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Abstract
This work presents a Light Detection and Ranging (LiDAR)-based point cloud method for detecting and tracking road edges.
Initially, this work explores the progress in detecting road curb issues. A dataset (called PandaSet) with a Pandar64 sensor
to capture different city scenes is used. LiDAR point cloud, as part of an IoT ecosystem, detects the road curb and requires
distinguishing the right and left road curbs with regard to the ego car. The curb point’s features use Random Sample Consensus
(RANSAC)-based polynomial quadratic approximation to obtain the prospect curb points to eliminate false positive ones.
Through extensive experiments, we demonstrate the effectiveness and reliability of our method under various traffic and
environmental conditions. Our results showcase a maximum drift of 1.62 m for left curb points and 0.87 m for right curb
points, highlighting the superior accuracy and stability of our approach. This LiDAR-based curb detection framework paves
the way for enhanced lane recognition and path planning in autonomous driving applications.

Keywords LiDAR sensor · Point cloud processing · Random sample consensus algorithm · Polynomial quadratic
approximation · Feature extraction
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1 Introduction

Autonomous vehicles rely heavily on accurate perception
of their surroundings, and road edge detection plays a cru-
cial role in safe navigation. LiDAR-based methods have
emerged as a promising approach due to their high preci-
sion and ability to operate in diverse lighting conditions [1,
2]. Several challenges have been assigned in previous studies
with curb detection. These include (1) accurately differenti-
ating between the left and right side of the road is crucial for
lane-level navigation and maneuvering [3], (2) variations in
weather, lighting, and road markings can make curb detec-
tion challenging [4], (3) clutter from vegetation, obstacles,
and road imperfections can lead to misinterpretations [5].

Traditional methods often rely on intensity thresholds
and geometric features of point clouds. However, these can
struggle with varying environmental conditions and com-
plex urban scenes. Deep learning and point cloud processing
techniques are gaining traction, offering improved accuracy
and robustness [6]. These methods extract intricate fea-
tures from LiDAR data, enhancing curb detection even in
challenging situations. Precise curb detection serves as the
foundation for various autonomous driving tasks, including
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Fig. 1 A photo showing the road curb

lane recognition, obstacle avoidance, and localization and
mapping. Research in LiDAR-based curb detection contin-
ues to evolve, focusing on integrating additional sensor data
that can further enhance accuracy and robustness, real-time
performance optimization to ensure fast and efficient pro-
cessing, and adaptability to diverse scenarios that can handle
unique road designs and environments [7].

Technology for autonomous driving is developing quickly
to satisfy the demands of highway transportation and safety
effectiveness. Road boundary identification is not an easy
task because of the problems like the small size targets, shad-
ows, and occlusions. Although there are obstructions in the
road, curb identification algorithms are highly accurate and
resilient under both obscured and uneven road curb con-
ditions [8]. Photographs showing road definition curbs are
shown in Fig. 1.

Numerous previous techniques addressed road curb detec-
tion issues. 3D point cloud with LiDAR sensor is a robust
method to solve these problems, especially under curved
road scenarios, obstacle occlusions, and road discontinuities.
Merging advanced vision-based detection methods with 3D
geometric reasoning can estimate a curb distance of more
than 90% accuracy in real-time [9]. Yang et al. also proposed
road curb detection based on laser-based 3D point clouds
[10] using binary kernel descriptor (BKD) as a 3D local
feature for extracting road data. A 3D point cloud LiDAR
sensor and VeCaN Tongji University dataset in real-time
curb recognition was also proposed by [11]. The average
processing time for each frame to around 12 ms, while the
mean harmonic, precision, and average recall, are all above

80% [12]. The majority of the road surface points are deleted
by evaluating the horizontal and vertical continuity between
points in the same laser beam after the points outside the road
regions are first removed using the Random Sample Consen-
sus (RANSAC) algorithm [13–16]. Many approaches have
been developed over the years and can be categorized accord-
ing to a number of factors, including the type of sensor used
to collect the data, as illustrated in Fig. 2.

The above-aforementioned studies discussed many road
curb detection algorithms by creating intelligent vehicles,
where accurate and speedy road curb detection is essential.
However, curb recognition requires involving more features
from the environment to accurately estimate the curb points.
Therefore, this work contributes to a LiDAR-based point
cloud strategy for detecting and tracking road edges, where
the curb point’s features use RANSAC-based polynomial
quadratic approximation to obtain the applied curb points to
eliminate false positive ones. The curb points are identified
and segmented from the on-road point cloud by perform-
ing the features of; 1) the vertical and horizontal continuity
according to its immediate neighboring points, 2) the height
difference to check themaximum difference and the standard
deviation of the height near a point, and 3) the smoothness of
the area near a point, where a plane point is that point with
lower smoothness values, and an edge point is that point with
higher values.

2 Methods andmaterials

An available publicly dataset (PandaSet) with Pandar64 sen-
sor to capture different city scenes, which contains Lidar
scans of point clouds, is used [17]. Lidar point cloud detects
the road curb and requires distinguishing the right and left
road curbs with regard to the ego car. The Lidar sensors are
positioned on the vehicle ceiling. The considered dataset
contains 50 preprocessed organized point clouds 64-by-
1856-by-3 array of PCD format each. It includes 13 classes of
ground truth data in PNG format and semantic segmentation
labels. MATLAB tools have been used to conduct the devel-
oped model. From the Lidar sensor data and the captured
point clouds, the detection process of road curbs includes:

Fig. 2 Types of self-drive sensors
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Fig. 3 The developed diagram of
the Lidar-based data with 3-D
point clouds to detect
road-drivable areas for
autonomous driving

123



Service Oriented Computing and Applications

Fig. 4 A graphical representation of detecting road shape stages for the
off-road point cloud. By using the on-road point cloud, the segment-
ing and computing of the road curb point are performed. This includes

extracting and classifying the curb points feature by following the spa-
tial features to model the road curbs

• Extraction of an ROI (region of interest).
• Classifying off-road and on-road points.
• Using the off-road points to recognize road angles.
• Using the on-road points to identify candidate curb points.

2.1 Data Preprocessing

Initially, we identify an ROI from the point clouds and cate-
gorize the points inside it as off-road or on-road points as a
pre-handing step for finding the curb line. Beyond a certain
distance, the point cloud data is sparse due to the installed
position of the Lidar sensor. According to [18], the vision-
based elevation accuracy for a specified depth Z relies on
different parameters, such as disparity uncertainty and focal
distance F, and baseline B given by:

Ze = Z2De

BF − DeZ
(1)

By defining an ROI that is only a certain distance from
the sensor, the point cloud is taken into account to extract
dense enough for additional handing out. The flowchart of
the developed approach is shown in Fig. 3.

The point cloud has been classified into off-road and on-
road points with the labels vector represented by: [Buildings,
Signs, Road Barrier, Pedestrian, Other Vehicle, Truck, Car,
Side Walk, Road Marking, Road, Ground, Vegetation, and
Unlabeled]. The off-road data point contains some objects
and buildings. The on-road points include sidewalks, roads,
and ground. Visualizing point clouds over off-road and on-
road points.

2.2 Road shape detection

The process of 3-D Point cloud models of the environment
induced by Lidar sensors provides an output for the vehi-
cle’s tracking control and object segmentation system, which
can then conduct the necessary movements for independent
driving. This includes steering, acceleration, and braking
control actions, where Kalman filters are adopted to track
the position and velocity of detected objects over time. A
local map is generated using the point cloud data to deter-
mine the vehicle’s location. Object detection data association
from different frames is used tomaintain a consistent track of
each object on the map. The path angles in the off-path point
cloud have been identified, while the beam model is applied
to the off-road points as detailed in [11] and [19]. The road
angles are obtained by a modified toe-finding algorithm to
the normalizing beam lengths [20].

A graphical representation of the off-road point cloud, the
adopted road angle detection methods including the Beam
model and Toe-finding algorithm, to produce road angles
(center angle of all sectors) is shown in Fig. 4.

2.3 Road curbs detection

From the on-road point cloud, we employ a function called
"segmentCurbPoints" for segmenting and computing the
road curb point, which performs the following steps:

(1) From the on-path data point, we extract and classify the
curb points feature by following the spatial features to
model the road curbs. These features include; Smooth-
ness Feature [19], which examines the area smoothness
close to a point. A lower value means that the point is
a plane pinpoint, and a higher smoothness value means
an edge point. Height dissimilarity characteristic [19],
this element examines the maximum difference and the
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standard deviation of the altitude in the region of a point.
Third, the Vertical and Horizontal Continuity Attribute
[11], these characteristics inspect the vertical and hor-
izontal continuity of a point according to its nearest
adjacent point. The feature curb points are the points
that meet the attribute criteria for the aforementioned
characteristics.

(2) From the mark curb points, we calculate the appli-
cant curb points. False positives could be present in
the feature curb points. The function extra examines
the curb point’s features using RANSAC-based poly-
nomial quadratic approximation to obtain the applicant
curb points in order to eliminate the false positives.

2.4 RANSAC algorithm

Figure 5 represents a diagram visualizing the key technique
used in curb detection with 3D lidar point clouds, which
is the RANSAC algorithm. This method identifies the most
possible curb model from cluttered point or potentially noisy
cloud data. It runs with random selecting iterations for mini-
mal point sets to fit a curbmodel to these points, and therefore
evaluate the model fitting for the outstanding data.

The diagram sequence demonstrates how point’s likely
belonging to the curb (inliers) and points not part of the curb
(outliers) are recognized according to distance thresholds.
Lastly, the model with the most inliers is chosen after a set
number of iterations as themost feasible representation of the
curb. This technique assists extracting an accurate and clean
curb model from the raw Lidar point cloud information.

2.5 Curb points tracking

In the tracking curb points stage, looping via the Lidar and
process data to track and extract the prospect curb points.
The reliability of curb detection is increased by tracking curb
points. Curb tracking can be stopped at segmented roadways
and resumed when the ego vehicle travels off of those roads.
The tracking of curb points applies to fit with a polynomial
model on XY-data by a 2-D polynomial expressed by y =
ax2 + bx + c, such that the parameters a, b, and c represent
the polynomial values. Curb detecting following includes a
two-stage technique:

• To manage the drift of the polynomial, tracking of “c”
polynomial parameter of the curb point.

• To control the polynomial curvature, the tracking of curb
polynomial parameters a and b is performed.

The updating process for these parameters is implemented
by a constant velocity motion model of the Kalman filter and
the tracking of curb points is demonstrated in Algorithm 1.

Fig. 5 RANSAC algorithm for curb detection
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Algorithm 1 (Tracking Curb Points algorithm)Algorithm 1 Curb points tracking
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2.6 Examine the smoothness and drift of the curb
tracking

We plot the curb path recognition to produce a data image
and compare it to the polynomial curbs that were tracked.
Each plot contrasts the parameters using the Kalman filter
and without it. Comparing the curbs’ drift along the y-axis
in the first picture, and the curb polynomials’ smoothness is
compared in the second. The rate of variation in the slope of
the curb polynomial is known as smoothness. According to
[21], the feature of a tangent angle is distinct as that angle
produced by two vectors and defined by:

θi = cos−1

(
V R
i V L

i∣∣V R
i

∣∣∣∣V L
i

∣∣
)

(2)

3 Results and discussion

The ROI from the point clouds is classified and categorized
by the points inside it, which includes off-road and on-road
points as a pre-handing step for finding the curb line. The
visualization for the ground truth labels of the point cloud,
after selecting the dataset 1st frame for more processing, and
the point cloud over off-road and on-road points are shown
in Fig. 6.

The obtained smoothness feature examines the area’s
smoothness close to a point. The lower value means that
the point is a plane pinpoint, and a higher smoothness value
means an edge point. The height dissimilarity characteristic
examines the maximum difference and the standard devi-
ation of the altitude in the region of that point, while the

Vertical and Horizontal Continuity Attribute characteristics
inspect the continuity of a point according to its nearest adja-
cent point. The feature curb points are the points that meet
the attribute criteria for the aforementioned characteristics.
From the mark curb points, the applicant curb points are cal-
culated.

The tracking curb point’s stage includes looping via the
Lidar and processing data to track and extract the prospect
curb points. Curb tracking can be stopped at segmented road-
ways and resumed when the ego vehicle travels off of those
roads. Figure 7 demonstrates the detection of candidate curb
points and the tracking of the curb point’s process.

In order to examine the smoothness and drift of the curb
tracking, curb path recognition to produce data image and
compare it to the polynomial curbs that were tracked is
shown. Figure 8 shows the evaluation of the curbs’ drift over
the y-axis, and the curb polynomials’ smoothness. The rate
of variation in the slope of the curb polynomial is known as
smoothness.

The results of Fig. 8 demonstrate that the drift values were
approximately constantwith the filtered drift values along the
Y-axis (m). This difference increases between (25–30) m far
from the vehicle from both sides the left and right of the car.
The maximum drift in curb points was 1.62 m for the left
curb drift, while it was 0.87 m for the right curb drift, which
is very close to that obtained in [11].

The bottom results of Fig. 7 demonstrate that the curve
smoothness for the left side has a good agreement with the
filtered one. However, the maximum difference with about
10 m at a distance of 25 m with respect to the vehicle. In
contrast, the curve smoothness values for the right side have a
better agreement than the left side onewith the corresponding
filtered one. However, the maximum difference was about
3.72monly at the distance of 27mwith respect to the vehicle.

4 Method evaluation

With referring to the ground truth of the considered dataset,
we calculated the Accuracy, Precision, and Recall metrics
for evaluating performance. The formulas can be defined as
follows:

• 1. The accuracy is defined as the overall correctness of
the model, which is computed by the ratio of correctly
classified curb points:

Accuracy = (True Posi tives + True Negatives)

True Posi tives + True Negatives + False Posi tives + False Negatives)

• 2. The precision reflects howmany of the curb points iden-
tified by the model actually curbs are and can be given by:

Pricision = True Posi tives

(True Posi tives + False Posi tives)

• 3. The recall indicates how many of the actual curb points
were correctly detected by the model and can be given by:

Recall = True Posi tives

(True Posi tives + False Negatives)

where in Lidar point cloud data of curb detection, True
Positive (TP) represents a point that is correctly classified
as a curb point, False Positive (FP) represents a point that
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Fig. 6 Visualization for the point cloud over a cropped input point cloud, off-road point cloud, and on-road point cloud

Fig. 7 Tracking process of curb points
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Fig. 8 The results of the evaluation of curbs’ drift by comparing the
filtered drift measurements with the drift values are on top, while
the evaluation of the curb polynomial smoothness, which is a rate of

variation in the slope of the curb polynomial, by comparing the curve
smoothness and the filtered curve smoothness is on the bottom

is incorrectly classified as a curb point (an object near
the curb or a noise point), True Negative (TN) represents a
point that is correctly classified as a non-curbpoint (usually
ground), and FalseNegative (FN) represents an actual curb
point that is missed by the model (not classified as a curb
point).

Feature Proposed Method (Lidar ROI) Existing Techniques

Method Extracts ROI, classifies points (ground vs
non-ground), analyzes features (elevation,
slope, normal) for curb detection

Manual feature extraction ([11, 19], and [22]) < br >—Deep
learning based methods (3D U-Net[23], Cylinder 3D [24])

Strengths Potentially efficient due to focusing on a
specific region (ROI). May be robust to
variations in ground surface (e.g., uneven
terrain)

Manual methods offer interpretability but may struggle with
complex data.—Deep learning methods can be data-hungry and
require careful training

Weaknesses Reliant on accurate ground segmentation and
feature selection. Performance might be
affected by complex curb shapes or objects
near curbs

Manual methods might require domain knowledge for feature
selection

Evaluation
Metrics

Precision: 0.8782
Recall: 0.8695

Ref. Precision Recall

[19] 0.7209 0.7013

[22] 0.6878 0.6864

[11] 0.6854 0.6564

[23] 0.7695 0.7492

[24] 0.8049 0.8038

5 Conclusions

This work presents a real-time development method of curb
point recognition and tracking using 3D point cloud data of
Lidar sensors. A Kalman filter is employed to track these
curbs while taking the motion of the vehicle into account.
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The robustness and correctness of the suggested method are
demonstrated by employing the PandaSet dataset. The real-
time simulation demonstrates that the suggested method for
curb tracking and identification is time-efficient and accurate.
The curb drift results demonstrated that the drift values were
approximately constantwith the filtered drift values along the
Y-axis (m) and the drift difference increases between (25–30)
m far from the vehicle from both sides the left and right of the
car. The curve smoothness results demonstrated that the curve
smoothness for the left and right sides have a good agreement
with the filtered one and the values for the right side have a
better agreement than the left side one with the correspond-
ing filtered one. The difficulty of finding a junction without
curbs is still a challenge. To improve the detecting method’s
accuracy and reliability, additional changes such as a high-
accuracy digital map should be correctly included.

As future work, some methods to integrate IoT with curb
detection includes; (1) a role in data collection, where IoT
devices could be utilized to collect additional data about the
nearby location, such as radar data from sensors or images
from cameras. This information might then be employed to
advance the curb detection accuracy. (2) A role in real-time
monitoring, which could be employed to provide warnings
to drivers about upcoming hazards by renewing maps.
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