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Abstract
In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the
service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas
need to determine which server is chosen to offload the task. However, unreasonable decision of task offloading may result in
imbalanced loads, thereby affecting the number of served users and the latency and energy consumption of user task offloading.
Furthermore, the complexity of task offloading and resource allocation is further heightened by the dynamic arrival of user
tasks. Therefore, it is crucial to design an effective task offloading and resource allocation strategy in an environment with
multiple edge servers. In this paper, we propose a task offloading and resource allocation strategy aimed at meeting task
latency requirements while maximizing the number of served users and minimizing the average energy consumption of all
completed tasks. To timely obtain information about user tasks and the status of edge servers, we adopt a central controller to
manage multiple edge servers. Then, we model the problem as a parameterized actionMarkov decision process and utilize the
parameterized deep Q-network algorithm, a deep reinforcement learning algorithm, to solve it. Additionally, we conducted
experiments to evaluate the performance of our proposed strategy against five benchmark strategies. The results demonstrate
the superiority of our strategy in terms of the number of served users and the average energy consumption per task while
meeting task latency constraints.

Keywords Multiple edge servers · Task offloading · Resource allocation · Deep reinforcement learning

1 Introduction

With the rapid development of Internet of Things (IoT)
technology, mobile devices such as smartphones and tablets
have become an indispensable part of our daily lives. These
devices are increasingly utilized for various computationally
intensive applications, such as real-time video processing,
online gaming, and facial recognition [1–3]. However, due
to the limited computing capabilities ofmobile devices, these
tasks often require offloading to cloud servers for process-
ing. Nevertheless, the increased number of tasks uploaded to
cloud servers creates significant server load pressure, while
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the long transmission distance introduces high latency and
energy consumption.

To address these issues, mobile edge computing (MEC)
has emerged as a solution [4] that deploys edge servers with
computing and storage resources closer to users at the net-
work edge, enabling task offloading with lower latency and
energy consumption.However, as the number ofmobile users
increases, the limited computing resources of edge servers
can impact task execution latency and energy consumption.
Therefore, it is common to deploy multiple edge servers in
mobile device-dense areas, where each server can provide
computing services to users within their service coverage
areas. For example, in the Internet of Vehicles, smart vehi-
cles are equipped with sensors, automatic driving assistance
systems, and navigation systems, and these vehicles have
very high requirements for computational needs and response
speed in tasks such as obstacle detection, path planning,
image, and data processing. Multiple edge servers usually
need to be deployed along the roadway to provide the neces-
sary computing services to meet the computing requirements
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for these tasks and ensure traffic safety. In the industrial
Internet of Things, production equipment also needs to han-
dle many computational tasks such as real-time monitoring,
data analysis, and fault prediction. To ensure that these tasks
can be processed instantly, multiple edge servers need to be
deployed within the industrial production area to provide
computing services. However, in an environment with mul-
tiple edge servers, service coverage areas of multiple servers
may be overlapped with each other. For tasks located in these
overlapped areas,multiple choices for task offloading arise. If
a random selection is made to offload a task to an edge server,
it may be offloaded to an edge server with a lower computing
capacity or heavier workload. This may lead to task offload-
ing latency and increased energy consumption. Furthermore,
it may happen that some edge servers become overloaded
while others are underutilized, leading to wasted computing
resources and a decreased number of users served by the edge
servers. Therefore, overlapping service coverage of multiple
edge servers complicates the problem of task offloading and
resource allocation. Moreover, with the dynamic arrival of
user demands, it is necessary to make rational task offload-
ing and resource allocation decisions based on the specific
requirements of each task and the real-time status informa-
tion of each edge server. This further increases the complexity
of task offloading and resource allocation in an environment
with multiple edge servers. Therefore, in the edge computing
system where multiple edge servers coexist and their ser-
vice coverage overlaps, we need to design an effective task
offloading and resource allocation strategy for intensive and
latency-sensitive tasks.

Currently, there exist many works analyzing task offload-
ing strategy and resource allocation strategy independently
in an environment with multiple edge servers. In this paper,
we consider both task offloading decisions and edge server
resource allocation as a whole. Therefore, the study in this
paper involves a mixed-action space, where task offloading
decisions are discrete actions and resource allocation is a con-
tinuous action. Furthermore, when the service areas of edge
servers overlap, unreasonable task offloading and resource
allocation decisions may cause an overload of some edge
servers while underutilizing the resources of other servers.
Such an imbalance in resource allocation can increase task
completion latency and energy consumption and decrease the
overall efficiency of the entire edge server system.Moreover,
users’ tasks are dynamically generated in real time. Although
a few works have started to consider dynamic environments,
they may ignore the mutual influence among edge servers.
Therefore, task offloading and resource allocation strategy
needs to be studied, taking into account the dynamic nature
of user tasks and the impact between edge servers.

To tackle the above challenges, we propose an effective
task offloading and resource allocation strategy that maxi-
mizes the number of served users and minimizes the average

energy consumption of completed tasks, while meeting task
latency constraints. This paper advances the state of the art
in the following ways. We use a central controller1 to coordi-
nate task offloading and resource allocation among multiple
edge servers. Since the current user task offloadingdecision is
affected by the last offloading andwill also affect the next task
offloading decision, this is a sequential decision problem.
Furthermore, this problem involves a discrete-continuous
hybrid action space, i.e. task offloading is a discrete action
while resource allocation is a continuous action. Therefore,
we transform the task offloading and resource allocation
problem into a parameterized action Markov decision pro-
cess (PAMDP), and use a parameterized deep Q-network
algorithm (P-DQN) to address it in an environment with
multiple edge servers. Furthermore, we experimentally eval-
uate this strategy against five typical benchmark strategies.
Experimental results show that our strategy can outperform
five typical benchmark strategies in terms of the number
of served users and the average energy consumption of all
completed tasks under task latency constraints. This means
that our task offloading and resource allocation strategy is
effective for dynamically arrived tasks by considering the
remaining resources of each edge server and the computing
capability of the user’s mobile device.

The rest of this paper is organized as follows. In Sect. 2,
we introduce the related work. In Sect. 3, we introduce the
systemmodel of this paper. In Sect. 4, we describe how to use
P-DQN algorithm to design the task offloading and resource
allocation strategy in an environment with multiple edge
servers. We evaluated this strategy in different experimen-
tal settings, the experimental analysis of which is shown in
Sect. 5. Finally, we conclude in Sect. 6.

2 Related work

Currently, task offloading and resource allocation in MEC
environments are primarily investigated in single andmultiple-
edge server scenarios. The main approaches include (1)
heuristic algorithm-based methods and (2) machine learn-
ing algorithm-based methods. In the following, we introduce
the related work from these two different approaches and
summarize them in Table1.

1 This kind of central controller is adopted in some existing works,
such as using software-defined networking to control MEC systems or
using cloud radio access network technology to put all MEC servers
under the control of one central unit. For example, Wang et al. [5] use
software-defined networking to control distributed edge servers. Both
Tran et al. [6] and Fang et al. [7] use a central unit to manage multiple
edge servers.
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Table 1 Summary of related work

Research scenario References Objective Proposed solution Weakness

In a single-edge server
environment

[8] Minimized latency Applying heuristic
algorithms to partially
offload tasks to
single-edge servers for
processing

Ignoring task offload energy
consumption

[9] Minimized energy
consumption

Modelling as a stochastic
optimisation problem to
be solved

Computationally complex,
not applicable to
latency-sensitive tasks

[10] Increased rate of task
completion

Applying heuristic
algorithms for partial
offloading

Ignoring the dynamics of
user tasks

[11] Minimized energy
consumption

Designing task offloading
strategy based on deep
reinforcement learning
algorithm

Not applicable to task
latency-sensitive tasks

[12] Minimized the sum of task
latency and energy
consumption

Designing task offloading
and resource allocation
strategies based on two
reinforcement learning
algorithms for dynamic
multiple user task
scenarios

Computationally complex

[13] Increased rate of task
completion

Designing an online task
offloading algorithm
based on deep
reinforcement learning
and a resource allocation
algorithm based on
Lyapunov optimisation

Ignoring the dynamics of
user tasks, the algorithm
is more complex

In an environment with
multiple edge servers

[14] Minimized energy
consumption

Modelling as a mixed
integer nonlinear
programming problem
and solving it using a
two-stage heuristic
algorithm

Ignoring the dynamics of
user tasks

[15] Minimized the sum of task
latency and energy
consumption

Proposing a queuing
algorithm to calculate the
priority of user offloading
tasks for task offloading

Computationally complex,
ignoring the dynamics of
user tasks

[16] Increased number of tasks
served

Designed an online
distributed algorithm
based on Lyapunov
optimisation and game
theory

Computationally complex,
not applicable to task
latency-sensitive tasks

[5] Minimized latency Proposing a resource
allocation strategy based
on a deep reinforcement
learning algorithm to
allocate computing
resources among edge
servers adaptively

Ignoring the dynamics of
user tasks

[17] Minimized energy
consumption

Task offloading using
non-orthogonal multiple
access techniques and
resource allocation based
on deep reinforcement
learning

Computationally complex
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Table 1 continued

Research scenario References Objective Proposed solution Weakness

[18] Increased number of tasks
served

Determining optimal task
offloading strategy using
game theory and dynamic
resource allocation for
edge servers based on
reinforcement learning

Computationally complex,
ignoring the dynamics of
user tasks

2.1 Heuristic algorithm-basedmethods

First, we introduce relatedwork on heuristic algorithm-based
computational offloading methods in different edge server
environments. In a single-edge server environment, Lyu et
al. [8] proposed a heuristic offloading decision algorithm in
a near-end cloud system with multiple users and a single
edge server, where mobile users’ tasks with higher utility
were offloaded to the edge server while other users’ tasks
executed locally, resulting in less latency for the edge server
to complete the tasks. Chen et al. [9] studied the energy
efficient task offloading problem and formulated the prob-
lem as a stochastic optimization problem to minimize the
energy consumption of task offloading while ensuring the
average length of queues. Ning et al. [10] proposed an itera-
tive heuristic resource allocation strategy to offload a portion
of users’ computational tasks to edge servers while process-
ing the remaining tasks locally, aiming to improve the task
completion rate of edge servers by reducing task latency. In an
environment withmultiple edge servers, Li et al. [14] investi-
gated the task offloading and resource allocation problem in
terminal devices with varying performance and edge servers
with limited computing resources, modeling the problem as a
mixed integer nonlinear programming problem and employ-
ing a two-stage heuristic algorithm that minimized energy
consumption. Deng et al. [15] modeled the queuing state of
mobile users’ tasks offloaded to edge servers as a Markov
decision process and then proposed a queuing algorithm to
calculate the priority of user offloading tasks, optimizing total
user latency and device energy consumption. Xia et al. [16]
proposed an online distributed algorithm based on perturbed
Lyapunov optimization and game theory, aiming to increase
the number of tasks served by the system by optimizing com-
putational resources and battery energy while minimizing
task completion latency and energy consumption.

2.2 Machine learning algorithm-basedmethods

Weintroduce the relatedworkonmachine learning algorithm-
based computational offloading methods in different edge
server environments. In a single-edge server environment,
Yan et al. [11] considered a single-edge server system for
recording users’ generic tasks and proposed a task offloading

strategy based on the deep reinforcement learning algo-
rithm to achieve the optimization goal of minimizing task
completion energy consumption. Li et al. [12] provided an
in-depth study of task offloading and resource allocation
for dynamically changing multi-user mobile edge comput-
ing environments and proposed a solution based on the
Q-learning algorithm and deep reinforcement learning algo-
rithm, aiming to minimize the sum of latency and energy
consumption. Bi et al. [13] introduced a deep reinforce-
ment learning-based online task offloading algorithm and
a Lyapunov optimization-based resource allocation algo-
rithm to reduce task execution latency and improve task
offloading efficiency. In an environment with multiple edge
servers, Wang et al. [5] investigated the problem of allo-
cating computing resources to edge servers and proposed
a resource allocation strategy based on deep reinforcement
learning algorithms that could adaptively allocate computing
resources among edge servers, thus reducing the service time
for tasks. Qian et al. [17] proposed a non-orthogonal multi-
ple access technique for task offloading and jointly designed
a distributed algorithm under a static channel and a deep
reinforcement learning online algorithm under a dynamic
channel for resource allocation to realize the reduction of
the energy consumption of the whole system while satisfy-
ing the task latency. Jiang et al. [18] proposed the use of
game theory to determine the optimal task offloading strat-
egy and reinforcement learning to achieve dynamic resource
allocation of edge servers to achieve the maximization of the
number of users to be served while satisfying their quality of
service.

However, these works mainly focus on static optimiza-
tion problems, while the real-world mobile edge computing
environment is complex with dynamic computing demands.
Moreover, some works only consider scenarios with a sin-
gle edge server, and when examining multiple edge servers,
they fail to consider the mutual interactions between them,
especially in cases where the edge server service coverage
areas are partially overlapped with each other. In this paper,
we address task offloading and resource allocation problem
in an environment with multiple edge servers by considering
the above factors, with the aim to maximize the number of
served users and minimize the average energy consumption
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Table 2 Key symbols

Notation Description

T The number of time slots

N The number of users

M The number of edge servers

ui User i

e j Edge server j

ωt
j The remaining computing resources of edge

server e j at time slot t

li j Distance from user ui to edge server e j
Hi The task of user ui
f lmax The maximum computing capability of mobile

devices

ptrans Transmission power

hi j Channel gain power

B The bandwidth of edge server

kl The energy consumption factor of users’ mobile

devices

ke The energy consumption factor of edge server

for all completed tasks while ensuring compliance with task
latency constraints.

3 Systemmodel

In this section, we first describe the task offloading and
resource allocation scenario and the related settings of this
paper. Then, we detail the process where tasks are executed
on their own mobile devices or offloaded to edge servers for
processing. Finally, we give the optimization objectives.

We assume that N users arrive dynamically in afinite num-
ber of time slots t ∈ {1, 2, . . . , T }. Each user’s mobile device
generates a computationally intensive task, which is sensitive
to latency with different computing resource requirements.
To meet the task’s latency constraints, the edge server needs
to decide how to offload tasks and allocate resources. The
mathematical symbols used in this paper are shown in Table
2.

In an environment with multiple edge servers, we con-
sider that there is no direct physical link for communication
between edge servers. Therefore, they independently handle
computing tasks within their service coverage respectively.
This means that only users located within the service cover-
age of an edge server can offload tasks to that server for
processing. Considering each server’s service coverage is
limited, several edge servers’ service coverage may over-
lap. Therefore users in areas of overlapped service coverage
have a variety of options for task offloading. Furthermore,

Fig. 1 Task offloading across multiple edge servers

we assume that the task cannot be further divided, i.e., it can
only be processed on its mobile device or the edge server.

For example, in Fig. 1, there are 6 users denoted as u1, u2,
u3, u4, u5 and u6, and 3 edge servers denoted as e1, e2 and
e3. We can find that u1 is in the overlapped service coverage
of three edge servers, and its task can be offloaded to one of
these three edge servers. As u2 and u3 are only in the service
coverage of e1, these two tasks can only be offloaded to the
edge server or executed on their own mobile devices. If edge
server e1 is nearly fully loaded and the task u1 is offloaded
to it, this edge server may become overloaded. At this point,
the central controller must make reasonable decisions for
dynamically offloading tasks to appropriate edge servers and
allocating resources. At the same time, we discover that u6 is
not covered by the servers’ service coverage. Therefore, the
task of u6 can only be processed on its ownmobile device. In
the sections afterward, we will introduce the specific process
for tasks performed on their own mobile devices or edge
servers.

3.1 Tasks executed on their ownmobile devices

This section describes how tasks are executed on their own
mobile devices. We define the user’s computing task at time
slot t as a three-tuple Hi = (di , ci , τi ), i ∈ N , where di is
the data size of the task, ci is the total computing resources
required to complete the task, and τi is themaximumcomple-
tion time that the user can tolerate. Since each mobile device
has a limited number of computing resources, tasks can be
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executed locally when the computing resource requirements
of the task are less than the maximum computing resources
of the user’s mobile device. The time at which task Hi is
executed on its own mobile device is:

t locali = ci
fi0

(1)

where fi0 is computing resources allocated to task Hi by its
own mobile device.

When t locali ≤ τi , the computing resources allocated by
the user’s mobile device to task Hi can meet the specific
latency requirements, and then task Hi can be completed
on its own mobile device. Similar to work in [19], since the
energy consumed to process task Hi on its ownmobile device
is related to CPU frequency, the energy consumed to com-
plete task Hi is expressed as:

El
i = kl( fi0)

2ci (2)

where kl is the user’s mobile device’s energy consumption
coefficient, which is based on the chip structure of the device
[20], and kl( fi0)2 is the energy consumption per unit of com-
puting resources.

3.2 Tasks executed on edge servers

In a fixed area, we assume that there are M edge servers and
N users, and since each user arrives dynamically, we divide
the time into a finite number of time slots t ∈ {1, 2, . . . , T }.
We define M edge servers as a set E = {e1, e2, . . . , eM } and
N users as a setU = {u1, u2, . . . , uN }. Each edge server has
a three-tuple denoted e j = (β j , Fj , pej ), where β j represents
the service coverage radius of the edge server, Fj represents
the computing capability of the edge server and pej is the
location of the edge server, which is denoted as pej = (xej , y

e
j )

using two-dimensional Euclidean coordinates. Similarly we
use pui = (xui , yui ) to indicate the user’s location.

Then the distance between user ui and edge server e j is
expressed as:

li j =
√(

xui − xej

)2 +
(
yui − yej

)2
(3)

When li j ≤ β j , task Hi can only be transferred to edge
server e j for processing.

Then, according to the formula of Shannon’s theorem, the
data transfer rate between user’s mobile device ui and edge
server e j can be calculated, which can be expressed as:

ri j = Blog2

(
1 + ptranshi j

σ 2

)
(4)

where hi j is channel power gain and σ 2 is the noise power.
At this time, the transmission time of task Hi is:

t transi j = di
ri j

(5)

During this process, task transfer consumes some energy,
which is:

etransi j = ptrans t
trans
i j (6)

After task Hi transmission is completed, edge server e j
allocates a certain amount of computing resources tomeet the
task’s latency constraints. Since each edge server has limited
computing resources and can only serve a limited number
of tasks, the computing resources allocated by edge server
e j should be less than or equal to the remaining computing
resources, which is fi j ≤ ωt

j . After the resource allocation
is complete, task Hi is executed. The time required for task
Hi execution is:

texei j = ci
fi j

(7)

Similarly, the energy consumed by edge server e j to per-
form this task is similar to the energy consumed by its own
mobile device to perform task Hi , which is:

eexei j = ke fi j
2ci (8)

where ke is the edge server’s energy consumption coefficient,
which is based on the chip structure of the device [20].

After the server has processed task Hi , it needs to send
the result to the mobile device. Since the calculation result
of task Hi is usually small, we ignore this part of the latency
when considering the downlink transmission latency [21]. As
a result, the total latency required when task Hi is offloaded
to edge server e j for processing is denoted as:

T of f
i j = t transi j + texei j (9)

where t transi j represents the transmission latency, and texei j
represents the execution latency.

Similarly, the energy consumed by the edge server to
accomplish the task includes the task transmission energy
and the edge server processing energy, which is:

Eof f
i j = etransi j + eexei j (10)

When a task is completed, the computing resources occu-
pied edge server e j are released. Therefore, at the end of time
slot t , the remaining computing resources on edge server e j
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is denoted as:

ωt+1
j = ωt

j + btj (11)

where ωt
j represents the remaining computing resources of

edge server e j and btj represents the computing resources
returned to edge server e j by task Hi .

3.3 Problem formulation

Our problem involves multiple optimization objectives, i.e.,
designing reasonable offloading decisions and resource allo-
cation schemes for dynamically arriving user tasks in an
environment with multiple edge servers to maximize the
number of users served andminimize the average energy con-
sumption for all task completions while meeting the latency
requirements of the offloading tasks. Therefore, the optimiza-
tion problem in this paper is expressed as follows.

P0 : max
∑
i∈N

⎛
⎝zi0 +

∑
j∈M

zi j

⎞
⎠ξi (12)

min

∑
i∈N

∑
j∈M

(
zi0El

i + zi jE
of f
i j

)
∑
i∈N

(zi0 + ∑
j∈M

zi j )ξi
(13)

s.t . C1 : zi0t locali +
∑
j∈M

zi j t
o f f
i j ≤ τi (14)

C2 : zi0 +
∑
j∈M

zi j ≤ 1, ∀i, zi0, zi j ∈ {0, 1} (15)

C3 : li j =
√

(xui − xej )
2 + (yui − yej )

2 ≤ β j (16)

C4 :
{
fi j ≤ ωt

j , ∀zi j = 1
fi0 ≤ f lmax, ∀zi0 = 1

(17)

where Eq.12 means the maximization of the number of task-
based users served in total, in which zi0 means processed
locally, and zi j means processed on edge servers. The con-
strained objectiveC2means that these two variables can only
take values 0 or 1. The variable ξi denotes whether the task
processing meets the task latency requirement, if so, ξi = 1,
otherwise ξi = 0. Equation13 means the minimization of
the average energy consumption of completed tasks, where
El
i denotes processed locally consumes the energy consump-

tion and Eof f
i j denotes the total energy consumption set by

processing on the edge server. The constraint C1 denotes the
latency constraint of task Hi . The constraint C2 denotes that
task Hi can be processed on edge server e j or executed on
its own mobile device, but it cannot be split to be executed
in both locations at the same time. The constraint C3 states
that task Hi can only be transmitted to the server if the user is

within the edge server’s service coverage. The first inequal-
ity of constraint C4 states that the allocation of computing
resources cannot exceed the edge server’s current remaining
computing resources, while the second inequality states that
the allocation of computing resources is not greater than its
own mobile device’s maximum computing capability.

4 The approach

In this section, we first explain how to represent the task
offloading and resource allocation problem as a parame-
terized action Markov decision process (PAMDP) and then
introduce how to apply a deep reinforcement learningP-DQN
to solve it.

4.1 Parameterized actionMarkov decision process

As mentioned above, the central controller across multi-
ple edge servers needs to make a decision for each task at
each time slot in sequence. The decision affects the comput-
ing resources available in edge server e j , and affects future
decisions. Therefore, task offloading and resource allocation
problem for multiple edge servers is a sequential-decision
problem. In addition, the problem involves a discrete-
continuous hybrid action space, i.e. task offloading decision
is a discrete action, while the resource allocation decision is
a continuous action, and thus we model it as a parameterized
action Markov decision process (PAMDP) [22].

PAMDP is defined as a tuple <S, A, r , P, γ>, where S
denotes a set of states, A denotes a parameterised action space
with discrete-continuous hybrid actions, r denotes the imme-
diate reward function of the agent, P denotes a Markovian
state transition probability function, γ is a discount factor.
The parameterised action space consists of a set of discrete
actions that is Ad = [K ] = {k1, k2, . . . , kK }, each discrete
action k corresponds to a mk dimensional continuous action
parameter xk ∈ Xk ⊆ R

mk , and thus the parameterized action
space can be written as:

A =
⋃

k∈[K ]
{Ak = (k, xk) | xk ∈ Xk} (18)

Specifically, at first, at state st ∈ S, the central controller
collects global state information of the MEC environment,
including resource request information of tasks and state
information of all edge servers. Afterwards, the central con-
troller executes action Ak ∈ A and obtains the reward rt
from the environment feedback. Then, the next moment
state of the MEC environment is transformed to st+1 ∈ S.
Thus at each time slot t , running through the sequence
{s1, A1, s2, A2, . . . , st , At , . . .}, PAMDP is formed. The
detailed setup of this process is represented as follows:
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– Statewedefine it as: st = {Hi (t), pui (t), ω(t), b(t−1)} ∈
S, where Hi (t) = (di , ci , τi ) represents task Hi informa-
tion at time slot t , which includes the data size of task
Hi , the total computing resources required to complete
task Hi , and the maximum completion time that user
can accept to complete task. In addition, the remaining
computing resources of M edge servers in the current
time slot are expressed as: ω(t) = (ωt

1, ω
t
2, . . . , ω

t
M ),

and the computing resources for processing users’ tasks
in the previous time slot are expressed as: b(t − 1) =
(bt−1

1 , bt−1
2 , . . . , bt−1

M ).
– Action the action A is a parameterised action space with
discrete-continuous hybrid actions, which is defined as:
k ∈ Ad = {zi0, zi1, . . . , ziM }, where zi0 = 1 means that
task Hi is executed on its own mobile device, and zi j =
1, j ∈ {1, 2, . . . , M} means that task Hi is executed on
edge server ei . Similarly, we use xk = fi0 and xk =
fi j , j ∈ {1, 2, . . . , M} to define whether task Hi gets
computing resources on its ownmobile device or on edge
server e j .

– Reward we define it as:

r(st , Ak) =

⎧⎪⎨
⎪⎩

−zi0El
i (t) − zi j E

of f
i j (t) + λ,

τi ≥ zi0t locali + zi j t
o f f
i j

−μ, τi < zi0t locali − zi j t
o f f
i j

(19)

whereλ andμ being positive hyperparameters.When the
completion time of a task satisfies its latency constraints,
indicated by τi ≥ zi0t locali + zi j t

o f f
i j , a positive reward of

−zi0El
i (t)− zi j E

of f
i j (t)+λ is awarded. This reflects the

energy consumedon themobile device El
i (t) and the edge

server Eof f
i j (t), along with a reward λ for meeting the

latency constraints. If the task’s completion time fails to
meet its latency constraints, a penalty of −μ is awarded,
representing a negative reward. This reward function is
designed to incentivize the agent to perform task offload-
ing and resource allocation to satisfy the latency demand
and minimize energy consumption. This paper aims to
maximize the number of served users and minimize the
average energy consumption of completed tasks while
meeting task latency constraints. Therefore, we pay spe-
cial attention to the cumulative reward during the time
period T , which is represented as R = ∑t=T

t=0 r(st , Ak).
This cumulative reward can indirectly reflect the number
of completed tasks during the time period. Specifically,
the more tasks are successfully processed, the more the
agent obtains positive immediate rewards. Furthermore,
the lower the energy consumption generated by each
agent’s action, the higher the positive immediate reward it
obtains. Therefore, the higher the number of successfully
processed tasks by the agent and the lower the energy
consumption generated per offloaded task, the higher the
cumulative reward obtained. Therefore, the reward func-

Fig. 2 Algorithmic structure of P-DQN [25]

tion is closely related to our optimization objectives in
this paper.

– The state transition probability function we define it as:
Pa
ss′ = P

[
st+1 = s′ | st = s, k, xk

]
, where st , st+1 ∈ S

and Ak = {k, xk} ∈ A.

4.2 Task offloading and resource allocation strategy
based on P-DQN

Currently, deep reinforcement learning algorithms arewidely
used to address sequential decision-making problems [23,
24]. Additionally, in an environment with multiple edge
servers, the task offloading and resource allocation prob-
lems involve a mixed action space, where task offloading
actions are discrete, and resource allocation actions are
continuous. To tackle this challenge, we adopt the Parameter-
izedDeepQ-Network (P-DQN) [25] algorithm. Specifically,
P-DQN combines the advantages of traditional Deep Q-
Network (DQN) and Deep Deterministic Policy Gradient
(DDPG) algorithms. It utilizes an Actor network to deter-
mine the parameters of the continuous action space and inputs
these continuous action parameters and the environment state
into a Critic network to obtain the optimal discrete actions
and corresponding continuous action parameters, where the
structure is shown in Fig. 2. Therefore, theP-DQN algorithm
is chosen for solving problems with a mixed action space, to
avoid exhaustive searches over multiple continuous action
parameters when seeking the optimal discrete actions.

In the algorithm, it takes global state information s from
the MEC environment into the Actor network with parame-
ter θ as inputs, and then outputs the continuous parameter of
all discrete actions x1, x2, . . . , xK . Next, state s and all con-
tinuous parameter vectors are fed into the Q network with
parameter ω. Finally, the Q network outputs the Q values
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of all discrete actions and executes the discrete action cor-
responding to the largest Q value. In the following, we will
describe the controller-managed task offloading and resource
allocation process, in connection with the PAMDP and the
P-DQN algorithm.

For action a ∈ A, we use kt to denote the offloading action
at the current time slot anduse xkt to denote the corresponding
continuous action parameter. The action value function can
be expressed as (s, a) = Q(s, k, xk). P-DQN algorithm uses
a deep neural network Q (s, k, xk;ω) to estimate the action
value function Q (s, k, xk), where ω represents the weight of
the Q network. Furthermore, P-DQN estimates xQk (s) using
the determined Actor network xk (·; θ) : S → Xk , where
θ represents the weight of this network. That is when ω is
fixed, the goal of P-DQN is to find θ , such that:

Q (s, k, xk (s; θ) ;ω) ≈ Q (s, k, xk;ω) (20)

where the value of ω is obtained by the least mean squares
of gradient descent. The weights of the Q network and the
Actor network are denoted by ωt and θt , respectively. Then
the objective value yt can be expressed by the formula as:

yt = rt + max
k∈[K ]

γ Q (st+1, k, xk (st+1, θt ) ;ωt ) (21)

where st+1 is the next state after the executed action
a = (k, xk), Q (st+1, k, xk (st+1, θt ) ;ωt ) can be obtained
through the target network, and γ is discount factor.

Then, using the stochastic gradient descent method, we
update the neural network weights and the loss function of
the Q network is expressed as:

l Qt (ω) = 1

2
[Q (st , kt , xk;ω) − yt ]

2. (22)

Similarly, the loss function of the Actor network is expressed
as:

l
t (θ) = −
K∑

k=1

Q (st , k, xk (st ; θ) ;ωt ) . (23)

Specifically,weuse step lengthα1 andα2 to update theweight
of the Q network and the Actor network.

The overview of P-DQN algorithm is shown in Algorithm
1. Specifically, the algorithm first takes the maximum com-
puting capability of all edge servers, the dynamically arrived
task information Hi , and the user’s location coordinate pui
as inputs. Line 1 indicates the initialization of the maximum
number of training times, random noise function and param-
eters, the size of the experience pool, the number of samples
for gradient descent, the Q network and the Actor network.
Line 3 indicates that the state of the MEC environment is
obtained at that time. Line 5 indicates inputting the obtained

Algorithm1Task offloading and resource allocation strategy
algorithm based on P-DQN
Input: Maximum computing capability F of the edge server, task

information Hi and user’s location coordinate pui
Output: Task offloading and resource allocation strategy π with

parameters ω and θ

1: Initialize weights ω and θ of the Q network and the Actor network,
maximum number of iterations 
, random noise functionN , initial-
ize experience replay pool D, the number of samples for gradient
descent �, the update parameters α1 and α2 for the Q network and
the Actor network

2: for i = 1 → 
 do
3: The central controller gets the state values

of the MEC environment st
4: for t = 1 → T do
5: Calculate continuous action parame-

ters: xk ← xk (st , θt ) + N
6: Select the discrete action at = (kt , xk)

according to strategy ε-greedy:

at =
{
random discrete action, rnd < ε

(k, xk), k = argmaxk∈[K ]Qω, rnd ≥ ε

7: Execute action at and observe rewar-
ded rt and next state st+1

8: Store the resource allocation result of
the edge server in the record list

9: Store (st , at , rt , st+1) in replay pool D
10: Update the record list of edge servers

and release the returned computing
resources

11: st ← st+1
12: Take φ samples (s j , a j , r j , s j+1) from

the replay pool D and calculate target
value yt

13: Calculate the gradients of ∇ωl
Q
t (ω)

and ∇θ l
t (θ) according to Eq.22 and
Eq.23

14: Update the weights of the Q network:
ωt+1 ← ωt − α1∇ωl

Q
t (ωt ), and the

Actor network: θt+1 ← θt − α2∇θ l
t (θt )

15: end for
16: end for

state into the Actor network and then outputting the contin-
uous action parameters. Line 6 indicates that the computing
resources and states are input into the Q network to obtain
the Q value corresponding to each offloading action, and
select the corresponding discrete action to execute according
to the ε-greedy strategy. Line 7 indicates that users execute
the selected action at and get reward and enter into the next
state. Lines 8–10 indicate that the resource allocation result
is recorded in a list and stored in the experience pool D, and
the computing resources are released at the end of time slot t .
Line 11 indicates the state enters the next state st+1. Lines 12
indicates that� samples are taken from the experience replay
poolD to calculate the objective value function yt . Line 13–
14 indicate that the weights of the Q network is updated as
well as the Actor network using the random gradient method.
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5 Experiments

In this section, we experimentally evaluate the task offload-
ing and resource allocation strategy proposed in the appeal
based on theP-DQN algorithm.Wefirst introduce the dataset
and parameter settings, and then introduce the benchmark
algorithms and evaluation metrics. We finally discuss the
experimental results.

5.1 Dataset and parameter settings

Considering that real datasets usually do not consider scenar-
ios with multiple edge servers overlapped with each other,
and those datasets also do not include intensive task data
that are dynamic and latency-sensitive. Therefore, we con-
duct experiments using synthetic datasets. Specifically, we
set the experiment’s area as 200m × 200m. For users, we
adopt the Random Waypoint (RWP) [26] model to produce
the movement trajectory of users, because this model is fre-
quently used in mobile network simulation. Similar to work
in [12, 27], we assume that the data size of the user’s task,
the total computing resources required to complete the task,
and the maximum completing task time are independent
and identically drawn from a uniform distribution within
di ∼ U (8000, 10,000)kbits, ci ∼ U (7000, 10,000)MHz
and τ ∼ U (3, 5) s, respectively. At the same time, the com-
puting capability f lmax of the user’s mobile device is 2GHz.

For edge servers, in order to ensure full usage of edge
server computing resources and avoid incurring excessive
deployment costs, we set up M = 3 edge servers e1, e2
and e3, and the coordinates of each edge server are pe1 =
(50, 50), pe2 = (150, 50) and pe3 = (100, 100) respectively.
The edge server service coverage radius β, bandwidth B and
computing capability F are set to 100m, 15MHz and 4GHz
respectively.

For an environment with multiple edge servers, we divide
the time into T = 100 time slots. We assume that the trans-
mission power ptrans from the user’s mobile device to the
edge server is 0.5W, the channel gain powerh is 1.02×10−13,
the mobile device-edge server noise power is 10−13W, the
energy consumption factor of user’s mobile device kl and
the energy consumption factor of edge server ke are 10−27

and 10−29 respectively. The experimental parameters of this
paper are shown in Table 3.

Then, we describe the parameter settings related to rein-
forcing learning. In P-DQN algorithm, both the Actor
network and Q network adopt a two-layer neural network
model, and the number of neurons in each layer is 256 and
128, respectively. Meanwhile, to enhance the nonlinear pro-
cessing capability of the networks, both the Actor network
and the Q network adopt the ReLU (Rectified Linear Unit)
activation function. During the training process, the discount
factor γ is set to 0.95, the software update factor is set to

0.001 for both Actor and Q networks, and the learning rates
are set to=0.001 and 0.0001 for both Actor and Q networks,
respectively. We use the Adam optimizer to update the net-
works’ weights to optimize the training process. At the same
time, we set the size of the experience pool to 40,000, and
the number of samples used for gradient descent φ is set to
256. The initialization of the network is also an important
step. We initialize the parameters of the Actor network and
the Q network to 0.5. The maximum number of iterations
for the whole experiment was is to 5000. After training, we
observe that the algorithm converges at about 2300 rounds.
The code is released at https://github.com/Anya999999/RL_
edge-computing.

The experiments in this paper are conducted in the envi-
ronment with the following specifications: CPUmodel AMD
Ryzen 7 5800H with 8 cores, GPUmodel NVIDIA GeForce
RTX 3060 with 6GB memory, CUDA version 11.6, operat-
ing system Ubuntu 18.04.4 LTS, Python version 3.6.13 and
PyTorch version 1.10.2. In addition, we repeat the exper-
iments 10 times and compute the average values as the
experimental results.

5.2 Benchmark algorithms and evaluationmetrics

To evaluate the effectiveness of the proposed task offloading
and resource allocation strategies in an environment with
multiple edge servers, we consider five strategies as the
benchmark, which are as follows:

– Random this strategy randomly determines whether user
tasks are computed locally or executed on an edge server.

– Greedy this strategy offloads user tasks to the edge server
with the highest available computing resources. If there
are no free edge servers, the task is executed locally.

– Nearest offloading (NO) this strategy offloads user tasks
to the nearest edge server for processing. If the nearest
edge server does not have sufficient resources, the task is
executed locally.

– HTR this strategy uses a heuristic algorithm to make the
task offloading decision and then the edge server assigns
computing resources to the task, which is similar to the
work in [28].

– PA-DDPG this strategy is an improved reinforcement
learning strategy based on the Deep Deterministic Policy
Gradient (DDPG) [29] algorithm.

In this paper, we intend to maximize the number of served
users and minimize the average energy consumption for
all completed tasks, while meeting task latency constraints.
Therefore, we consider the following three metrics for eval-
uation, which are the total number of served users by edge
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Table 3 Experimental
parameters

Parameter Description

T = 100 Total time slot

M = 3 Number of edge servers

di ∼ U (8000, 10,000)kbits Data size of the task

ci ∼ U (7000, 10,000)MHz Total computing resources required to complete the task

τ ∼ U (3, 5) s Maximum completion time acceptable to the user

f lmax = 2GHz The maximum computing capability for users’ mobile devices

β = 100m Service coverage radius of edge server

B = 15MHz Channel bandwidth of edge servers

F = 4GHz The maximum computing capability of edge servers

ptrans = 0.5W Transmission power

h = 1.02 × 10−13 Channel gain power

σ 2 = 10−13W Noise power

kl = 10−27 Energy consumption factor of users’ mobile devices

ke = 10−29 Energy consumption factor of edge servers

servers, the average energy consumption to accomplish all
tasks, and the average service time to accomplish all tasks.

5.3 Experimental analysis

To evaluate the effectiveness of our strategy, we considered
the impact of three parameters on the evaluation metrics: the
number of users N , the computing capability F of the edge
server, and the bandwidth B of the edge server. Then, we
conducted three separate sets of experiments to analyze.

5.3.1 The impact of the number of users’ tasks on different
metric

Firstly, we show the performance of different task offloading
and resource allocation strategies with different numbers of
users. As an example, we set F = 4GHz, B = 15MHz, the
number of selected users to 50, 100, 150, and 200, respec-
tively, and the experimental results are shown in Fig. 3a–c.

In Fig. 3a, we find that the P-DQN strategy consistently
outperforms the other five baseline strategies in terms of
the number of served users across different user numbers.
HTR,PA-DDPG andGreedy strategies exhibit similar perfor-
mance in terms of the total number of served users, but they
serve fewer users compared to P-DQN strategy. Although
PA-DDPG strategy simultaneously outputs a combination
of discrete and continuous actions for further optimization,
it may overlook the relationship between task offloading
actions and resource allocation actions in the current research
problem. HTR and Greedy strategies prioritize utilizing the
computing resources of edge servers to process users’ tasks.
However, since each task is highly sensitive to latency, these
two strategies are limited in the number of users they can
serve simultaneously within a given time.

In Fig. 3b, we find that the average energy consumption
remains relatively constant as the number of users increases.
This is because users arrive dynamically, and once their
tasks are completed, the corresponding computing resources
are released, minimizing the overall energy consumption.
However, among the strategies, Greedy and HTR strategies
exhibit lower average energy consumption. This is because it
consistently provides service to users in a manner that min-
imizes energy consumption. Although P-DQN strategy has
a slightly higher average energy consumption compared to
Greedy and HTR strategies, it serves a greater number of
users. This trade-off between average energy consumption
and the number of served users shows the effectiveness of
P-DQN strategy in maximizing the number of served user
while still maintaining average energy consumption at a rea-
sonable level.

In Fig. 3c, we find that the average service time remains
relatively constant as the number of users increases. Among
the strategies,HTR strategy exhibits the shortest average ser-
vice time. This is because HTR strategy prioritizes serving
tasks in a manner that minimizes both overall latency and
energy consumption. P-DQN strategy has a slightly higher
average service time compared toHTR strategy. However, in
subsequent experiments, it is observed that the performance
gap between P-DQN and HTR decreases as the comput-
ing capability and bandwidth of the edge server increase.
Additionally, the number of users served by P-DQN strategy
remains higher than that of HTR strategy.

5.3.2 The impact of edge server computing capability on
different metrics

In the second setting, we set the number of users N = 100,
the bandwidth B = 15MHz, and the computing capability
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Fig. 3 The impact of the number of users on the experimental metrics

F of the edge server to 4GHz, 5GHz, 6GHz and 7GHz
respectively. The experimental results are shown in Fig. 4a–
c.

As shown in Fig. 4a, we find that as the computing capa-
bility of the edge server increases, the total number of served
users using various strategies also increases.P-DQN strategy
consistently serves the highest number of users compared to
other strategies. This is because P-DQN strategy can make
efficient task offloading and resource allocation decisions
based on task latency constraints and the remaining resources
of the edge servers.

In Fig. 4b, as the edge server’s processing power rises, we
find that HTR and P-DQN strategies reveal that the aver-
age energy consumption increases slowly with the increased
computing capability. The reason is that in order to shorten
the task completion time and increase the number of served
users, more tasks are offloaded to edge servers for processing
in order to free up more computing resources for forthcom-
ing tasks. Although Greedy strategy has the lowest average
energy consumption, it serves far fewer users compared to
P-DQN and HTR strategies.

In Fig. 4c, we find that as the computing capability of the
edge server increases, the task offloading and resource allo-
cation strategies of HTR, P-DQN, PA-DDPG, and Random
result in a reduction in average service time. Among these
strategies, both HTR and P-DQN show approximately equal
and the shortest average service time. This is because these
strategies allocate more computing resources for the tasks,
thereby shortening the task completion time, at the cost of
increased average energy consumption of the edge servers.
BothNO andGreedy strategies have approximately equal and
the longest average service time. This is because NO strat-
egy offloads tasks to the nearest edge server and allocates
computing resources that are equivalent to Greedy strategy.
However,whenNO strategy executes a task on its ownmobile
device, it utilizes all the computing resources of the mobile
device to complete the task, resulting in a similar average ser-
vice time as the Greedy strategy but higher average energy
consumption.

5.3.3 The impact of edge server bandwidth on different
metrics

In the third setting, we analyze the experimental results by
changing the bandwidth of the edge server. We set the num-
ber of users N = 100, the computing capability F = 4GHZ,
and the bandwidth B of the edge server to 15MHz, 20MHz,
25MHz, and 30MHz, respectively. The experimental results
are shown in Fig. 5a–c. In Fig. 5a, we find that P-DQN strat-
egy still serves the highest total number of users compared
to other strategies. As the edge server’s bandwidth increases,
so do the number of served users by different strategies,
while average energy consumption and average service time
decrease (as shown in Fig. 5b, c). This is because as the band-
width increases, the task transmission time also decreases,
reducing the task completion time. Therefore, the edge server
can serve more tasks in a limited amount of time.

In general, Random strategy is to randomly offload tasks
to the user’s device or to an edge server for processing.
Therefore, this strategy is unable to meet the time latency
constraints of the arrived tasks and performs poorly. Greedy
strategy focuses solely on lowering the energy consumption
of edge servers. This strategy cannot performwell in terms of
the number of served users and the average service time, even
though it has the lowest energy consumption.NO strategy can
offload tasks to the nearest edge server for processing. Even
though its transmission time decreases as the bandwidth of
the edge server increases, it always has to wait for the nearest
edge server, i.e. the waiting time is not improved, the total
service time is large, the energy consumption of the server
is high, and the number of served users is not great. HTR
strategy reduces latency and energy consumption, but the
total number of served users is not the largest. PA-DDPG
strategy converts discrete actions such as task offloading
into continuous actions and optimizes them simultaneously,
without considering the relationship between task unloading
and resource allocation actions in the hybrid action space,
which restricts its ability to make effective task unloading
and resource allocation decisions. As a result, it exhibits poor
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Fig. 4 The impact of edge server computing capability on the experimental metrics

Fig. 5 The impact of edge server bandwidth on the experimental metrics

performance in terms of the number of served users, aver-
age energy consumption, and average service time. P-DQN
strategy considers both latency and energy usage, and thus
it outperforms other strategies in terms of the total number
of served users. This strategy also achieves good results in
terms of average energy consumption and average service
time.

6 Conclusion

In this paper, we examine the problem of task offloading
and resource allocation in the MEC system with multiple
edge servers. After modeling the problem as a parameterized
action Markov decision process (PAMDP), we present a task
offloading and resource allocation strategy that is based on
deep reinforcement learning P-DQN. In addition, we con-
duct extensive experiments to evaluate the proposed strategy
against five typical benchmark strategies in terms of the num-
ber of served users, the average energy consumed and the
time required to complete all tasks. The experimental results
show that our strategy can take into account the remaining
resources of each edge server as well as the computing capa-
bility of mobile devices to make effective task offloading
and resource allocation decisions for the dynamically arrived
tasks. As a result, within the task latency constraint, the algo-
rithm is able to maximize the number of served users while

simultaneously minimizing the average energy consumption
of all tasks that have been completed. Our work can provide
valuable insight for practical task offloading and resource
allocation strategy design.

As the number of edge servers increases, the algorithmwe
use may be challenged with a dramatic increase in the state
action space, which will limit the scalability of our solu-
tions. Therefore, in the future, we will consider extending
the method to the complex setting with more edge servers.
Moreover, considering the collaboration among multiple
edge servers, we will investigate the load-balancing problem
among multiple edge servers.
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