE[e−βi(b−Y
T

−
n

)1{ min
0≤s<Tn

Ys−b<0,Tn≤t}]

= e−βixP (τb = Tn ≤ t, YTn − b > 0, Ai).
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It follows that

P (τb ≤ t, Yτb
− b ≥ x, Ai) =

∞∑

n=1

e−βixP (τu = Tn ≤ t, YTn − b > 0, Ai)

= e−βixP (τb ≤ t, Yτb
− b > 0, Ai).

From (2.7) and (2.8),

P (τb ≤ t, Yτb
− b ≥ x|Yτb

− b > 0, Ai) =
P (τb ≤ t, Yτb

− b ≥ x, Ai)
P (Yτb

− b > 0, Ai)

=
e−βixP (τb ≤ t, Yτb

− b > 0, Ai)
P (Yτb

− b > 0, Ai)
= P (τb ≤ t|Yτb

− b > 0, Ai)P (Yτb
− b ≥ x|Yτb

− b > 0, Ai).

The proof is completed.

§3 First passage time of the reflected process

In this section, we consider the first passage time problem for Y. From Lemma 2.3 we have,
conditional on Ai, i = 1, · · · , m, τb and Yτb

are independent and furthermore the overshoot
Yτb

− b is exponentially distributed with mean 1/βi. Consequently, for any δ > 0 and 0 < y < b,

E−y[e−δτbη(Yτb
− b)] = E−y[e−δτb1A0 ]η(0) +

m∑

i=1

E−y[e−δτb1Ai ]
∫ ∞

0

η(z)βie
−βizdz. (3.1)

So we only need to calculate E−y[e−δτb1Ai ], i = 0, 1, · · · , m. To this end, we first define an
(2m + 2) × (2m + 2) matrix as follows

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
β1

β1+r1

β1
β1+r2

· · · β1
β1+r2m+2

· · · · · · · · · · · ·
βm

βm+r1

βm

βm+r2
· · · βm

βm+r2m+2

r1e
r1b r2e

r2b · · · r2m+2e
r2m+2b

r1er1b

α1−r1

r2er2b

α1−r2
· · · r2m+2er2m+2b

α1−r2m+2

· · · · · · · · · · · ·
r1er1b

αm−r1

r2er2b

αm−r2
· · · r2m+2er2m+2b

αm−r2m+2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

Theorem 3.1. Consider a nonnegative measurable function η such that for each i = 1, 2, · · · , m,∫ +∞
0 η(y)e−βiydy < ∞. Then for δ > 0, we have

E−y[e−δτbη(Yτb
− b)] = c0η(0) +

m∑

i=1

ci

∫ ∞

0

η(z)βie
−βizdz, 0 < y < b, (3.3)

where c0, c1, · · · , cm are determined by the following linear system

(c0 · · · cm d0 · · · dm)A = (er1(b−y) · · · erm+1(b−y) erm+2(b−y) · · · er2m+2(b−y)), (3.4)

with matrix A defined by (3.2) and r1, · · · , r2m+2 are 2m + 2 distinct roots of the equation
g(x) = δ. If A is nonsingular, then c0, c1, · · · , cm, d0, d1, · · · , dm uniquely solves (3.4).
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In particular, we have for v < β1 and l ≥ 0,

E−y[e−δτb ] =
m∑

i=0

ci, (3.5)

E−y[e−δτb1{Yτb
>b+l}] =

m∑

i=1

cie
−βil, (3.6)

E−y[e−δτb+v(Yτb
−b)] = c0 +

m∑

i=1

ciβi

βi − v
. (3.7)

Proof. Consider a function f(t, Yt) = e−at+γ(Yt−b) for any a > 0 and γ with R(γ) = 0. Applying
Itó’s formula to f(t, Yt), we obtain

e−at+γ(Yt−b) = e−γb(eγy −
∫ t

0

ae−as+γYsds +
∫ t

0

γe−as+γYsd(M c
s − Xc

s)

+
1
2

∫ t

0

γ2σ2e−as+γYsds +
∑

0≤s≤t,ΔYs �=0

(e−as+γYs − e−as+γYs− )). (3.8)

Note that

M c
t =

∫ t

0

1{Ys=0}dM c
s ,

where M c
t is the continuous part of M. Then (3.8) becomes

e−at+γ(Yt−b) = e−γb(eγy +
∫ t

0

(
1
2
γ2σ2 − cγ − a)e−as+γYsds +

∫ t

0

γe−as1{Ys=0}dM c
s

−
∫ t

0

γe−as+γYsσdWs +
∑

0≤s≤t,ΔYs �=0

(e−as+γYs − e−as+γYs− )). (3.9)

The last term of (3.9) can be rewritten as
∑

0≤s≤t,ΔYs �=0

(e−as+γYs − e−as+γYs− )

=
∑

0≤s≤t

(1{ΔMs=0,ΔYs �=0} + 1{ΔMs>0,ΔYs �=0})(e−as+γYs − e−as+γYs− ).

It is obvious that if ΔMs > 0, then Ms = Xs. That is to say, if ΔMs > 0, then Ys = 0.

Therefore,
∑

0≤s≤t,ΔYs �=0

(e−as+γYs − e−as+γYs− )

=
∑

0≤s≤t

1{ΔYs �=0,ΔMs=0}(e−as+γ(Ys−−ΔXs) − e−as+γYs− )

+
∑

0≤s≤t

1{ΔYs �=0,ΔMs>0}(e−as − e−as+γYs− )

=
∑

0≤s≤t,ΔYs �=0

(e−as+γ(Ys−−ΔXs) − e−as+γYs− )

+
∑

0≤s≤t,ΔYs �=0

1{ΔMs>0}(e−as − e−as−γΔMs)), (3.10)

where the last equality holds because Ys = Ys− + ΔMs − ΔXs = 0 when ΔMs > 0.
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Combining (3.9) with (3.10), we have that

Zt =̂ e−γb(e−at+γYt − eγy −
∫ t

0

(g(−γ) − a)e−as+γYsds

−
∑

0≤s≤t,ΔYs �=0,ΔMs>0

e−as(1 − e−γΔMs) −
∫ t

0

γe−as1{Ys=0}dM c
s )

= −e−γb(
∫ t

0

γe−as+γYsσdWs −
∑

0≤s≤t,ΔYs �=0

(e−as+γ(Ys−−ΔXs) − e−as+γYs− )

+λ

∫ t

0

∫ ∞

−∞
e−as+γYs− (e−γz − 1)f(z)dzds)

is a zero mean martingale. Then applying Doob’s optional stopping theorem we have E[Zτb
] = 0.

An application of (3.1) yields

c0 +
m∑

i=1

ciβi

βi − γ
− eγ(y−b) + (g(−γ) − a)E−y[

∫ τb

0

e−as+γ(Ys−b)ds]

−E−y[
∫ τb

0

γe−as−γbdM c
s ] − E−y[

∑

0≤s≤t

1{ΔMs>0}e−as−γb(1 − e−γΔMs)] = 0. (3.11)

Since Mt jumps upward only driven by a positive jump of X, define the events H1, · · · , Hm by

Hi = {M crosses the supremum by a jump of an Exp(αi) − distributed random variable}.
Note that due to the memoryless property of the exponential distribution, given Hj , the over-
shoot that M crosses the supremum is exponentially distributed with mean 1/αj. Therefore,
the last term of (3.11) can be rewritten as

E−y[
∑

0≤s≤t

1{ΔMs>0}e−as−γb(1 − e−γΔMs)] =
m∑

i=1

di
γ

αi + γ
e−γb, (3.12)

where di = E−y[
∑

0≤s≤t

e−as1{ΔMs>0,Hi}], i = 1, · · · , m.

Write d0 = E−y[
∫ τb

0
e−asdM c

s ]. Then substituting (3.12) into (3.11), we have

c0 +
m∑

i=1

ciβi

βi − γ
− eγ(y−b) − γd0e

−γb −
m∑

i=1

diγ

αi + γ
e−γb

+(g(−γ)− a)E−y[
∫ τb

0

e−as+γYsds] = 0.

By analytic continuation, the above equation can be extended to hold for γ∈C\{−α1, · · · ,−αm}.
If we replace γ by −ri, i = 1, · · · , 2m + 2, then we can obtain

c0 +
m∑

i=1

ciβi

βi + rj
+ d0rje

rjb +
m∑

i=1

dirj

αi − rj
erjb = erj(b−y), j = 1, · · · , r2m+2.

Eqs. (3.5)-(3.7) can be easily obtained by taking particular forms of η(.).

From Theorem 3.1 and Lemma 2.1, we can directly obtain the solution for the Gerber-Shiu
function for a general nonnegative measurable function η. We also present some special cases
which are very useful in deriving the distributions of the ruin time and the deficit at ruin under
the Hyper-exponential jump-diffusion model with a constant dividend barrier.
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Corollary 3.1. Consider a nonnegative measurable function η(.) such that for i = 1, · · · , m,∫ +∞
0

η(y)e−βiydy < ∞. For δ > 0, we have

Eu[e−δτ̂uη(−Xb
τ̂u

)] = c0η(0) +
m∑

i=1

ci

∫ ∞

0

η(z)βie
−βizdz, 0 < u < b, (3.13)

where c0, c1, · · · , cm are determined by the following linear system

(c0 · · · cm d0 · · · dm)A = (er1u · · · erm+1u erm+2u · · · er2m+2u), (3.14)

and r1, · · · , r2m+2 are 2m + 2 distinct roots of the equation g(x) = δ. If A is nonsingular, then
c0, c1, · · · , cm, d0, d1, · · · , dm uniquely solve (3.14).

In particular, we have for v < β1 and l ≥ 0,

Eu[e−δτ̂u ] =
m∑

i=0

ci, 0 < u < b, (3.15)

Eu[e−δτ̂u1{Xb
τ̂u

<−l}] =
m∑

i=1

cie
−βil, 0 < u < b, (3.16)

Eu[e−δτ̂u−vXb
τ̂u ] = c0 +

m∑

i=1

ciβi

βi − v
, 0 < u < b. (3.17)

Remark. Based on equations (3.15)-(3.16), one can obtain the marginal distributions of the
ruin time and the deficit at ruin: P (τ̂u ≤ t), P (Xb

τ̂u
< −l) and P (Xb

τ̂u
= 0). The joint distri-

bution of the ruin time and the deficit at ruin can be obtained by inverting the joint Laplace
transform (3.17).

If the matrix A given by (3.2) is nonsingular, then solving equation (3.14) yields

(c0 · · · cm d0 · · · dm) = (er1u · · · erm+1u erm+2u · · · er2m+2u)A−1.

Therefore, substituting the solutions for ci, i = 0, 1, · · · , m into equations (3.15)-(3.17), we have
the following theorems concerning the Laplace transforms of τ̂u and Xb

τ̂u
.

Theorem 3.2. If the matrix A given by (3.2) is nonsingular, then for δ > 0, we have the
following Laplace transforms concerning τ̂u and Xb

τ̂u
:

Eu[e−δτ̂u ] =
2m+2∑

i=1

kie
riu, 0 < u < b, (3.18)

Eu[e−δτ̂u1{Xb
τ̂u

<−l}] =
2m+2∑

i=1

mie
riu, 0 < u < b, l ≥ 0, (3.19)

Eu[e−δτ̂u1{Xb
τ̂u

=0}] =
2m+2∑

i=1

nie
riu, 0 < u < b, (3.20)

where r1, · · · , r2m+2 are 2m + 2 distinct roots of the equation g(x) = δ, k = (k1, · · · , k2m+2)
′
,

m = (m1, · · · , m2m+2)
′
, and n = (n1, · · · , n2m+2)

′
are vectors uniquely determined by the

following linear systems
Ak = I, Am = J1, An = J2,

with I = (1, 1, · · · , 1, 0, 0 · · · , 0)
′ ∈ R2m+2, J1 = (0, e−β1l, · · · , e−βml, 0, · · · , 0)

′ ∈ R2m+2 and
J2 = (1, 0, · · · , 0)

′ ∈ R2m+2, respectively.
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Remark. If m = 1, then (3.18) is the same as (3.23) in Bo, et al. (2012).

Remark. If b = +∞, then from Cai and Kou (2011) we can obtain the Laplace transform of
the ruin time given by

E[e−δτ̂u ] =
m+1∑

i=1

c̃ie
riu, u > 0,

where r1, r2, · · · , rm+1 are m + 1 negative roots of the equation g(s) = δ, c̃1, · · · , c̃m+1 are
determined by

(c̃1, · · · , c̃m+1)B = (1, · · · , 1),
with the nonsingular matrix B given by

B =

⎛

⎜⎜⎜⎜⎝

1 1 · · · 1
β1

β1+r1

β1
β1+r2

· · · β1
β1+rm+1

· · · · · · · · · · · ·
βm

βm+r1

βm

βm+r2
· · · βm

βm+rm+1

⎞

⎟⎟⎟⎟⎠

The proof of the non-singularity of B can be found in Cai and Kou (2011). But the techniques
they adopted can not be used to justify if the column vectors or row vectors of the matrix A

are linearly independent. We will consider the problem in the future’s research.

The following theorem gives the joint Laplace transform of τ̂u and Xb
τ̂u

.

Theorem 3.3. If the matrix A given by (3.2) is nonsingular, then for v < β1 and l ≥ 0,

Eu[e−δτ̂u−vXb
τ̂u ] =

2m+2∑

i=1

wie
riu, 0 < u < b, (3.21)

where r1, · · · , r2m+2 are 2m + 2 roots of the equation g(x) = δ, and w = (w1, w2, · · · , w2m+2)
′

is a vector uniquely determined by
Aw = J3,

with J3 = (1, β1
β1−v , · · · , βm

βm−v , 0, · · · , 0)
′ ∈ R2m+2.

Remark. If the parameters p, q, pi and qi in (1.2) are allowed to be negative, then the risk
model (1.1) is called a mixed-exponential jump-diffusion process. Note that, under the mixed-
exponential jump-diffusion process, the roots of the equation g(x) = δ will not necessarily
be distinct. Furthermore, the events which lead the process Yt to cross b can not be divided
into A0, A1, · · · , Am. Therefore, the techniques used in this paper for studying the Gerber-Shiu
function are not feasible under the mixed-exponential jump-diffusion process with a dividend
barrier.

§4 Conclusions

This article considers the Gerber-Shiu expected discounted penalty function under a con-
stant dividend barrier for a two-sided jump-diffusion model whose jump sizes have the hyper-
exponential distribution, which is rich enough to approximate many other distributions, includ-
ing some heavy-tail distributions. Using martingale stopping, we obtain the explicit formulas
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for the Laplace transform of the ruin time and the expected discounted deficit under the hyper-
exponential jump-diffusion model with a constant dividend barrier.
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