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NUAT T-splines of odd bi-degree and local refinement

DUAN Xiao-juan WANG Guo-zhao

Abstract. This paper presents a new kind of spline surfaces, named non-uniform algebraic-

trigonometric T-spline surfaces (NUAT T-splines for short) of odd bi-degree. The NUAT T-

spline surfaces are defined by applying the T-spline framework to the non-uniform algebraic-

trigonometric B-spline surfaces (NUAT B-spline surfaces). Based on the knot insertion algorithm

of the NUAT B-splines, a local refinement algorithm for the NUAT T-splines is given. This

algorithm guarantees that the resulting control grid is a T-mesh as the original one. Finally,

we prove that, for any NUAT T-spline of odd bi-degree, the linear independence of its blending

functions can be determined by computing the rank of the NUAT T-spline-to-NUAT B-spline

transformation matrix.

§1 Introduction

Nowadays NURBS is widely used for generating and representing curves and surfaces in in-
dustry. T-spline, introduced by Sederberg, et al. [1-2], is a kind of generalization of non-uniform
B-spline surfaces and has been proved to overcome many limitations inherent in NURBS. One
advantage of T-splines is local refinement. NURBS control points must lie topologically in a
rectangular grid. Therefore NURBS refinement requires the insertion of an entire row or column
of control points, which means that a large number of NURBS control points serve no purpose
other than to satisfy topological constraints. However, the T-spline refinement allows partial
rows or columns of control points, which means that T-splines need much less control points
than NURBS. Another advantage is that T-spline models are watertight, whereas NURBS mod-
els comprised of distinct patches generally fit together with unwanted gaps. These undesirable
gaps place a heavy burden on model creators, who must repair a widened gap whenever the
model is deformed. Merging two B-spline surfaces with different knot vectors into a single
T-spline is a possible way to solve this problem [1-2, 6]. Besides, the T-spline can be used in
isogemetric analysis for its nice local refinement properties [9-11].

A T-spline is easy to be converted into the equivalent B-spline surface based on the local
refinement of T-splines. Meanwhile, an existing NURBS model can also be converted into a
T-spline through simplification within a certain error tolerance. This can eliminate a large
number of superfluous control points in geometric modeling and simplify the representation of
the models [2].
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Many transcendental curves which play an important role in engineering such as the helix,
the cycloid and the catenary cannot be represented exactly by NURBS. In order to avoid these
inconvenience of NURBS, many new splines are constructed. C-curves, generated over the space
spanned by {sin t, cos t, t, 1|0 ≤ t ≤ α}, are introduced by Zhang [3-4]. This kind of curves can
exactly represent cycloids and arcs of circles. Non-uniform algebraic-trigonometric B-splines
(NUAT B-splines) generated over the space spanned by {1, t, · · · , tk−3, sin t, cos t}(k ≥ 3) are
introduced by Wang, et al. [5]. The NUAT B-splines which can represent the cycloid and the
helix exactly can be seen as an extension of C-curves. Li, et al. [8] and Lü, et al. [9] propose the
H-Bézier curves and the uniform hyperbolic polynomial B-spline curves in the space spanned
by {1, t, · · · , tk−3, sinh t, cosh t}. This kind of curves can exactly represent the catenary.

T-spline is a generalization of NURBS. Therefore, applying the T-spline framework to the
NUAT B-spline surface is significant. In this paper, our main contributions are:

1. The definition of the NUAT T-splines of odd bi-degree is given. It is a generalization of
NUAT B-spline surfaces.

2. We propose a local refinement algorithm for NUAT T-splines. Local refinement of splines
is an important issue in isogeometric analysis [10-12]. This algorithm guarantees that the
resulting control grid is a T-mesh, which is better than the local refinement algorithm of T-
splines proposed by Sederberg, et al. [2].

3. A necessary and sufficient condition for any NUAT T-spline’s blending functions to be
linearly independent is given. It can be determined by computing the rank of the NUAT
T-spline-to-NUAT B-spline transformation matrix.

The paper is organized as follows. Section 2 introduces the T-mesh for the NUAT T-splines.
In Section 3, we give the definition of the NUAT T-splines of odd bi-degree. A local refinement
algorithm for the NUAT T-splines of odd bi-degree is presented in Section 4. In Section 5, we
discuss the linear independence of the blending functions for any given NUAT T-spline of odd
bi-degree. We conclude the paper in Section 6.

§2 T-mesh

A NUAT B-spine surface is a grid-based spline surface whose control mesh is simply a
rectangular grid. A NUAT T-spline is defined as a point-based spline surface whose control mesh
allows T-junctions. Hence, the NUAT T-splines generalize NUAT B-spline surfaces to allow
partial rows or columns of control points. Each control point of a NUAT T-spline corresponds
to one blending function according to the control mesh.

The control grid of a NUAT T-spline is basically a rectangular gird that permits T-junctions.
It is called a T-mesh for the spline surface, which is similar to the T-mesh of a T-spline. To
define a basis, the information of knot vectors must be assigned to the T-mesh. Thus, the
T-mesh can also be regarded as the knot vector space.

Let u = {u1−�p/2�, · · · , u1, · · · , us, · · · , us+�p/2�} be the horizontal global knot vector and
v = {v1−�q/2�, · · · , v1, · · · , vt, · · · , vt+�q/2�} be the vertical global knot vector. A T-mesh is a
rectangular partition of the domain [u1−�p/2�, us+�p/2�]× [v1−�q/2�, vt+�q/2�], where the vertices
of the rectangles have coordinates belonging to u and v. A NUAT T-spline of odd bi-degree
(p, q) is defined in terms of the above T-mesh and global knot vectors u and v. The region
[u1, us] × [v1, vt] is the active region of this T-mesh. All the control points are located in this
area. Each control point P in the active region corresponds to a unique pair of knots (ui, vj),
where ui is the horizontal coordinate of P and vj is the vertical coordinate of P in the knot
vector space. The T-mesh permits T-junctions which means that vertices may have valence 3
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(a) (b) (c) (d)

Figure 1: A NUAT T-spline example of bi-degree (3, 5). (a) T-mesh; (b) Corresponding B-mesh;
(c) TB-mesh; (d) The knot vectors of P1 in TB-mesh.

or 2. If the valence of the vertex is 3, the vertex is a T-node. If the valence of the vertex is 2,
the vertex should be shared by two u-edges or two v-edges. L-nodes which are shared by one
u-edge and one v-edge are not allowed. The following NUAT T-splines of bi-degree (p, q) are of
odd bi-degree, which means that p and q are positive odd integers.

The control mesh of the NUAT B-spline surface with bi-degree (p, q) defined in terms of the
global knot vectors u and v is called the corresponding B-mesh of the NUAT T-spline. Each
vertex in the B-mesh has valence 4. Therefore, when a T-mesh forms a rectangular grid with
no T-junctions, the NUAT T-spline degenerates to a NUAT B-spline surface.

For brevity, the T-mesh and the corresponding B-mesh can be combined in a single mesh
called TB-mesh which contains the information of the two meshes. The TB-mesh can be
obtained by changing the corresponding region of the B-mesh using the active region of the
T-mesh. By observing the TB-mesh, it is easy to find the control points needed to be added
when a NUAT T-spline is converted into an equivalent NUAT B-spline surface.

Figure 1.a shows the T-mesh of a NUAT T-spline of bi-degree (3, 5). u = {u−1, u0, · · · , u11}
is the horizontal global knot vector and v = {v−2, v−1, · · · , v12} is the vertical global knot
vector. [u1, u9] × [v1, v9] is the active region in which all of the control points locate. Both P1

and P2 are control points in the T-mesh. P1 corresponds to a unique pair of knots (u2, v8) and
(u1, v6) are the knot coordinates of P2. P1 is a T-node. Figure 1.b presents the corresponding
B-mesh of Figure 1.a while Figure 1.c shows the corresponding TB-mesh of Figure 1.a.

The T-mesh not only contains the information of the control points, but also contains the
information of the knot vectors. More importantly, the information of the blending functions
is included in the T-mesh. The T-mesh must satisfy three conditions as below [1].

• Condition 1. A T-mesh is basically a rectangular grid that allows T-junctions.

• Condition 2. The sum of knot intervals on opposing edges of any face must be equal.

• Condition 3. If a T-junction on one edge of a face can be connected to a T-junction on
an opposing edge of the face (thereby splitting the face into two faces) without violating
Condition 2, that edge must be included in the T-mesh.
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§3 Non-uniform algebraic-trigonometric T-splines of odd bi-degree

A NUAT T-spline of odd bi-degree is a point-based spline surface whose control points have
no topological relationship with each other. Each control point in the T-mesh corresponds to a
blending function. The blending functions are associated with the basis functions of the NUAT
B-spline surface.

3.1 The basis functions of NUAT B-splines

Let T be a given knot sequence {ti}+∞
−∞ with 0 ≤ ti+1 − ti < π . A NUAT B-spline of order

k is generated over the space spanned by {1, t, · · · , tk−3, sin t, cos t} in which k is an arbitrary
integer greater than or equal to 3. A set of basis functions Ni,k(t) of the space is defined as
follows [5].

Ni,2(t) =

⎧
⎪⎨

⎪⎩

sin(t−ti)
sin(ti+1−ti)

, ti < t ≤ ti+1,
sin(ti+2−t)

sin(ti+2−ti+1)
, ti+1 < t ≤ ti+2,

0, otherwise.

(1)

For k ≥ 3, Ni,k(t) is defined recursively by

Ni,k(t) =
∫ t

−∞
(δi,k−1Ni,k−1(s) − δi+1,k−1Ni+1,k−1(s))ds, k ≥ 3, i = 0,±1, · · · , (2)

where

δi,k = [
∫ +∞

−∞
Ni,k(s)ds]−1. (3)

It is a NUAT B-spline basis with simple knot sequence. If there are multiple knots in the
knot sequence, we set δi,kNi,k = 0 when Ni,k = 0 (set 0/0 = 0). However, δi,kNi,k has to satisfy

∫ t

−∞
δi,kNi,k(t)dt =

{
1, t ≥ ti+k,

0, t < ti+k.
(4)

The NUAT B-spline of order k is k − ri − 1 times continuously differential at a knot ti if ti
has multiplicity ri.

The basis Ni,k(t) has many important properties: positivity, local support, partition of unity
and linear independence.

3.2 Non-uniform algebraic-trigonometric T-splines of odd bi-degree

A NUAT T-spline of odd bi-degree (p, q) is defined in terms of a T-mesh and global knot vec-
tors u={u1−�p/2�, · · · , u1, · · · , us, · · · , us+�p/2�} and v={v1−�q/2�, · · · , v1, · · · , vt, · · · , vt+�q/2�}.
The equation of the NUAT T-spline surface in homogeneous form is

P(u, v) = (x(u, v), y(u, v), z(u, v), ω(u, v)) =
n∑

i=1

Bi(u, v)Pi (5)

where Pi = (xi, yi, zi, ωi) ∈ R4 are homogeneous control points whose weights are ωi, and
whose Cartesian coordinates are 1

ωi
(xi, yi, zi). Likewise, the Cartesian coordinates of points on

the surface are given by ∑n
i=1 Bi(u, v)(xi, yi, zi)
∑n

i=1 ωiBi(u, v)
Bi(u, v) in (5) are the blending functions and are given by Bi(u, v) = N [ui](u)N [vi](v), where
N [ui](u) is the NUAT B-spline basis function of degree p associated with the knot vector
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ui = [ui
j−�p/2�, · · · , ui

j, · · · , ui
j+�p/2�] and N [vi](v) is the NUAT B-spline basis function of degree

q associated with the knot vector vi = [vi
k−�q/2�, · · · , vi

k, · · · , vi
k+�q/2�]. The knot vectors ui

and vi for each blending function Bi(u, v) corresponding to Pi are deduced from the T-mesh
according to the Knot Vector Determining Rule (KVD Rule) as follows.

KVD Rule. (ui
j , v

i
k) are the knot coordinates of Pi. Consider a ray R(α) = (ui

j + α, vi
k)

(α > 0) in the parameter space. Then ui
j+m is the u coordinate of the m-th u-edge intersected

by the ray (not including the initial (ui
j , v

i
k)). u-edge means a vertical line segment of constant

u. Similarly, consider a ray R(β) = (ui
j − β, vi

k) (β > 0) in the parameter space. Then ui
j−m is

the u coordinate of the m-th u-edge intersected by the ray (not including the initial (ui
j , v

i
k)).

The knot vector vi can be determined in a similar way (where m = 1, 2, · · · , �p/2�) [1].
In the T-mesh shown in Figure 1.a, the horizontal knot vector of P1 is [u0, u1, u2, u3, u5]

and the vertical knot vector is [v5, v6, v7, v8, v9, v10, v11]. The horizontal knot vector of P2 is
[u−1, u0, u1, u2, u3] with the vertical knot vector [v1, v2, v3, v6, v7, v8, v9]. The knot vectors of
P1 are shown in Figure 1.d labeled with ‘*’.

§4 Local refinement algorithm

Local refinement is an interesting property of T-splines in geometric modeling since it can
make the solid more attractive. More over, it plays an important role in isogeometric analysis
using T-splines [10-12].

The local refinement of NUAT T-spline means to insert one or more control points into
a NUAT T-spline mesh without changing the shape of the surface. This procedure can also
be called local knot insertion, since the addition of control points into a T-mesh must be
accompanied with knots inserted into neighboring blending functions. With the knot insertion,
the blending function is split into two new scaled blending functions.

4.1 Knot insertion of the NUAT B-splines

Let T := {ti}+∞
−∞ be a knot sequence, and let T 1 := {t1i }+∞

−∞ be a new knot sequence obtained
by inserting a new knot t′ into T with ti ≤ t′ < ti+1. Nj,k(t) and N1

j,k(t) are defined as in (2)
on the knot sequence T and T 1 respectively. For all j, k ≥ 2 [5],

Nj,k(t) = λj,kN1
j,k(t) + μj+1,kN1

j+1,k(t), (6)
where for 0 ≤ r < k

λj,k =

⎧
⎪⎪⎨

⎪⎪⎩

1, j ≤ i − k,

λj,k−1
δj,k−1

δ1
j,k−1

, i − k < j < i − r + 1,

0, j ≥ i − r + 1,

μj,k =

⎧
⎪⎪⎨

⎪⎪⎩

0, j ≤ i − k + 1,

μj+1,k−1
δj,k−1

δ1
j+1,k−1

, i − k + 1 < j < i − r + 2,

1, j ≥ i − r + 2,

and for r ≥ k

λj,k =

{
1, j ≤ i − k,

0, j > i − k,
μj,k =

{
0, j ≤ i − k + 1,

1, j > i − k + 1,
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(a) (b) (c)

Figure 2: Sample Refinement of B1(u, v). (a) T-mesh of the NUAT T-spline; (b) The blend-
ing function B1(u, v) in T-mesh; (c) After inserting (u4, v5), B1(u, v) is split into the linear
combination of two scaled basis functions B1

1(u, v) and B1
2(u, v).

and

λj,2 =

⎧
⎪⎨

⎪⎩

1, j ≤ i − 1,
sin(t′−ti)

sin(ti+1−ti)
, j = i,

0, j ≥ i + 1,

μj,2 =

⎧
⎪⎨

⎪⎩

0, j ≤ i − 1,
sin(ti+1−t′)
sin(ti+1−ti)

, j = i,

1, j ≥ i + 1,

where r is the multiplicity of the knot t′ in T . λj,k + μj,k = 1 for all j, k ≥ 3.

4.2 Blending function refinement

For a NUAT B-spline of order k, if t = [t0, t1, t2, · · · , tk] is a knot vector and t∗ is obtained
by inserting a new knot t′ into t. The blending function corresponding to t is

N [t](t) =

⎧
⎪⎨

⎪⎩

cN [t1](t) + dN [t2](t), t∗ = [t0, · · · , t′, · · · , tk],
N [t2](t), t∗ = [t′, t0, t1, · · · , tk],
N [t1](t), t∗ = [t0, t1, · · · , tk, t′].

where t1 is the knot vector with the first k + 1 knots of the knot vector t∗ and t2 is the knot
vector with the last k + 1 knots of the knot vector t∗. For example, if t∗ = [t0, · · · , t′, · · · , tk],
then t1 = [t0, · · · , t′, · · · , tk−1] and t2 = [t1, · · · , t′, · · · , tk]. The coefficients c and d can be
determined by (6).

A NUAT T-spline blending function Bi(u, v) of bi-degree (p, q) can undergo knot insertion
operation in either u or v, thereby splitting it into two scaled blending functions that sum
to the initial one [2]. For example, Figure 2.a presents the original T-mesh of a NUAT T-
spline of bi-degree (3, 5). It is shown in Figure 2.b that the blending function at (u5, v5)
is B1(u, v) = N [u2, u3, u5, u6, u7](u)N [v2, v3, v4, v5, v6, v7, v8](v) in the original T-mesh. After
inserting one knot (u4, v5), the blending function B1(u, v) is split into two scaled basis functions:

B1(u, v) = c1
1B

1
1(u, v) + c1

2B
1
2(u, v)

where B1
1(u, v) = N [u2, u3, u4, u5, u6](u)N [v2, v3, v4, v5, v6, v7, v8](v) and we can get B1

2(u, v) =
N [u3, u4, u5, u6, u7](u)N [v2, v3, v4, v5, v6, v7, v8](v). The above coefficients c1

1 and c1
2 can be de-

termined according to (6) (Figure 2.c.).
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4.3 Local refinement algorithm

The local refinement of NUAT T-splines means to insert control points into the T-mesh.
Meanwhile, necessary knots should be inserted into neighboring blending functions. The refine-
ment algorithm presented here is better than the T-spline local refinement algorithm because
after the local refinement the new control grid is still a T-mesh as the initial one.

In a NUAT T-spline, the blending functions and the T-mesh are tightly coupled. Each
control point corresponds to one blending function whose knot vectors are defined by KVD
Rule. Blending functions will be refined during local refinement and new blending functions
will be produced. This may cause violations, which means that during the process of the
algorithm, there may be blending functions that violate KVD Rule. In fact, there are three
possible violations that could occur during the course of the refinement algorithm.

• Violation 1. A blending function is missing a knot dictated by KVD Rule for the current
T-mesh.

• Violation 2. Several blending functions correspond to one control point in the current
T-mesh.

• Violation 3. L-node shared by one u-edge and one v -edge is in the T-mesh.

These possible violations must be eliminated. If Violation 1 occurs, the necessary knot
insertion should be performed into that blending function and an appropriate control point
should be added into the T-mesh. If Violation 2 occurs, the relevant blending functions should
be refined according to the current T-mesh. When Violation 3 occurs, an appropriate control
point should be added into the T-mesh accompanied by the corresponding knots to eliminate
the L-node.

The local refinement algorithm for a NUAT T-spline of bi-degree (p, q) defined in (5) consists
of the following steps:

1. Insert all desired control points and their corresponding knots into the T-mesh.

2. The blending functions of the original T-mesh are refined. Then check the new blending
functions:

(a) If any blending function is guilty of Violation 1, insert the missing knot and its
corresponding control point into the T-mesh.

(b) If Violation 2 occurs, those blending functions corresponding to one control point
should be refined according to the current T-mesh.

3. If Violation 3 occurs, there is an L-node whose knot vectors are ui and vi . Suppose ui =
[ui

j−�p/2�, · · · , ui
j, · · · , ui

j+�p/2�] and vi = [vi
k−�q/2�, · · · , vi

k, · · · , vi
k+�q/2�]. If (ui

j , v
i
k−1) is

not in the T-mesh, insert it into the T-mesh. Otherwise, insert (ui
j , v

i
k+1) into the T-mesh.

The knot pairs represent both control points and knots in the knot vector space.

4. Repeat Step 2 and Step 3 whenever a control point is added, until there are no more
violations.

During the local refinement procedure, one important issue should be taken attention to.
That is after the insertion of control points, some necessary edges according to Condition 3 for
the T-mesh should be added into the control grid.
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In fact, the local refinement occurs only in the active region of the T-mesh. The algorithm
is illustrated with the following example. The active region of a NUAT T-spline of bi-degree
(3, 5) is shown in Figure 3.a.

The NUAT T-spline is defined with the global knot vectors u = [u−1, u0, · · · , u8, u9] and
v = [v−2, v−1, · · · , v9, v10]. [u1, u7] × [v1, v7] is the active region of the T-mesh. In Fig-
ure 3.b, a control point P and its corresponding knot are inserted into the T-mesh. Since
P has knot coordinate (u, v4), the blending functions which centered at (u3, v4), (u4, v4),
(u5, v4) and (u6, v4) are refined (Figure 3.c). The blending function centered at (u4, v4) is
N [u2, u3, u4, u5, u6](u)N [v1, v2, v3, v4, v5, v6, v7](v) in the initial T-mesh (Figure 3.d). Inserting
a knot u into the u knot vector of this blending function, it is split into two scaled blending func-
tions N [u2, u3, u4, u, u5](u)N [v1, v2, v3, v4, v5, v6, v7](v) and N [u3, u4, u, u5, u6](u)N [v1, v2, v3, v4,
v5, v6, v7](v).

The blending function N [u2, u3, u4, u, u5](u)N [v1, v2, v3, v4, v5, v6, v7](v) in Figure 3.e satis-
fies KVD Rule. Likewise, the refinements of the blending functions centered at (u3, v4), (u5, v4)
and (u6, v4) all satisfy KVD Rule. However, N [u3, u4, u, u5, u6](u)N [v1, v2, v3, v4, v5, v6, v7](v)
is guilty of Violation 1 since it is missing a knot v3 in its v knot vector dictated by KVD
Rule for the current T-mesh in Figure 3.f. Therefore, we should insert the control point
P1 and its corresponding knot (u, v3) into the T-mesh. Then the blending functions which
centered at (u3, v3) and (u4, v3) are refined. The refinements of the blending functions at
(u3, v3) and (u4, v3) all satisfy KVD Rule. However, Violation 2 occurs since there are several
blending functions corresponding to (u, v4) in the current T-mesh, so the blending functions
N [u3, u4, u, u5, u6](u)N [v−1, v1, v2, v4, v5, v6, v7](v) (Figure 3.h) should be refined according to
the T-mesh.

There is an L-node P1 in the control grid, whose knot vectors are u1 = [u3, u4, u, u5, u6] and
v1 = [v0, v1, v2, v3, v4, v5, v6]. (u, v2) is not in the T-mesh, then insert it into the T-mesh. There
are no violations for the T-mesh. The local refinement is finished meanwhile a new T-mesh
is produced as shown in Figure 3.i. For this example, we can insert (u, v2) in v direction or
(u5, v3) in u direction to eliminate the L-node. In practice, we choose (u, v2).

This algorithm is always guaranteed to terminate, because the blending function refinements
and control point insertions must involve knot values that initially exist in the T-mesh, or that
were added in Step 1. In the worst case, the algorithm would extend all partial rows of control
points until the T-mesh turns to be a B-mesh [2]. In practice, the algorithm requires few
additional new control points beyond the ones the user wants to insert. This algorithm is
better than the local refinement algorithm of T-splines proposed by Sederberg et al. [2], whose
resulting control grid after the local refinement may not be a T-mesh.

§5 The linear independence condition

A NUAT T-spline of odd bi-degree (p, q) is in homogeneous form:

T(u, v) =
nT∑

i=1

PiTi(u, v). (7)

All the control points are located in [u1, us]×[v1, vt], and nT is the number of the control points.
Ti(u, v) = N(ui)N(vi) are the blending functions of Pi which are homogeneous control points.

Through local refinement, the NUAT T-spline can be converted into its corresponding NUAT
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: A local refinement example of NUAT T-spline with bi-order (3, 5). (a) Original T-
mesh of the NUAT T-spline; (b) Insert P; (c) After inserting P, the blending functions which
centered at (u3, v4), (u4, v4), (u5, v4) and (u6, v4) are refined; (d) The blending function centered
at (u4, v4) in original T-mesh is refined; (e) The new blending function centered at (u4, v4) after
local refinement; (f) The new blending function centered at (u, v4) after local refinement in
current T-mesh is missing a knot; (g) Insert a missing knot (u, v3) and necessary edges; (h)
One blending function corresponding to (u, v4) does not satisfy the current T-mesh; (i) The
resulting T-mesh after local refinement.
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B-spline surface. The NUAT B-spline surface can be described in homogeneous form:

B(u, v) =
s∑

i=1

t∑

j=1

Q̂ijB̂ij(u, v) (8)

where B̂ij(u, v) = Ni,p+1(u)Nj,q+1(v)(i = 1, 2, · · · , s; j = 1, 2, · · · , t) are the basis functions of
Q̂ij , and Q̂ij are the control points in the B-mesh. The NUAT B-spline surface is a NUAT
T-spline, so the surface can be described as:

B(u, v) =
nB∑

j=1

QjBj(u, v), nB = st (9)

where Qj are the control points of the surface, and Bj(u, v) are the blending functions of Qj.
nB = st is the number of the control points in the B-mesh.

Each NUAT T-spline blending function can be written as a linear combination of its corre-
sponding NUAT B-spline basis functions:

Ti(u, v) =
nB∑

j=1

ci
jBj(u, v), i = 1, 2, · · · , nT . (10)

Denote

⎛

⎜
⎜
⎜
⎝

c1
1 c1

2 · · · c1
nB

c2
1 c2

2 · · · c2
nB

...
...

...
cnT
1 cnT

2 · · · cnT
nB

⎞

⎟
⎟
⎟
⎠

= C, where C is called the NUAT T-spline-to-NUAT

B-spline transformation matrix. Then (10) can be written in matrix form:
(T1(u, v), T2(u, v), · · · , TnT (u, v))T = C(B1(u, v), B2(u, v), · · · , BnB (u, v))T.

The knot insertion does not change the geometry of the NUAT T-spline which means
T(u, v) = B(u, v). So the relationship between the NUAT T-spline control points and the
NUAT B-spline control points can be also obtained by

CT

⎛

⎜
⎜
⎜
⎝

P1

P2

...
PnT

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

Q1

Q2

...
QnB

⎞

⎟
⎟
⎟
⎠

.

The above formula can be written as CT
P = Q, where P = (P1,P2, · · · ,PnT )T and Q =

(Q1,Q2, · · · ,QnB )T.

Theorem 5.1. The NUAT T-spline-to-NUAT B-spline transformation matrix C for any NUAT
T-spline of odd bi-degree surface is unique. Furthermore, the necessary and sufficient condition
for the blending functions of any NUAT T-spline with odd bi-degree to be linearly independent
is that C is of full rank.

Proof. The NUAT T-spline is defined in formula (7). Referring to (10), since the Bj(u, v) are
NUAT B-spline basis functions, each column of C is unique, so C is also unique.

By definition, the blending functions of the NUAT T-spline are linearly independent if and
only if there do not exist constants ki, not all zero, such that

k1T1(u, v) + k2T2(u, v) + · · · + knT TnT (u, v) = (k1, k2, · · · , knT )

⎛

⎜
⎜
⎜
⎝

T1(u, v)
T2(u, v)

...
TnT (u, v)

⎞

⎟
⎟
⎟
⎠

= 0. (11)
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The NUAT T-spline blending functions are the linear combinations of the NUAT B-spline
blending functions, then the linear independence requires

(k1, k2, · · · , knT )

⎛

⎜
⎜
⎜
⎝

T1(u, v)
T2(u, v)

...
TnT (u, v)

⎞

⎟
⎟
⎟
⎠

= (k1, k2, · · · , knT )C

⎛

⎜
⎜
⎜
⎝

B1(u, v)
B2(u, v)

...
BnB (u, v)

⎞

⎟
⎟
⎟
⎠

= 0. (12)

Since Bj(u, v) is a basis, the necessary and sufficient condition for linear dependence of the
NUAT T-spline blending functions becomes

CT

⎛

⎜
⎜
⎜
⎝

k1

k2

...
knT

⎞

⎟
⎟
⎟
⎠

= 0 (13)

for ki, which are not all zero. This will happen if and only if C satisfies Rank(C) = nnT .
It means that when C is full rank the blending functions of the NUAT T-spline are linearly
independent. Then the blending functions are basis functions.

§6 Conclusion

In this paper, our main contributions can be stated as follows: First, we present the definition
of the NUAT T-splines of odd bi-degree. Second, a local refinement algorithm for the NUAT
T-splines is proposed. This algorithm guarantees that the resulting control grid is a T-mesh. It
is better than the local refinement algorithm of T-splines proposed by Sederberg et al. [4]. At
last but not at least, a necessary and sufficient condition for the blending functions of the NUAT
T-spline to be linearly independent is given. In fact, NUAT T-splines of arbitrary degree can
be defined. But the definition of even bi-degree and mixed degree NUAT T-splines are quite
different from the odd bi-degree ones. Besides, the knot insertions and the control points adding
are not simultaneous in the local refinement for these types. These types of NUAT T-splines
remain to be investigated.

There are some other transcendental curves which cannot be represented exactly by NUAT
T-splines. In order to give exact representations of these curves, NUAH B-splines and UE-
splines can be used [8-9]. Applying the T-spline framework to these splines is of interest. On
the other hand, the application of NUAT T-splines in isogeometric analysis [11-12] is also one
part of our future work.
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