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EXISTENCE AND NONEXISTENCE OF GLOBAL
SOLUTIONS FOR NONLINEAR EVOLUTION
EQUATION OF FOURTH ORDER

Chen Xiangying

Abstract. The existence and uniqueness of classical global solutions and the nonexistence of
global solutions to the first boundary value problem and the second boundary value problem for

the equation ws — @ U, — Qothry ~Qstir = P(u, ) are proved.

§1 Introduction

In the study of the nonlinear waves in elastic rods, there arises the nonlinear hyper-
bolic equation of fourth order
uy — CiL1 + naui™ Juge — Bttewy = Yttow (1.1
where C2,7>>0,5>0 and a,340 are constants,and # is a natural number (see[1]).In [1]
the author simplifies Eq. (1. 1) into the generalized Korteweg-de Vries-Burgers equation
and the existence of the soliton wave to it is considered, but about the Eq. (1. 1) there
hasn’t been any discussion. In [ 2] the authors have proved the existence and uniqueness of
the local classical solutions for the initial value problem and the first boundary vaiue prob-
lem of Eq(1.1).

In this paper,we are going to consider the following first boundary value problem

Up = Aqllyy — Ao,y — Al = P(Uz)2s (1. 2)
u{0,) = u(l,t) =0, t>=0, (1.3
u(z,0) = u(x), ulz,0)=u(zx), z€ [0,1], 1.4)
or the second boundary value problem for Eq. (1. 2)
u,(0,t) = u,(1,2) = 0, t =20, (1.5)
u(x,0) = u(x), u(zx,0) =u(x), z€[0,1], (1. 6)
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where u(x,¢) is an unknown function,a,>>0(;=1,2,3) are constants,¢(s) is a given non-
linear function,u«,(x) and u,(x) are given initial functions. The existence and uniqueness of
classical global solutions and nonexistence of global solutions to the first boundary value
problem (1.2)— (1. 4) and the second boundary value problem (1.2),(1.5), (1. 6) are

proved.

§ 2 Existence and Uniqueness of Local Solutions for the Problem (1.2)—(1.4)

Let K(x,&) be the Green’s function™ of the boundary value problem for the ordinary
differential equation
y—ayy' =0, y(0) = y(1) =0,

where a; >0 is a real unmber,i. e.

x 1— ¢
sinh sinh R 0L r<§,
e

1 — 5
a;sinh _,\/__— sinh {1/\/_:1 sinh {\/——} s E<C{x << 1.
as as as

Suppose that u,(x) and u,(x) are appropriately smooth and satisfy the boundary con-

K(.Taé) = (2-1)

dition (1. 3),u(x,¢) is the classical solution of the problem (1.2)—(1. 4),then the solu-
tion u(x,¢) of Eq. (1. 2) satisfying the condition (1. 3) satisfies the integral equation
1 1
utz(xvt) :alj K(I,f)uee(f,l)df + azJ‘ K(x,f)uee,(f,t)df +
(] 0

. 2.2
J K (2,6 plue (100148,

Hence the classical solution of the problem (1. 2)—(1. 4) should satisfy the integral equa-

tion

u(x,t) :uo(x) -+ U (I)t - az[I:K(I9€)uoéﬁ(é)dE]t +
t 1 2 1
alj j (¢ — VK (z,E)uee(E,T)dEr + azf jK(ac,E)use(&,r)dEdr n
0 0 4] 0

[’ j (t — DK (2, E)pue (&,7))edEdr. (2.3)

By use of the properties of Green’s funtion K (x,§),it is easy to prove the following lem-
ma.
Lemma 2. 1. Suppose that w,(x),u,(z) € C?[0,1],u,(0)=u,(1)=u;(0)=u,(1)=0,¢(s)
€ C'(R),and u(x,2) EC0,T];C[0,1]) is the solution of (2. 3),then u(x,z) must be
the classical solution of problem (1.2)—(1. 4).

In the following we are going to prove the existence of local classical solution for the
integral equation (2. 3) by the contraction mapping principle. For this purpose,we define

the function space
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X(T) = {ulz,t)|lu € C0,T];C?*[0,1], u(0,2) =u(l,t) =0},
equipped with the norm defined by

2
ol xery = max[z max [us(+,0) |1 = ||« || corncironn, Yue€ X(T).
1

o<t oa<t
It is easy to see that X(7') is a Banach space.
Let U= || woz || ctro.;7+ || 212 || ¢igo.17 and define the set
PWU,T) = {ulu € XTI, [ 2 | xr < 2U}.
Obviously, P(U,T) is the nonempty bounded closed convex set for each U,7T>>0. We de-

fine the map S as follows;

Sw =u,(x) + u, (x)t — az[flK(:C,E)uose(f)dfjt +
0
t 1 t 1
a| [ ¢~ DK@ Owe,déde + a| [Ke&rwact vt +

j; j:(x — ) K {(x,8)p(w:(§,7) ) dEdT, Y w €& PWU,TH. (2.4)

Obviously,S maps X{(T) into X(T). It is easy to prove
Lemma 2. 2. Suppose that zq,2, € C*[0,1],4,(0) =2, (1)=u;(0)=#,(1)=0 and ¢(s) €
C*(R), then S maps P(U,T) into P(U,T) and S : P(U,T)—PU,T) is strictly contrac-
tive if 7 is appropriately small relative to U.

By using the contraction mapping principle and the extension of the solution (see
[4]),it is easy to prove
Theorem 2. 1. Let the assumptions of Lemma 2. 2 hold,then the integral equation (2. 3)
has a unique solution u(x,£) €C([0,T);C?*[0,1]), where [0,T,) is a maximal time inter-
val. Moreover,if

sup (. || gy + l ttw (| ctpon) << o0, (2.5)
[0.7)

e

then T\, =oo.

§ 3 The Classical Global Solution of the Problem (1.2)—(1.4)

Lemma 3. 1. Suppose that u,(x),u; (x) € H'[0,1] satisfy the boundary condition (1. 3),
¢(s) EC'(R), then the classical solution of the problem (1. 2)—(1. 4) satisfies the follow-
ing identity:

E@) = “ U, H %2[0,1] + a, ” U, “ 12[0.1] + a; ” Uz || 12[0,1] -+

ZaZJt fui,dxdr + 2]1 juxgo(s)dsd:c =
0 ) o] 0

3.D
1 fug,
e s+ @ st | Fons + @ e | oy + 2] [ tddsdr =

EW), Y€ [0,T].
Proof. Multipling both sides of Eq. (1. 2) by u,,integrating the product over [ 0,1]X[0,¢]
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and integrating by parts with respect to z, we can obtain (3. 1). The lemma thus is
proved.

Theorem 3. 1. Suppose that the conditions of Theorem 2. 1 and the following condition
lo(s) | < ALSO(y)dy + B (3.2)

hold, where A and B are positive constants,then the problem (1.2)—(1.4) has a unique
classical global solution z(x,#).

Remark 3. 1. The function ¢(s) satisfying (3. 2) exists. For example, p(s) =¢° satisfies In-
equality (3. 2). When #>>0 is a real number and #» is an odd number, ¢(s)=7rs" which satis-
fies Inequality (3. 2) is the second example.

Proof of Theorem 3. 1. By virtue of Theorem 2. 1,we are only required to prove that (2.5)
holds. Let T € (0,T,) be given. Integrating by parts in (2. 3),we obtain

u(x,t) =us(x) + u, (x)t — aZ[JlK(x,f)uoee(E)dE]t —
0
2 1 t 1
alj f (t — K (x,8)u:(§,0)dédr — aZJ jKe(x,E)ue(f,t)dfdr —
Jz l(t - T)K$($9$)¢(u$(eyf))d$dfa X 6 [Oal]’t 6 [O,T:]- (3- 3)

It follows from (3. 3) that

U (T yt) =— %u,(x,t) — aHKez(x,é)ug(E,t)dE —
3 0
Z‘Euzz(x ’t) - aZJIKGI(x,E)ue_,(f,t)dE -
3 0

1
Lot — [ Ktz O)pwe0)de, 2 € [0,11, € [0,7]
3 0

(3. 4)
Multipling both sides of (3.4) by 2u..,we get
d%[ui + %t + % [[ateode + a%j:rm)ds}
2] — & Kele Ou€,00d6 — oo Kool e (6,006 — 3.5

J:K&(x,$)¢(ue(€,t))d5j]u,,. z€ 0,11, € [0,T].

U (
0

x)
Let us denote ufz(x)+%ugz+a£| J ¢(s)ds | by E,(x). Integrating both sides of (3.5)
3 3

with respect to ¢t and making use of Conditions (3. 2) and (3.1),we can obtain
w4+ By @J‘tuir(x,r)dr + ljuzso(s)ds <
as as Jo dzdo
t 1 1
B0 + [ {[] 40Kz, 467 [ e, 0678 +
0 [ 0

2
[} 28K 2, 0d878 [ it (6,0d8TE + . Iotwe(€,0) 108} e <
o aj o o
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E, (z) + J (c, + alruﬁ(x,r)dx + aafui,(x,r)dx +
CIJI [Ajuz(x‘r)¢(s)ds + Bldx} |u, |dr <<
E, () + J (Cy + CE) Ju,. |dr <

E(z) + ~ [C +CE<o>jZT+j wtde,z € [0,17,¢ € [0,T]. (3. 6)

Multipling both sides of (3. 6) by A,adding the product to ZE and using (3. 2),we get

Auﬂ_’_Aalz_}_ZAaZJ‘ zd _+___|¢(u)|
M) + Al wide,  z € [0,1], € [0,7]. 3.7)
0
It follows from (3. 7) by Gronwall’s inequality that
Au1,+A“‘ 2y ZA“ZJ wide + Zigtu) | S M(Te, 2 € [0,17.0 € [0,T],
Therefore

sup H Uy || Clo,1]* sup ” Uy H Clo,179 Os<1l1<pT H olu,) ” clo,1]* J‘uﬂdt M, (T), (3.8

0=CT

where M;(T) is a constant dependent on 7. Differentiating (3. 3) with respect to x twice,

we obtain the estimate
|u11(1'91)| < M3(T) + M4(T)Jt ’uzz(x’r) IdT’ x € [O,l]»t € [O9T]
0

Making use of Gronwall’s inequality ,we have
Sup H U, (st ” cro] < M. (1), (3.9

<t<<T

where M;(T") is a constant dependent on 7T'. Similarly,we can obtain
sup || s (52 || cro] << M (1), (3.10)

0T

where M (T) is a constant dependent on 7. From (3. 8)—(3.10) it follows that
sup. (H | oy + N tta Il crpony) << oo

te(0,T
By virtue of Theorem 2.1 and Lemma 2.1 we know that the problem (1.2)—(1.4) has a

unique classical global solution u(x,t). The theorem is proved.

§ 4 Nonexistence of Global Solution of the Problem (1.2)—(1.4)

Theorem 4. 1. Suppose that the following conditions hold ;
(YE(0)<0,

(De(s) ECH(R) ,9(s)s<L2(20+1) ﬁ) o(y)dy+20a,s%,

1 1
(3)Zaj (u()u1+a3u01ulr)dx—azJ’ ut, dx>0,
0 0
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where 6>>0 is a constant, then the classical solutions of the problem (1. 2)—(1. 4) will
blow up in finite time.

Proof. The proof is made by use of so called “concavity” arguments. Assume that u(z,2) is
the classical solution of the problem (1.2)—(1.4) on [0,1]X[0,T]. Set

F@G) = J] (u? + aul)dx + Jljtazuidxdt + (T — t)J'lazugzdx. 4.1
0 0v O 0
Using Cauchy’s inequality and Eg. (1. 2),it follows from (4.1) that

FF" — (1 4+ o) (F')! = F[— 2(26 + 1>f<uf +oagt + zazj'u;dwdx —

1
0

1 t
ZJ oluDudx — 2a1JluidI + 4aazj J uldxde]. 4.2
0 0 0
From (4.2),(3.1) and assumptions (1),(2) it follows that

FF' — (1 + 0)(F')* > F{— 2(20 + D[E(0) — zfr‘go(s)ds — alﬁ)uidx] _

1 1 1{¢
ZJ o dudr — 2a1J uidxr + 4o'azj .[ utdxde >
0 0 0J 0

We see that F(¢)>>0 for all t€[0,7T] and that from Assumption (3) above F'(0)>0.
From “concavity” arguments (see[5,6]) we know that there exists a constant #,, such
that

Hm (w2001 4 a5 [l 2 |l r0.00) =+ o0

>ty

and
1 1 1
T <t,= Uo(u(z, + aauﬁz)dx}/{ZUL(uoul + asugu)dr — azjou(z),dx}.

Theorem 4. 1 is proved.

Theorem 4. 2. Suppose that «(x,¢) is a classical solution of the problem (1. 2)—(1.4) and
the conditions u,(x) ,u; (x) €C'[0,1],¢€ C*(R), 2a ﬁ) p()dz+¢(s)s+ (a+1)a s’ =0,a=
1, are satisfied. Then the solution «(x,¢) cannot exist for all time even provided the initial
data satisfies one of the following conditions .

(1 E0)<0,

@E© =0, | Gt

2
azgoz+a3uo,uh)dx<0,

1 2
(3)E0)>0, L (uoul+%+a3umuu)d1<o,

2
Aoz

2
1 t

Proof. We define F(z) = .[ (u® + azj uldr + a,ul)dx, thus we have
0 0

and [ [ Guoter + 2% 4 ayunn)dz]e = 80 [ Gad + asut)dz]EC0).
0 0

2
a,u
22 aguaugdx.

2

Let f(z) be a positive real valued twice continuously differentiable function defined on

Fr @) = zf Cune, +
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[0,7). A further restriction will be imposed later on f. We get

1 e d i
FOF @) — fAOF' (0) = ZL L a{[uus -+ azTu_ + asuu,, |f2(s) }dsdx =
ZIZ J;[Zf(s)f' () Quu, + aguu,) + F2(s) (u? + azui) ]dsdxr +

1 (¢ 1 e
2a2j j [fG) S (Duldsdx + ZJ' J Fr) [uu,, + au,u,, + azu,u,, Jdsdx. 4. 3)
0 0 V] 0
For a==1 we have

ZJ: J-:)EZf(s)f' () (uu, + azuu,,) + f20s)(u? + aul) |dsde =

20 — o [ (LG0T + al(F6udT — [F ()T + aud) ydsdz +

Zotj1 J’t L2/() 1 () uu, + asuuy) + f2(s)(ul + azu?) Jdsdx <
1 1 pe d

20— D [[F O + auilisdz + 2a] [ SLFF 6 + ) Jdsda —
0J0 o Jo s

1 t 1 '
ZaJ f LS () P + azulddsdz — zaj Jf’ ()" () (W + azul)dsdx +

Zar Jtﬁ(s)(uf + azu?)dsdr. (4. 1)
0J0O

Integrating by parts with respect to z in last term on the right of (4. 3),using Eq. (1. 2)
and substituting (4. 4) into (4. 3),we obtain

1 e
FHOF (1) — fFOOF (0) < 2(a — 1)L L[f’(s)ilz(u2 + azul)dsdx +
Zajlf(t)f' (t) (u® + azul)dsdxr — 2af" (O)f(O)f(u% + azui)dx —
1 (¢ 1 ft
20] I ()P + aul)dsdx — Zaj Jf’ () f"(s) (u* + azul)dsdx +
Zazjl Jrf(s)f' ()uldsdx + ZJ-1 Jl]‘"‘(s)[ot(u,2 + aul) — (qul + elu)u,) Jdxds <
2af()f (OF (1) — 2af (O FOF (0) + 2a] F(IE0)ds —
2| [0 + af 071w + agudddsdz +
2a,(1 — a)Jl f’f(s)f' (s)utdsdx — 4azaf j Fi(s)utdsdr —
0JO0 0JO
13 1 €,
ZL Joﬁ(”[(“ + Dau; + ZGJ P(s)ds + @ludu, Jdxds. (4.5)
We now demand f to satisfy f' (s)+aff">=0. For this purpose we take f(z)=¢e",8>0.

Since (a+1)a;s°+ 2« J; @(z)dz+¢(s)s==0,from (4.5) we have
FEDF' @) — fLFOF (0) <2af DS OF @) — 2af" (0 f(OF(0) +

: (4.6)
Z(thof2 (s)E (0)ds.
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It follows from (4. 6) that
F'(5) < 2a8F (1) + (F'(0) — 2aF (0) — L0y g ¢EO),
Finally we obtain
F) < Hee™ + Ly — Ez(a? , 4. 7)

where
2(a + 1)6:H, = 6F'(0) 4+ 26%F(0) + E(O),
2(a 4+ 1)6*L, = 2a8?F(0) — 8F' (0) + «E(0).

If H,<(0,then for sufficiently large ¢ the left-hand side of (4. 7) is greater than or equal to

zero,but the right-hand side of (4. 7) is less than zero. This is a contradiction. Thus we

may conclude that for the problem (1.2)—(1. 4) does not exist classical global solution.

Conditions (1)-—(3) are sufficient to ensure H,< 0 (for approximate choices of &) and so

the theorem is proved.

Remark 4. 1. By the same method as in Sections 1-4 we can obtain the similar
problem (1.2),(1.5),(1.6).1It is easy to use the results of the problem (1.
the problem (1.1),(1.3),(1. 4) and the results of the problem (1.2),(1.5)
problem (1.1),(1.5),(1.6).
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