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On the maximal eccentric connectivity indices of graphs

ZHANG Jian-bin1 LIU Zhong-zhu2 ZHOU Bo1

Abstract. For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the

distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The

eccentric connectivity index of G, denoted by ξc(G), is defined as
∑

v∈V (G) d(v)ec(v). In this

paper, we will determine the graphs with maximal eccentric connectivity index among the

connected graphs with n vertices and m edges(n ≤ m ≤ n+4), and propose a conjecture on the

graphs with maximal eccentric connectivity index among the connected graphs with n vertices

and m edges (m ≥ n + 5).

§1 Introduction and notation

For a connected simple graph G, we define the distance d(u, v) between two vertices u and
v as the length of the shortest path connecting u and v in G. The eccentricity ec(v) of a vertex
v in a connected graph G is the distance between v and a vertex farthest from v. The diameter
Diam(G) of G is the maximum eccentricity among the vertices of G. The eccentric connectivity
index of G [5], denoted by ξc(G), is defined as

ξc(G) =
∑

v∈V (G)

ec(v)d(v) =
∑

uv∈E(G)

ωG(uv),

where ωG(uv) denotes the weight of edge uv in G and equals ec(u) + ec(v).
As a novel, distance-cum-adjacency topological descriptor, the eccentric connectivity index

provides excellent correlations with regard to both physical and biological properties of chemical
substances. The simplicity amalgamated with high correlating ability of this index can be
easily exploited in QSPR/QSAR studies (see [2, 5]). Recently, many results on the eccentric
connectivity index have been obtained for various classes of graphs, see, for example, [1,3,4,6].

Let dn,m =
⌊

2n+1−
√

17+8(m−n)

2

⌋

, and En,m be the graph obtained from a path Pdn,m+1 =

v0v1 . . . vdn,m by joining each vertex of Kn−dn,m−1 to both vdn,m and vdn,m−1, and by joining
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m − n + 1 − (
n−dn,m

2

)
vertices of Kn−dn,m−1 to vdn,m−2. Clearly, En,n−1

∼= Pn. In this paper,
we will show that for 8 ≤ n ≤ m ≤ n + 2 and 14 ≤ n + 3 ≤ m ≤ n + 4, En,m is the unique
graph with maximal eccentric connectivity index among the connected graphs with n vertices
and m edges, respectively. Finally, we conjecture that n + 5 ≤ m ≤ n(n − 1)/2 and dn,m ≥ 3,
En,m is the graph with maximal eccentric connectivity index among the connected graphs with
n vertices and m edges.

§2 Main results

Let Tn,i be the tree obtained from Pn−1 = v0v1 . . . vn−2 by attaching a pendent vertex
vn−1 to vi, where 1 ≤ i ≤ �n−2

2 �. Let T n,p
a be the tree obtained by attaching a and p − a

pendent vertices respectively to the two end vertices of the path Pn−p for 1 ≤ a ≤ �p
2�, and let

T n,p = {T n,p
a |1 ≤ a ≤ �p

2�, 2 ≤ p ≤ n − 2}.
Lemma 2.1. [6] Among the trees on n vertices with at least p pendent vertices, any tree
T ∈ T n,p reaches the maximal value on the eccentric connectivity index. Moreover, Pn, Tn,1

and Tn,2 are respectively the only trees with the first three maximal eccentric connectivity indices.

Theorem 2.1. Let G be a graph with n vertices and n edges, that is, G is a unicyclic graph,
where n ≥ 6. Then ξc(G) ≤ ξc(En,n), with equality if and only if G ∼= En,n.

Proof. Let G be a unicyclic graph on n vertices. Then Diam(G) ≤ n − 2 and ω(e) ≤ 2n − 4
for any edge e ∈ E(G). If G 	∼= Cn, then we can always find an edge e of G such that G− e is a
tree with at least three pendent vertices. By Lemma 2.1 we have ξc(G) ≤ ξc(G − e) + ω(e) ≤
ξc(Tn,1) + 2n − 4 = ξc(En,n). Note that ω(e) = 2n − 4 implies G ∼= En,n, thus the equality
holds if and only if G ∼= En,n.

Suppose that G ∼= Cn, where n ≥ 6. If n is even, then we have ξc(Cn) = n2 < 3(n−2)2

2 +

4n − 9 = ξc(En,n); if n is odd, then ξc(Cn) = n2 − n < 3(n−2)2+1
2 + 4n − 9 = ξc(En,n). The

result now follows.

Let Qn,n be the tree obtained from Pn−1 = v0v1 . . . vn−2 by joining an isolated vertex vn−1

to both vn−2 and vn−4.

Lemma 2.2. Let G be a unicyclic graph on n vertices, n ≥ 6 and G 	∼= En,n. Then ξc(G) ≤
ξc(Qn,n), with equality if and only if G ∼= Qn,n.

Proof. By applying an argument similar to the proof of Theorem 2.1, we can show that the
result is true for the case G ∼= Cn. Suppose that G is not a cycle on n vertices. Let g(G) be
the length of the unique cycle in G. If g(G) ≥ 5, then Diam(G) ≤ n − 3 and there exists an
edge e in the unique cycle of G such that G − e 	∼= Pn, Tn,1, Tn,2, and

ξc(G) ≤ ξc(G − e) + ω(e) ≤ ξc(Tn,2) + 2n− 6 < ξc(Tn,2) + 2n − 5 = ξc(Qn,n).

If g(G) = 4 and n ≥ 7, then Diam(G) ≤ n − 2 and there is an edge e such that G − e is a
tree such that G − e 	∼= Pn, Tn,1. Clearly, there exists no edge of weight 2n − 4 in G. Then

ξc(G) ≤ ξc(G − e) + ω(e) ≤ ξc(Tn,2) + 2n − 5 = ξc(Qn,n),
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with equality only if G − e ∼= Tn,2 and ω(e) = 2n − 5. These imply that G ∼= Qn,n. By simple
computation we can also obtain the result for n = 6.

If g(G) = 3, and G 	∼= En,n, then there is an edge e such that G − e 	∼= Pn, Tn,1. If
Diam(G) ≤ n − 3, similarly, the result follows. If Diam(G) = n − 2, then G is the graph
obtained from Pn−1 = v0v1 . . . vn−2 by joining an isolated vertex vn−1 to both vi and vi+1,
where 1 ≤ i ≤ n − 4. Then

ξc(Qn,n) − ξc(G) = 4n − 12 − ω(vivn−1) − ω(vi+1vn−1) ≥ 4n − 12 − (2n − 7) − (2n − 6) > 0.

These complete the proof.

Theorem 2.2. Let G be a connected graph with n vertices and n+1 edges, where n ≥ 6. Then
ξc(G) ≤ ξc(En,n+1), with equality if and only if G ∼= En,n+1.

Proof. Let G be a graph on n vertices with n + 1 edges and exactly two cycles. Then we know
that Diam(G) ≤ n − 3 and there exists an edge e in a cycle such that G − e has two pendent
vertices, thus G − e is not isomorphic to En,n and Qn,n, and by Theorem 2.2, we have

ξc(G) ≤ ξc(G − e) + ω(e) < ξc(Qn,n) + 2n − 6 = ξc(En,n+1).

Let G have three cycles, then there is an edge e such that G−e 	∼= En,n. If Diam(G) = n−2,
then G is obtained from Pn−1 = v0v1 . . . vn−2 by joining an isolated vertex vn−1 with vi−1, vi

and vi+1, where 1 ≤ i ≤ �n−2
2 �. If i = 1, then G ∼= En,n+1. Let i ≥ 2. It is easy to prove that

ξc(G) < ξc(En,n+1). If Diam(G) ≤ n − 3, by Theorem 2.2 we have

ξc(G) ≤ ξc(G − e) + ω(e) ≤ ξc(Qn,n) + 2n − 6 = ξc(En,n+1).

If G − e ∼= Qn,n, then Diam(G) < Diam(G − e). Thus ξc(G) < ξc(G − e) + ω(e) and
ξc(G) < ξc(En,n+1). If G − e 	∼= Qn,n, then by Lemma 2.2 we have that ξc(G − e) < ξc(Qn,n).
Thus ξc(G) < ξc(En,n+1).

Theorem 2.3. Let G be a connected graph with n vertices and n+2 edges, where n ≥ 8. Then
ξc(G) ≤ ξc(En,n+2), with equality if and only if G ∼= En,n+2.

Proof. If G has a spanning tree T with at least four pendent vertices, and let e1, e2, e3 be the
edges not in T , that is, T + e1 + e2 + e3 = G. Note that Diam(G) ≤ n − 3, by Lemma 2.1 we
have

ξc(G) ≤ ξc(T ) + ω(e1) + ω(e2) + ω(e3) ≤ ξc(T n,4
1 ) + 3(2n− 6) = ξc(En,n+2).

It is easy to prove that the above equality holds if and only if G ∼= En,n+2.

Suppose that all spanning trees of G have at most three pendent vertices. If G − e1 has
two edge-disjoint cycles for any edge e1 of a cycle in G, then we can always find edges e2, e3

such that G − e1 − e2 − e3 is a spanning trees with at least four pendent vertices, this is a
contradiction. Then for any edge e1 in a cycle of G, G− e1 must have exactly three cycles, and
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G has exactly a non-trivial block (the block has at least three edges) that is showed in Fig.1.

e1

e2

e3

P 1 P 2

P 3

P 4

u1 u2

u3

u4

�

�

�

�

H1 H2

Fig.1. Graphs H1 and H2.

Clearly, H2 − e1 − e2 − e3 have four pendent vertices, then G − e1 − e2 − e3 must contain at
least four pendent vertices and the non-trivial block of G is not isomorphic to H2. If G 	∼= H1,
then G can be obtained from H1 by planting many trees to it. Suppose that there is a tree
planting to a vertex but not u1 of P 4 in Fig.1, we choose three edges e1, e2, e3 respectively
at the path P 1, P 2, P 3 in Fig.1. Then G − e1 − e2 − e3 have four pendent vertices, that
is a contradiction. Thus it must be G ∼= H1 and Diam(G) ≤ �n

2 �. For n ≥ 8, we have

ξc(G) ≤ 2(n + 2)�n
2 � <

⌊
3(n−3)2+1

2

⌋
+ 10n− 32 = ξc(En,n+2).

Theorem 2.4. Let G be a connected graph with n vertices and m edges, where n ≥ 11 and
m = n + 3. Then ξc(G) ≤ ξc(En,m), with equality if and only if G ∼= En,m.

Proof. If there is an edge e such that ω(e) ≤ 2n − 12 and G − e is connected, then we have

ξc(G) ≤ ξc(G − e) + 2n − 12 ≤ ξc(En,n+2) + 2n − 12 = ξc(En,n+3).

If G − e ∼= En,n+2, then G is obtained by adding an edge to En,n+2, and the first inequality
above is strict. If G − e 	∼= En,n+2, then by Theorem 2.3 ξc(G − e) < ξc(En,n+2) and ξc(G) <

ξc(En,n+3). Thus the conclusion is correct for Diam(G) ≤ n − 6.
Let Diam(G) = n − 5. If n ≤ 13, then ξc(G) ≤ 2(n − 5)m <

⌊
3(n−3)2+1

2

⌋
+ 12n − 44 =

ξc(En,n+3).
Let n ≥ 14. Suppose that v0v1 . . . vn−7vn−6vn−5 is a diametral path of G, and vn−4, vn−3,

vn−2, vn−1 are the vertices not in the given diametral path. We need to consider two cases:(a)
there exists an edge vivi+1 (1 ≤ i ≤ n − 7) in a non-trivial block of G( the block has at least
three edges) and (b) each edge vivi+1 for 1 ≤ i ≤ n − 7 is a cut edge of G.
Case (a): there exists an edge vivi+1 (1 ≤ i ≤ n − 7) in a non-trivial block of G. Let k ∈
{n − 4, n − 3, n − 2, n− 1}.

If the path Pvivk
of length d(vi, vk) passes a cut vertex in the given diametral path, then

d(vi, vk) ≤ max{d(vi, v0), d(vi, vn−5)}.
If it does not pass any cut vertex in the given diametral path, then there exists i such that

d(vi, vk) ≤ 10/2 ≤ 14−3
2 ≤ max{d(vi, v0), d(vi, vn−5)}.

Thus there is an edge vivi+1 whose weight is not greater than 2n − 12. From the first part
of the theorem, the conclusion is correct.
Case (b): each edge vivi+1 for 1 ≤ i ≤ n − 7 is a cut edge of G. In this case, for any vertex
u, ec(u) = max{d(u, v0), d(u, vn−5)}, by comparing the sum of the weights of edges in G with
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these of En,m, we obtain the result.
Let Diam(G) = n − 4, and v0v1 . . . vn−4 be a diametral path. Since n ≥ 11, we can show

that ec(vi) = max{d(vi, v0), d(vi, vn−4)} for 0 ≤ i ≤ n − 4 similarly. Then

ξc(G) ≤ ξc(Pn−3) + (m− n + 4)(2n− 8) =
⌊

3(n − 4)2 + 1
2

⌋

+ (m− n + 4)(2n− 8) < ξc(En,m).

Let Diam(G) = n − 3. Then there are exactly two vertices not in a given diametral path,
each of which is adjacent to at least two vertices of the path, and the sum of the weights of
edges not in the given diametral path of G is not greater than that of En,m. Thus we complete
the proof.

Since ξc(En,n+4) − ξc(En,n+3) = 2n − 12 and dn,n+4 = dn,n+3 = n − 3, we can obtain the
following theorem similarly.

Theorem 2.5. Let G be a connected graph with n vertices and m edges, where n ≥ 11 and
m = n + 4. Then ξc(G) ≤ ξc(En,m), with equality if and only if G ∼= En,m.

Finally, we propose

Conjecture 2.1. Let dn,m ≥ 3. Then En,m is the unique graph with maximal eccentric con-
nectivity index among all connected graphs with n vertices and m edges.
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