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Abstract. Energy minimization has been widely used for constructing curve and surface in

the fields such as computer-aided geometric design, computer graphics. However, our testing

examples show that energy minimization does not optimize the shape of the curve sometimes.

This paper studies the relationship between minimizing strain energy and curve shapes, the

study is carried out by constructing a cubic Hermite curve with satisfactory shape. The cubic

Hermite curve interpolates the positions and tangent vectors of two given endpoints. Computer

simulation technique has become one of the methods of scientific discovery, the study process

is carried out by numerical computation and computer simulation technique. Our result shows

that: (1) cubic Hermite curves cannot be constructed by solely minimizing the strain energy; (2)

by adoption of a local minimum value of the strain energy, the shapes of cubic Hermite curves

could be determined for about 60 percent of all cases, some of which have unsatisfactory shapes,

however. Based on strain energy model and analysis, a new model is presented for constructing

cubic Hermite curves with satisfactory shapes, which is a modification of strain energy model.

The new model uses an explicit formula to compute the magnitudes of the two tangent vectors,

and has the properties: (1) it is easy to compute; (2) it makes the cubic Hermite curves have

satisfactory shapes while holding the good property of minimizing strain energy for some cases

in curve construction. The comparison of the new model with the minimum strain energy model

is included.

§1 Introduction

Constructing curves and surfaces with satisfactory shapes is of fundamental importance
in computer-aided geometric design, computer graphics and so on[8,10]. A satisfactory curve
should satisfy many nice properties, for example, the monotonicity of curvature, symmetry, no
undulation (limited number of extremal values of curvature, for cubic Hermite curves, only one
extremal value of curvature at most), and the shape suggested by the data points. Energy min-
imization has been widely used for constructing such curves and surfaces. Some examples are
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as follows. In physics-based deformation, physical simulation is used to get realistic shapes and
motions, the final surface is produced by the equilibrium state of the dynamic model[2,12]. In
constrained deformation, the shape of a surface is faired by minimizing a global energy[3,14,17].
In the construction of minimal-energy spline segments and curves with angle constraints, the ex-
istence of solutions has been proved, the Lagrange multiplier rules has been justified, and some
nice properties have been obtained[5]. The use of energy integral in optimizing the ’fairness’
of PH curve and geometric Hermite interpolants was discussed[6,9], and compelling empirical
evidence indicates that, for ’reasonable’ derivative data, first-order PH quintic Hermite inter-
polants are systematically of lower energy than their ordinary cubic counterparts. Constrained
shape scaling of a surface is like the manipulation of a thin plate. When external forces such
as moment, edge force and gravity either do not exist, the potential energy of the free plate[11]

includes bending strain energy, stretching strain energy[7,13] and spring potential energy. Hence,
the constrained shape scaling of a surface could be simplified to the stretching problem, the
resulting surface is obtained by minimizing the weighted combination of three energies, that is,
bending strain energy, the stretching strain energy and the spring potential energy[16].

The polynomial interpolation process is commonly used in curve construction, and generally
the resulting polynomial curve is either a cubic Hermite curve or a cubic Bézier curve. The
constructed curve is required to have nice properties or desirable shapes suggested by the inter-
polation conditions. The standard cubic polynomial technique has been addressed in paper[1],
where so called geometric cubic Hermite(GCH) curves are constructed, which interpolates the
given positions and tangent vectors at the two end-points. The curves of this type allow flexi-
bility on the magnitudes of the two tangent vectors. Yong and Cheng[15] propose a solution to
the construction of G1 GCH curves. The curve is built by optimizing the magnitudes of tangent
vectors at endpoints; the strain energy of the curve is thus minimized. An explicit formula for
obtaining such a curve is also presented in that paper. A method[4] is proposed to construct
shape pleasing GCH curves, where curvature variation is used as an objective function. An
explicit formula for obtaining such a curve is given. However, GCH curves by the methods[4,15]

are composed of two or three parts for some input; and their shapes are not always good.

It is generally accepted that a curve would have a desirable shape if it has the minimum
internal strain energy. This paper tests the shape of a curve with minimum strain energy,
and GCH curve is used in the test process. The shape of the GCH curve is determined by
minimizing the strain energy. As the curve of this type interpolates the given positions and
tangent vectors at two endpoints, minimizing the strain energy is a task of determining the
magnitudes of the two tangent vectors. The numerical computation and computer simulation
techniques are used to compute the minimum strain energy and visualize the magnitudes of
the two tangent vectors. Our results show that minimizing the strain energy cannot guarantee
the cubic curve with a satisfactory shape, using the local minimum strain energy to construct
GCH curves, the shapes of constructed curves are satisfactory for most cases. Based on the
strain energy model and computing results, a new explicit model is presented for constructing
GCH curve with satisfactory shape. The new model has the property that it is very simple and
suitable for constructing cubic polynomial curve with satisfactory shape.

The remaining part of the paper is arranged as follows. Section 2 is the discussion on
curve shapes and the minimum strain energy. Section 3 presents the construction of the new
model. Section 4 shows the comparison of the new method with minimizing strain energy
model. Finally section 5 concludes the paper.
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§2 Curve shape and minimum strain energy

In this section, the cubic Hermite curve is used to test the relationship between minimum
strain energy and the shape of a curve.

2.1 Construction of cubic Hermite curve

Given four interpolation conditions which are two points P0 = (0, 0) and P1 = (1, 0), and
two tangent vectors V0 = (cos θ, sin θ) and V1 = (cosϕ, sin ϕ) at P0 and P1, respectively, where
θ denotes the angle from vector P0P1 to V0, ϕ the one from vector P0P1 to V1, as shown in Fig.
1. The cubic Hermite curve P (t) that matches the four interpolation conditions can be defined
by

P (t) = P0F0(t) + αV0G0(t) + βV1G1(t) + P1F1(t) (1)
where

F0(t) = 2t3 − 3t2 + 1, F1(t) = −2t3 + 3t2

G0(t) = t3 − 2t2 + t, G1(t) = t3 − t2

are cubic Hermite basis functions on [0,1], α and β are magnitudes of V0 and V1, and will be
determined.

�
�
�
��

V0

P0

�
V1

P1

� θ �ϕ

Figure 1: Four interpolation conditions

As α and β are variable, P (t) has different shapes with different (α, β). For example, in P (t)
(1), let V0 = (

√
2/2,

√
2/2) and V1 = (

√
2/2,−√

2/2), then, its plots for (α, β) = {(2, 2), (1, 4),
(3.2, 8.5), (6, 7)} are shown in Fig. 2.

(2,2)

(1,4)

(3.2,8.5) (6,7)

Figure 2: plots of P (t) with different (α, β)

The vectors V0 and V1 are functions of θ and ϕ, respectively. The goal is that for a given
(θ, ϕ), a suitable (α, β) is chosen so that P (t) (1) satisfies the given interpolation conditions and
has a satisfactory shape. Hence, constructing P (t) (1) becomes the problem of constructing the
following function

α = α(θ, ϕ)
β = β(θ, ϕ)

− π ≤ θ, ϕ ≤ π. (2)
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It is generally accepted that P (t) (1) would have a satisfactory shape if it has the minimum
strain energy. For a given (θ, ϕ), let P ′(t, α, β) and P ′′(t, α, β) denote the first and second
derivatives of P (t) (1) with respect to t, the strain energy of P (t) is defined by

G(α, β) =
∫ 1

0

|P ′(t, α, β) × P ′′(t, α, β)|2
|P ′(t, α, β)|5 dt (3)

then, for the given (θ, ϕ), the values of α and β will be determined by minimizing G(α, β), i.e.,
they are determined by

∂G(α, β)
∂α

= 0,
∂G(α, β)

∂β
= 0 (4)

that is, function (2) is defined by (4).
In the following subsection, we will discuss the relationship between the shape of P (t) (1)

and (α, β) defined by (4).

2.2 Curve shape and minimum strain energy

Using numerical computing and computer simulation techniques, we can define P (t) (1) by
computing the minimum energy value of P (t) to obtain α and β. The process of computing the
minimum energy value of P (t) is as follows. The region of (θ, ϕ), −π ≤ θ, ϕ ≤ π, is subdivided
into 100 × 100 small squares meshes using (θi, ϕj) which are defined by

θi =
iπ

50
− π, ϕj =

jπ

50
− π,

for i, j = 0, 1, 2, · · · , 100. For each (θi, ϕj), the minimum energy value of P (t) is computed
by subdivision method, that is, the region 0 ≤ α, β ≤ Δ is subdivided into 100 × 100 small
squares using (αi, βj) = (Δi/100, Δj/100), i, j = 0, 1, 2, · · · , 100. For (αi, βj) = (i, j), i, j =
0, 1, 2, · · · , 100, if P (t) has the least energy value at (αi0, βj0), then sub-square [αi0 − L ≤
α ≤ αi0 + L] × [βj0 − L ≤ β ≤ βj0 + L] with L = Δ/100 is subdivided into 100 × 100 small
squares, repeating the above process until the side length of the current small square less than
a given small value. In our experiment, Δ is taken as 100, we have not found the case that
when α > 100 or β > 100, P (t) has the minimum energy value. The computing and simulation
results are that minimizing the strain energy does not guarantee P (t) (1) to have satisfactory
shape, and for −π ≤ θ, ϕ ≤ π, G(α, β) (3) can be classified into the following two cases:

1. when (θ, ϕ) does not belong to the dotted region in Fig. 3, G(α, β) has one local minimum
value and one minimum value zero when α → ∞ and β → ∞.

2. when (θ, ϕ) belongs to the dotted region in Fig. 3, G(α, β) has no local minimum value,
and one minimum value zero when α → ∞ and β → ∞.

Figures 4 - 5 are two examples corresponding to the above two cases, for simplicity, we set
α = β. In Fig. 4, V0 = (cos π

3 , sin π
3 ) and V1 = (cos −π

3 , sin −π
3 ), the plot on the top is the curve

(with α = 1.43) that has local minimum energy G(1.43, 1.43) = 3.6, the plot at the bottom
is the energy curve of G(α, α) that has the properties that 1) when α = 6, G(α, α) → ∞ and
P (t) (1) have one cusp; 2) when α → ∞, G(α, α) → 0. In Fig. 5, V0 = (cos −3π

4 , sin −3π
4 ) and

V1 = (cos 3π
4 , sin 3π

4 ), the plot on the top is the curve (with α = 2), the plot at the bottom is
the energy curve of G(α, α) that has no local minimum, and when α → ∞, G(α, α) → 0.

The case in Figure 5 shows that with constraint (4), P (t) (1) could not be defined for any
(θ, ϕ). The following discussion will show that with (α, β) being defined by the local minimum
value of G(α, β), P (t) (1) could be defined for many cases, but may not have satisfactory shape
in some cases.
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Figure 3: The region for constructing (α, β) in (2)
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Figure 4: Interpolation curve and energy curve
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Figure 5: Interpolation curve and energy curve

2.3 Curve shape and local minimum strain energy

When (θ, ϕ) does not belong to the dotted region in Fig. 3, there is only one (α, β) to make
G(α, β) reach its local minimum value, the relations of G(α, β) and (θ, ϕ), the surfaces α and
β (2) are shown in Figures (6)-(8). It follows from Figures (6)-(8) that

1. G(α, β) changes smoothly with the change of (θ, ϕ);

2. On the region that is not on or close to the four curves in Fig. 3, the values of α and β
change smoothly with the smooth change of (θ, ϕ).

3. On the region that is on or close to the four curves in Fig. 3, the values of α and β do
not change smoothly with the smooth change of (θ, ϕ).

It is clear that for the (θ, ϕ) which is on or close to the region marked by the four curves
in Fig. 3, if the corresponding α and β are defined by the two surfaces in Figures 7 and 8,
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Figure 6: Energy surface

Figure 7: Surface α = α(θ, ϕ) Figure 8: Surface β = β(θ, ϕ)

respectively, then P (t) (1) could not have satisfactory shape, as close to the region marked by
the four curves, (α, β) has a jump change so that the shape of P (t) (1) has a jump change. This
means that the shape of P (t) (1) is not satisfactory on the region before jump change or after
jump change at least. For example, Figures 9- 11 are the energy curve G(α, β), α curve and β
curve, for −6π/32 ≤ θ ≤ 1π/32, ϕ = 23π/32, respectively, which are obtained by constraint (4).
The curve G(α, β) in Fig. 9 changes smoothly. While in Figures 10-11, the curves α(θ, 23π/32)
and β(θ, 23π/32) corresponding to G(α, β) in Fig. 9 do not change smoothly, each of which
has jump change. Fig. 12 is the plots of the eight cubic Hermite curves, the values of α and
β of the eight curves are taken from the two curves (in Figures 10-11) at the positions marked
by the red symbol •, and the green symbol • denotes the jump point. It’s clear that with the
uniform change of θ, the shapes of the curves don’t change smoothly, the shapes of curves (d)
and (e) are obviously different. For more precise, Fig. 13 has two plots of the curves Cl with
θl = −0.2774439(left curve) and Cr with θr = −0.2774438(right curve), the difference between
θl and θr is 0.0000001, but the shapes of Cl and Cr are obviously different, so there is at least
one of the two curves to be of unsatisfactory shape, or both are of unsatisfactory shape.

−6π
32

−5π
32

−4π
32

−3π
32

−2π
32

−1π
32 0

1π
32

Figure 9: Plot of G(α, β) for −6π
32

≤ θ ≤ 1π
32

, ϕ = 23π
32

The above discussion shows that minimizing the strain energy (3) could not make P (t) (1)
have a satisfactory shape. So in the following section, we will discuss the construction of a new
model to compute α and β so that P (t) (1) has a satisfactory shape.
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Figure 10: Plot of α(θ, 23π
32

) for −6π
32

≤ θ ≤ 1π
32

−6π
32

−5π
32

−4π
32

−3π
32

−2π
32

−1π
32 0

1π
32

Figure 11: Curve β(θ, 23π
32

) for −6π
32

≤ θ ≤ 1π
32

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Cubic Hermite curves
Figure 13: Two curves with θl = −0.2774439 and
θr = −0.2774438

§3 Construction of new model

The new model which will be constructed is defined as
ᾱ = ᾱ(θ, ϕ)
β̄ = β̄(θ, ϕ)

− π ≤ θ, ϕ ≤ π (5)

On the first, second, third and fourth quadrant, ᾱ(θ, ϕ) and β̄(θ, ϕ) are denoted by ᾱi(θ, ϕ)
and β̄i(θ, ϕ), i = 1, 2, 3, 4, respectively. Based on Fig. 1−3, as symmetry, ᾱ(θ, ϕ) and β̄(θ, ϕ)
in (5) satisfy the following relation

• On the first quadrant, ᾱ1(θ, ϕ) = β̄1(ϕ, θ);

• On the second quadrant, ᾱ2(θ, ϕ) = β̄2(−ϕ,−θ);

• On the third quadrant, ᾱ3(θ, ϕ) = ᾱ1(−θ,−ϕ) and β̄3(θ, ϕ) = β̄1(−θ,−ϕ);

• On the fourth quadrant, ᾱ4(θ, ϕ) = ᾱ2(−θ,−ϕ) and β̄4(θ, ϕ) = β̄2(−θ,−ϕ).

Hence, we only need to discuss the construction of ᾱ = ᾱ(θ, ϕ) on the first and the second
quadrants.

The computing and simulation results showed that a) when (θ, ϕ) belongs to the vertical
line region in Fig. 3, the shapes of P (t)’s (1) which are defined by (4) are fine. Note that
although α = α(θ, ϕ) has jump on the vertical line region in the second quadrant, the jump
is small; b) in the second quadrant, with the (θ, ϕ) being farther and farther away from the
vertical line region in Fig. 3, the shapes of P (t)’s (1) which are defined by (4) are getting
worse. For example(as symmetry, the curves for (θ, ϕ) = (π/N,−π/N) and (−π/N, π/N) have
the same shape), the curve for (θ, ϕ) = (π/4,−π/4) which is given in Fig. 38) of Appendix has
satisfactory shape, while the one for (θ, ϕ) = (π/2,−π/2) in Fig. 45) of Appendix (red curve)
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does not have satisfactory shape. To make the cubic Hermite curves have satisfactory shapes
while holding the good property of minimizing strain energy, ᾱ1 = ᾱ1(θ, ϕ) and ᾱ2 = ᾱ2(θ, ϕ)
are constructed by the way that, on the vertical line region in Fig. 3, ᾱ1 and ᾱ2 approximate α
in (2), on the other region, ᾱ1 and ᾱ2 are defined by making P (t) (1) have satisfactory shape.

For constructing ᾱ1 = ᾱ1(θ, ϕ) and ᾱ2 = ᾱ2(θ, ϕ), the two special cases are considered
firstly.

1. When θ = ϕ = 0, the solution of α and β is not unique, any α > 0 and β > 0 satisfy
equation (4). In this case, the best choice is to set α = β = 1, this choice makes P (t) (1)
be a straight line with the magnitude of the first derivative being one constant. Such a
straight line is the most naturally defined curve one can get in this case.

2. For θ = π/2 and ϕ = −π/2, the best choice is to set α = β = 2, this choice makes
P (t) (1) have the satisfactory shape. For example, in Fig. 45) in Appendix, the red
curve P (t) (1) and its curvature are produced by minimizing the strain energy, the blue
curve P (t) (1) and its curvature are produced by setting α = β = 2. For the blue curve,
P (1/2) = (1/2, 1/2) and the middle point of the curve is coincide with the corresponding
middle point of the half circle. In this case, P (t) (1) can be regarded as an approximation
of half circle.

Now, based on the above discussion, the process of constructing ᾱ1 = ᾱ1(θ, ϕ) and ᾱ2 =
ᾱ2(θ, ϕ) is described in detail as follows. First, the values of α at the positions marked by
the symbol � are produced by (4), the ones of α at the positions marked by the symbol
• are produced by Human-Computer Interaction to make the shapes of the curves fine, then,
ᾱ1 = ᾱ1(θ, ϕ) and ᾱ2 = ᾱ2(θ, ϕ) are constructed by interpolating the values at positions marked
by symbols � and •. Now ᾱ1(θ, ϕ) and ᾱ2(θ, ϕ) are defined by

ᾱ1(θ, ϕ) = [f0(θ) f1(θ) f2(θ) f3(θ)] E1

[
f0(ϕ) f1(ϕ) f2(ϕ) f3(ϕ)

]T
(6)

ᾱ2(θ, ϕ) = [f0(θ) f1(θ) f2(θ) f3(θ)] E2

[
f0(ϕ) f1(ϕ) f2(ϕ) f3(ϕ)

]T
(7)

where

E1 =

⎡
⎢⎢⎣

1 0.93 0.737 0.403
1.13 1.16 0.992 0.579
1.578 1.628 1.645 0.971
2.453 2.314 2.445 1.867

⎤
⎥⎥⎦ and E2 =

⎡
⎢⎢⎣

1 0.93 0.737 0.403
1.13 1.209 2.67 3.825
1.578 0.968 2 2.120
2.453 0.88 3.001 3.562

⎤
⎥⎥⎦

with fi(t), (i = 0, 1, 2, 3) are basis functions of cubic Lagrange interpolation, where in (6), fi(ϕ),
i = 0, 1, 2, 3, are defined on ϕ0 = 0, ϕ1 = π/4, ϕ2 = π/2 and ϕ3 = 3π/4; fi(θ), i = 0, 1, 2, 3,
are defined on θ0 = 0, θ1 = π/4, θ2 = π/2 and θ3 = 3π/4; while in (7), fi(θ), i = 0, 1, 2, 3, are
defined on θ0 = 0, θ1 = −π/4, θ2 = −π/2 and θ3 = −3π/4;

§4 Experiment

In this section, the new method (New-M) is compared with the minimizing strain energy
model(SE-M)(3) using 63 pairs of (θ, ϕ) values, which are defined by (θi, ϕj), where

θi = iπ
8 ,

ϕj = ± jπ
8

i, j = 0, 1, 2, · · · , 6, 7.

In order to avoid repetition, we only draw the curves at points (θi, ϕj)s which satisfy
θi ≥ 0 and ϕj ≤ θi or
θi ≥ 0 and ϕj ≤ −θi.
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The figures corresponding to (θi, ϕj), i, j = 0, 1, · · · , 7 are given in Appendix. The curve
for θ0 = ϕ0 = 0 does not given as it is a straight line. In each figure of Appendix, the two red
curves are produced by SE-M, which are the curve and the curvature of P (t) (1), respectively,
while the corresponding two blue curves of P (t) (1) are produced by New-M; The figures in
Appendix are divided into three cases:

1. In each of figures {1), 2), 4), 6)−9), 11), 13), 15)−20), 22)−27), 29)−37), 39)−48), 51), 52),
57)}, the red curve and red curvature are different from the blue ones, where for figures
{1), 2), 4), 6) − 9), 11), 13), 15) − 20), 29) − 32), 36)}, the difference of the blue and red
curves are very little and they have visually the same satisfactory shapes; for figures
{22) − 27), 33) − 35), 37), 39) − 43), 46), 47), 51), 57)}, the shapes of blue and red curves
are obviously different, but all acceptable; while for figures {44), 45), 48), 52)}, the blue
curves have better shapes than the red ones have.

2. In each of figures {3), 5), 10), 12), 14), 21), 38)}, the red curves and blue curves coincide,
where the blue curves have been covered by the red curves;

3. In each of figures {28), 49), 50), 53) − 56), 58) − 63)}, P (t) (1) cannot be produced by
SE-M, hence, only the blue curve and curvature are given, the shapes of blue curves are
acceptable.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Cubic Hermite curves

Furthermore, for the cases θ = (−6+i)π
32 , i = 0, 1, 2, 3, 4, 5, 6, 7, ϕ = 23π

32 (as shown in Figs. 9-
13), the corresponding curves are given in Fig. 14, where the red and blue curves are produced
by SE-M and New-M, respectively. The Fig. 14 shows that the blue curves have satisfactory
shape and their shapes change smoothly.

The above discussion showed that for some (θi, ϕj)s, P (t) (1) cannot be produced by SE-M
while for any (θ, ϕ) satisfying −π ≤ θ, ϕ ≤ π, New-M can produce P (t) (1) with satisfactory
shape.

§5 Conclusion

Constructing curve and surface by minimizing strain energy is a widely accepted and used
approach in CAGD, CG. Our study results show that minimizing strain energy cannot guarantee
the cubic Hermite curve to have satisfactory shape. For many cases, minimizing local strain
energy can generate cubic Hermite curves with satisfactory shapes. In Fig. 3, however, when
(θ, ϕ) is on or close to the four curves, minimizing local strain energy does not generate cubic
Hermite curves with satisfactory shapes. This inspires us to study further how to define the
energy to construct curves. We present a new model for constructing satisfactory cubic Hermite
curves. The new model is a modification of strain energy model. The experimental results show
that the model constructs cubic Hermite curves with satisfactory shapes, when (θ, ϕ) belongs to
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the vertical line region in Fig. 3, the shape of the curve produced by the new model is visually
as the same as the one produced by minimizing the exact strain energy.

Our next work is to study the relationship between the shape of a curve(or surface) and
other energies such as the stretching strain energy, spring potential energy, the integral of the
squared magnitude of the derivative of curvature, the integral of the squared magnitude of the
derivative of normal curvature and so on, to get a new effective model for constructing curves
with satisfactory shapes.
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