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Abstract
Metaheuristic algorithms with machine learning techniques have become popular because it works so well for problems like
regression, classification, rule mining, and clustering in health care. This paper’s primary purpose is to design a multi-disease
prediction system using AI-based metaheuristic approaches. Initially, the data is collected in the form of diverse classes,
which include Id, gender, date of birth, etc. The data has been preprocessed, normalized, and graphically represented to
improve its quality and detect any errors. Later, machine learning models, such as decision tree, extra tree classifier, extreme
gradient boosting classifier, light gradient boostingmachine classifier, random forest, and artificial neural network, are initially
trained without optimizing hyperparameters and then fine-tuned by integrating various hyperparameter optimizers such as
grid search CV, random search, hyperband, and genetic search. During experimentation, it is found that optimizing the
models using random search optimizer computed the highest accuracy of 100% as compared to the rest of the hyperparameter
optimizers. In the context of ‘Service Oriented Computing and Applications,’ our multi-disease prediction system offers
valuable innovation. It aligns with the goal of enhancing healthcare services, patient outcomes, and healthcare efficiency. Our
pioneering integration of metaheuristic algorithms and machine learning introduces intelligent healthcare solutions, with the
study’s focus on hyperparameter optimization and achieving 100% accuracy demonstrates practical significance in SOC and
its applications.

Keywords Metaheuristics · Medical data · Hyperparameters · Random search · Machine learning · Artificial neural network

1 Introduction

There are three main ways to handle combinatorial-based
problems, one of which way is examining the space of mul-
tiple combinations in such a way that either we can find a
solution or it will be proven that the solution is inconsis-
tent. Pruning techniques and heuristics have not always been
able to restrain such problems because of either higher com-
putational time or deliberately ignoring some combinations
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[1]. As a result, we are not able to find the optimal solu-
tion, and also using these techniques, we would not be able
to prove whether the optimality of the combination which
is found is actually optimal or not. In fact, these problems
are even more complex for computer scientists because solv-
ing them requires a huge number of combinations. Hence
to solve such challenging and complex combinatorial issues,
there are some generic methods which are known as meta-
heuristics [2]. Ametaheuristic is a combination of twowords,
i.e., ‘meta’ as well as ‘heuristics,’ in which meta means
beyond and heuristic means search. This advanced heuristic
algorithm uses trial and error to find the optimal solution at
advanced levels [3]. Moreover, metaheuristic algorithms are
used for solving the problem to provide a general solution
with genuine accuracy and speed without even having the
information about the problem. Metaheuristics are a family
of various algorithms designed to solve a high and complex
number of combinatorial problems without even having to
adapt them deeply to each problem. In a true sense, they also
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do not guarantee optimal solutions but try to provide them in
a considerable amount of time [4].

Metaheuristic techniques have been successfully applied
to machine and deep learning techniques for speeding up
the training and testing process. In fact, in these years,
considerable growth has been found in integrating AI-
based techniques with metaheuristics to solve combinatorial
optimization-based problems [5]. It has also been found
that combining metaheuristics with AI leads to an effective,
efficient, and robust search which improves the execution
of the models in terms of their quality of the solution,
robustness, and convergence rate [6]. Machine learning, the
subset of artificial intelligence, learns from a huge dataset to
make correct predictions. It is broadly classified into three
types of learning, i.e., supervised, unsupervised, and semi-
supervised. Supervised learning works on the set of labeled
data where the goal or aim is the output prediction in the form
of a response variable from the explanatory input variables
[7]. This type of learning is majorly used in classification,
regression, reducing dimensions, predicting time series, and
reinforcement learning. Likewise, in the case of unsupervised
learning, the models are being trained with the unlabeled
set of data which is used to obtain compact descriptions of
the data and does not include any response variable as an
output [8]. Unsupervised learning had various tasks such as
detecting anomalies, clustering, categorizing, modeling time
series, etc. Semi-supervised learning is similar to supervised
learning, but here all the input data do not have an associated
output value. This type of learning is mainly used in those
problems in which the models are being trained with a huge
set of unlabeled samples, and only a few are labeled manu-
ally [9]. On the other hand, the subset of machine learning,
i.e., deep learning uses multiple layers to process complex
structure data. There are many deep learning techniques such
as recurrent neural network, convolutional neural network,
restricted Boltzmann machines, deep Boltzmann machines,
auto-encoders, and deep belief networks [10]. Deep learning
plays a vital role in those research areaswhich have to process
large and big data for recognizing patterns, processing natu-
ral languages, classifying images, etc. In deep learning, the
algorithms learn the raw data layer by layer so that the data
can be transformed from raw feature space to transformed
feature space [11]. In addition, deep learning algorithms also
work on nonlinear functions and are perfect for classification.
In fact, the convolutional neural network in deep learning is
the most highly used, particularly for image detection and
classification [12].

Although machine and deep learning have been widely
used by the research and development industry and have out-
performed in their respective areas, they also have specific
areas for improvement, such as being time-consuming and
space-consuming [13]. Hence, in this paper, to overcome
the drawback of AI-based techniques, the main aim of the

research is to develop a metaheuristic-based disease predic-
tion system using machine learning models. Besides this, we
also want to examine the performance of models with and
without applying metaheuristic optimizers based on their F1
score, recall, accuracy, and precision.

Within the context of ‘Service Oriented Computing and
Applications (SOCA),’ our multi-disease prediction system
offers significant value. Our research directly aligns with this
goal by introducing an innovative AI-driven approach that
can enhance healthcare services, improve patient outcomes,
and streamline healthcare processes. The integration ofmeta-
heuristic algorithmswithmachine learning techniques repre-
sents a groundbreaking contribution, creating new possibili-
ties for intelligent and adaptable service-oriented healthcare
solutions. Moreover, our study’s focus on optimizing hyper-
parameters and achieving the great accuracy highlights the
practical applicability and effectiveness of our approach in
the SOC field and its applications.

1.1 Contribution

The following contributions have been made to the comple-
tion of this research:

• Initially, the data is collected frommedical dataset inwhich
there are 14 attributes such as id, gender, date of birth, edu-
cation, employment status, children, marital status, and
disease. Besides this, 12 classes of diseases from the same
dataset have been taken, such as hypertension,Alzheimer’s
disease, multiple sclerosis, endometriosis, prostate cancer,
heart disease, HIV/AIDS, gastric, skin cancer, kidney dis-
ease, breast cancer, and schizophrenia to train the models.

• The dataset is preprocessed in the second phase to iden-
tify NAN or missing values. Encoders are applied to the
selected attribute to normalize the values.

• In the third phase, the data is graphically visualized to
detect the anomaly as well as to understand it in a better
way. The exploratory data analysis of various categories of
the dataset has been generated and described, such as the
number of males and females, the count of people having
the aforementioned kind of diseases, the number of people
either in or not in the military service, etc.

• In the fourth phase, various hyperparameter optimiz-
ers, like grid search CV, random search, hyperband, and
genetic optimizer on integrating with themachine learning
models, are applied.

• The last phase evaluates models based on performance
parameters like precision, accuracy, recall, and F1 score
for both combined and distinct dataset classes.
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1.2 Paper organization

Section 1: brief description of the metaheuristic, machine,
anddeep learningmodels, the need formetaheuristics in these
models along with the aim of this research as well as the
contribution made.

Section 2: information about the work done by the
researchers who have applied metaheuristic optimizers to
improve AI-based techniques as well as for detecting var-
ious diseases.

Section 3: defines the research methodology, which cov-
ers the description of the dataset, preprocessing of the data,
exploratory data analysis, applied hyperparameter optimiz-
ers, and machine learning models, along with the perfor-
mance metrics.

Section 4: applied models are examined and analyzed.
Section 5: conclusion of the whole paper.

2 Background

This section is split into two parts. The first shows how
experts have used metaheuristic techniques to improve AI-
based learning models, and the second shows how these
techniques have been used in the field of health care.

2.1 Metaheuristics for optimizingmachine learning
algorithms

Faris et al. [14] introduced the use of the multi-verse opti-
mizer (MVO), a nature-inspired algorithm, to trainmultilayer
perceptron neural networks. The novelmethodwas evaluated
on nine diverse biomedical datasets sourced from the UCI
machine learning repository and was compared with con-
temporary evolutionary metaheuristic algorithms. Aljarah
et al. [15] introduced the grasshopper optimization algorithm,
inspired by swarm behavior as a novel work, to optimize sup-
port vector machine (SVM) parameters and simultaneously
selected the best feature subset. The method’s effective-
ness was assessed across eighteen benchmark datasets with
varying dimensions. Comparison was made against seven
established algorithms and the popular grid search technique
for SVM parameter tuning. Experimental results revealed
their proposed approach performed well in terms of classi-
fication. Tao et al. [16] presented a novel approach using
genetic algorithm to enhance the predicting accuracy of a
hospitalization expense model through parameter optimiza-
tion as well as feature selection of support vector machine
(SVM). Hospitalization expense data had been preprocessed,
clustered using k-means, and transformed into a chromo-
some with kernel function, kernel penalty factor, and feature
mask. A fitness function combining classification accuracy
and feature count guided GA in optimizing SVM parameters

and feature subset selection. The algorithm was compared to
GA-PCA and PSO-PCA in single-parameter optimization,
demonstrating its efficiency in achieving improved classifi-
cation results by swiftly identifying suitable feature subsets
and SVM parameters. In the same way, Faris et al. [17]
discussed about a new hybrid encoding scheme and used
well-known stochastic population-based methods for opti-
mizing the number of hidden neurons as well as connection
weights in a single hidden-layer feedforward neural network.
Through experiments conducted on twenty-three standard
classification datasets, their proposed technique was both
qualitatively and quantitatively benchmarked. Their findings
indicated that the hybrid encoding scheme facilitates effi-
cient optimization of both hidden node count and connection
weights by various optimization algorithms.

Mirjalili [18] introduced the application of the gray wolf
optimizer to train multilayer perceptrons (MLPs) for the first
time. Their model was evaluated on eight different datasets,
comprising both classification and function approximation
tasks. The performance of GWO was compared to several
established evolutionary training algorithms, namely evolu-
tion strategy, particle swarm optimization, genetic algorithm,
and population-based incremental learning. Their experi-
mental results highlighted that the GWO algorithm exhibited
competitive outcomes in terms of avoiding local optima,
which demonstrated its efficacy in achieving improved
solutions. Amirsadri et al. [19] introduced a novel hybrid
algorithm for training neural networks that combined a
gradient-based approach with a metaheuristic method. Their
hybrid algorithm capitalized on both local and global search
strategies, overcoming issues related to local optima. The
algorithm enhanced the global search capability of the GWO
by incorporating Levy flight, a random walk with jumps
following the Levy distribution, resulting in more effective
exploration of the search space. The improved algorithm
was then merged with backpropagation (BP) to leverage
the strengths of GWO’s enhanced global search and BP’s
local search in neural network training. The researchers
assessed the performance of their algorithm through a com-
parison with established metaheuristic algorithms across
twelve datasets involving classification and function approx-
imation tasks.

2.2 Metaheuristics for feature selection
or optimization of machine learning algorithms
in themedical domain

Hu and Razmjooy [20] developed a metaheuristic-based
system to detect brain tumors in their early stages. The
researchers initially segmented the tumor and then extracted
features from it. Later, deep belief network integrated with
the seagull optimization was used for the classification.
The results were also compared with their existing ones
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in which the particular method obtained the highest Per-
formance in accuracy, which was 88%. Eshtay et al. [21]
optimized extreme learningmachine input weights as well as
hidden neurons using competitive swarm optimizer (CSO).
The study considered both classical ELM and its regular-
ized variant, aiming to enhance generalization performance,
stabilize classification, and create more compact networks
by reducing hidden-layer neurons. The proposed method
was evaluated across 15 medical classification tasks. Their
results revealed that the approach achieved improved gen-
eralization performance, reduced hidden neuron count, and
greater stability. Likewise, Shankar et al. [22] integrated the
ant lion optimization model with the deep neural network
to develop the system for predicting chronic kidney disease.
The metaheuristic optimizer was taken to choose the optimal
features to enhance the classification process. Their devel-
oped system computed accuracy at 96.63%, sensitivity at
98.22%, and specificity at 91.22%. Chitradevi et al. [23] had
applied optimization techniques such as LOA, BAT, artificial
bee colony, and particle swarm optimization for segmenting
brain regions to identifyAlzheimer’s disease. Their proposed
model obtained 95% accuracy, which was best compared to
the others. The overall work of their proposed model was
to demonstrate the abnormalities inside the brain, which
provided a reliable and accurate indication to the clinician
about the progression of Alzheimer’s disease. Canayaz [24]
presented a deep learning-based methodology for early dis-
ease diagnosis. The research was conducted on the 1092
X-ray images of lungs having three classes like normal,
COVID-19, and pneumonia. Initial data underwent image
contrast enhancement preprocessing, which resulted in a
new dataset. Deep learning models, like AlexNet, ResNet,
VGG19, and GoogleNet, were utilized to extract features
from this enhanced dataset. To identify the most effective
features, binary gray wolf optimization as well as binary
particle swarm optimization was employed. The selected
features were then combined and subjected to classification
using support vector machines. The approach 99.38% accu-
rately diagnoses the disease at an early stage. Roostaee and
Ghaffary [25] had worked on a dataset of 303 people hav-
ing 14 features in it. The work was conducted using binary
cuckoo optimization along with the support vector machine
for detecting and diagnosing heart diseases. The features
were selected using a metaheuristic technique to obtain the
optimal features andwere classified using amachine learning
model. Nadimi-Shahraki et al. [26] worked on an enhanced
version of the whale optimization algorithm called E-WOA.
Its performance was assessed and compared to prominent
WOA variants for global optimization challenges, demon-
strating its superiority. Building on E-WOA’s success, a
binary variant, BE-WOA, was proposed for effective feature
selection, especially in medical datasets. BE-WOA’s efficacy

was validated on the dataset of medical diseases and distin-
guished with leading optimization algorithms using fitness,
accuracy, sensitivity, precision, and feature count as crite-
ria. Rashid et al. [27] focused on four different metaheuristic
algorithm-based optimizers—gray wolf optimizer, harmony
search, sine–cosine algorithm, as well as ant lion optimiza-
tion—to effectively train and structure the long short-term
memory technique. These optimizers contributed to address-
ing the stated concerns raised by the authors in the paper.
The proposed approach was applied to classify and ana-
lyze real-world as well as medical time series datasets,
specifically the Breast Cancer Wisconsin Dataset and the
Epileptic Seizure Recognition Dataset. The experimentation
was rigorously validated through the application of fivefold
cross-validation methodology. Elgamal et al. [28] proposed
chaotic Harris Hawks optimization, a metaheuristic opti-
mization technique that improved the HHO algorithm. That
improvement required two changes. First, chaotic maps were
added to HHO’s startup phase to increase search space pop-
ulation diversity. Second, the simulated annealing algorithm
refined the best solution, improving HHO’s exploitation.
Applying CHHO to 14 UCI machine learning repository
medical benchmark datasets showed its efficacy. Oyelade
et al. [29] introduced a novel metaheuristic algorithm called
the Ebola optimization search algorithm, by drawing inspi-
ration from the propagation mechanism of the Ebola virus
disease. Their newmodel was expressed through a system of
differential equations. By combining the propagation model
with mathematical equations, the EOSAwas formulated as a
metaheuristic algorithm. The algorithm’s effectiveness was
evaluated against established optimization methods using a
comprehensive range of benchmark functions, both classical
and constrained. Moreover, the EOSA was applied to opti-
mize the hyperparameters of a convolutional neural network
(CNN) for digital mammography to classify image, achiev-
ing an impressive 96.0% accuracy in detecting breast cancer.

3 Methodology

The flow that has been used to conduct the research has been
presented in this section. Various libraries have been ini-
tially imported, such as Numpy, Pandas, Matplotlib, Keras,
seaborn, warnings, and sklearn. The Python language was
used to carry out thework in Jupyter, windows 11. The frame-
work for the same is shown in Fig. 1.

3.1 Collection of data

The data has been taken from the medical dataset, which has
the standard information related to individuals from various
ancestral lines [30]. The data has been taken in the form of
.csv format, split into fourteen columns, and 2000 records
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Fig. 1 Proposed design for
multi-disease detection system

Table 1 Attributes of the medical
dataset Attribute Values

Id Amelia Nixon Clara Hicks Mason
Brown

Micheal
Rice

Eleanor
Ritter

Gender Female Female Male Male Female

Dob 1944–03-09 1966–07-02 1981–05-31 1945–02-13 1939–09-03

Zipcode 89,136 94,105 89,127 44,101 89,136

Emp_status Retired Employed Employed Retired Retired

Education Bachelors Phd/md Masters Bachelors Masters

Martial_status Married Married married Married Married

Children 1 4 2 2 3

Ancestry Portugal Sweden Germany Denmark Austria

Avg_commute 13.38 15.16 23.60 19.61 36.55

Daily_internet_use 2.53 6.77 3.63 5.00 7.75

Available vehicle 2 2 1 3 1

Military service No No No No No

Disease Hypertension Endometriosis Prostate
cancer

Multiple
sclerosis

Skin cancer

such as ID, gender where 51% are female, and 49% are
male, date of birth, Zipcode, etc. In addition, the medical
data also contains 12 classes of diseases, such as hyperten-
sion, Alzheimer’s disease, multiple sclerosis, endometriosis,

prostate cancer, heart disease, HIV/AIDS, gastric, skin can-
cer, kidney disease, breast cancer, and schizophrenia. The
attributes of the dataset which have been taken are shown in
Table 1.
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Table 2 Checking of null values in medical dataset

Attribute Value

Id False

Gender False

Dob False

Employment_status False

Education False

Martial_status False

Children False

Ancestry False

Avg_commute False

Daily_internet_use False

Available_vehicles False

Military_service False

Disease False

Table 3 Applying encoders to the dataset

Data[‘gender’] � label_encoder.fit_transform(data[‘gender’])
Data[;employment_statur’] �
label_encoder.fit_transform(data[‘employment_statur’])
Data[‘education’] �
label_encoder.fit_transform(data[‘education’])
Data[‘marital_status’] �
label_encoder.fit_transform(data[‘marital_status’])
Data[‘ancestry’] �
label_encoder.fit_transform(data[‘ancestry’])
Data[‘disease’] �
label_encoder.fit_transform(data[‘disease’])
Data[‘military_service’] �
label_encoder.fit_transform(data[‘military_service’])

3.2 Data preprocessing

The most important and first phase of developing the model
is preprocessing the data in which the null values are being
checked using SimpleImputer Library. During execution, it
has been found that all the attributes generated false values as
shown in Table 2, which means there are no null or missing
values against any attribute.

In addition to this, encoding of dataset has been done to
normalize it so that the features can be easily selected from
the entire dataset for both training and testing dataset. The
code to apply encoders is shown in Table 3 for both training
and testing dataset.

3.3 Exploratory data analysis

The preprocessed data is later visualized in terms of bar
graphs for a better understanding of the data in terms of vari-
ous attributes such as the number ofmales and females, count

of diseases, number of males and females affected by these
diseases, usage of the internet on a daily basis, number of
people who are in the military and are not in the military,
employment status, ancestral lines, etc.

From Fig. 2a, b, gender attribute has been taken to present
the count of male and female as well as their marital sta-
tus. As we can see, there are 950 females, out of which the
count of married females is 700, and single 250. On the con-
trary, out of 1000 males, 750 are married, and 250 are single.
From the disease attribute, the data has been analyzed based
on a count of diseases. As earlier mentioned, 13 diseases
have been taken out of the most occurred one is Alzheimer’s
disease with a count of approx 350. The minor count has
been shown by Schiropezia of 50. On assaying the count
of other diseases, it has been found that hypertension (350),
endometriosis (55), prostate cancer (155), multiple sclerosis
(100), skin cancer (225), kidney disease (155), breast cancer
(150), HIV/AIDS (55), heart disease (55), diabetes (100),
and gastric (100). It has been found how many males and
females are affected by these diseases based on the disease
count.

In Fig. 3c, from the female side, out of 950, the high-
est disease occurred is Alzheimer’s disease, with a count
of 155, followed by the second highest, hypertension, with
approximately 152. The least disease count is shown by
schizophrenia, with a count of 25, and prostate cancer has
a count of 0. Similarly, from the male end, out of 1000, the
highest disease count has been shown by prostate cancer and
Alzheimer’s disease, with a count of 175. On the contrary,
the least count of disease is shown by schizophrenia, with a
count of 25, followed by zero counts of endometriosis and
breast cancer.

In Fig. 3d, the employment status has been broadly classi-
fied into four categories: retired, employed, unemployed, and
student. On comparing all these categories with the diseases,
it has been found that from retried section, the highest count
of disease that has occurred is Alzheimer’s disease (180), fol-
lowed by hypertension (140). The least disease found for this
category is HIV/AIDS,with a count of 5–10. In the employed
group, hypertension has the highest count at 115, followed
by Alzheimer’s disease at 105.

In contrast, the least count of 15 and 20 has been shown by
endometriosis and schizophrenia, respectively. In the unem-
ployed category, the highest disease count has been shown
by Alzheimer’s and hypertension, while the lowest disease
that has occurred in these people is schizophrenia. At the
end for the student category, the count of diseases is very
low, and very few diseases have happened to them, such as
hypertension, prostate cancer, HIV/AIDS, diabetes, gastritis,
and schizophrenia.

Figure 4e describes the count of females and males men-
tioned in the dataset that belong from various countries such
as Portugal, Sweden, Germany, Denmark, Austria, Hungary,
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Fig. 2 EDA of a marital status of
male and female, b count of
diseases

Ireland, Ukraine, Russia, Netherlands, Poland, Belgium,
Finland, England, Italy, Czech Republic, France, Scotland,
Switzerland, and Spain. It has been found that most of the
females belong to Switzerland, which counts more than 65,
followed by Ireland andPoland,which counts 62.On the con-
trary, the least number ofwomen has been shown in Scotland,
with 35 in number.On the other side, the countrywhich offers
the largest count of males is Portugal with 70 in number fol-
lowed by Sweden, Ireland, and Italy with 60 in number each,
while Ukraine and the Czech Republic have shown the least
with 40 each in number.

In continuation with this, another Fig. 4f reflects the count
of the people based on the diseases such as hypertension,
Alzheimer’s disease, prostate cancer, breast cancer, etc., who
worked either in military service or did not. It has been
found that 300 people who do not work in military service
mainly deal with Alzheimer’s disease, followed by hyper-
tension in 255 people. On the contrary, only 50 non-military
service people have schizophrenia which is the lowest among
all. Now, on the other hand, when we look at the graph of
those people who have been working in military service are
suffering from the diseases such as hypertension, prostate

cancer, multiple sclerosis, skin cancer, Alzheimer’s disease,
HIV/AIDS, kidney disease, heart disease, diabetes, gastritis,
and schizophrenia and out of all these the highest number of
military service people have Alzheimer disease which is 45
in number.

Besides the study of the above data, the graph in Fig. 5a,
b is about the average commute, which means the people
who travel a long distance for work as well as the people
who use the internet daily, has also been presented in which
the highest peak is pointed out at more at 0.040 and 0.25,
respectively.

3.4 Classifiers

This section gives the brief description about the metaheuris-
tic optimizers as well as the AI models that have been used
to develop the multi-disease prediction system.

3.4.1 Applied models

Several machine learning models are used, such as extra tree
classifier, random forest, LGBM, decision tree, XGB, and
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Fig. 3 EDA of c gender, d employment status vs. diseases

Fig. 4 EDA of e ancestry, f military service
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Fig. 5 EDA of g avg_commute, h daily internet use

artificial neural network. In this part, we will talk briefly
about each of these models.

Random Forest (RF) It is a machine learning technique
given by Leo Breimna and Adele Cutler. This algorithm con-
sists of various decision trees, where each tree has a data
sample drawn from the training dataset based on replace-
ment. This theory is also called a bootstrap sample. Further,
these decision trees’ outputs are combined to generate a sin-
gle result. The random forest can control both regression
and classification problems [31]. There are three hyperpa-
rameters in the random forest algorithm: the node’s size, the
number of trees, and the number of sampled features. An
essential characteristic of this algorithm is that it prevents
overfitting and can work on the continuous and categorical
dataset in case of regression and classification, respectively.
In addition, it has also been found that if the decision trees
are higher in number, then the higher will be the accuracy of
the random forest [32].

Decision Tree Classifier (DT) Like the random forest, this
algorithm can also be performed on both regression and clas-
sification. If we look at the architecture of the decision tree,
there are two nodes, i.e., the decision node and the second
one is the leaf node. Decision nodes have multiple branches,
which are used tomake decisions, while the leaf nodes do not

have any other branches and hence are used to generate the
output [33]. This supervised machine learning algorithm is
mainly a representation of data in graphical form to obtain all
the possible solutions to any problem based on the given con-
ditions. The decision tree algorithm starts working from the
root node and compares the values of the root attribute with
the actual dataset. Based on that comparison, the algorithm
switches to the next node by following the corresponding
branch. The same operation is repeated for the subsequent
node, which means that the algorithm compares the attribute
value to those of the sub-nodes and continues. The process
is repeated until the leaf node of the tree is reached [34].

Extra Tree Classifier (ET) An extra tree is also known
as an extremely randomized trees classifier. It is also an
ensemble machine learning-based technique that uses mul-
tiple un-pruned decision trees and trains them to get the
aggregated results and predict the output based on either a
majority vote or taking the average of the outputs generated
by the decision trees. The extra tree classifier tree is being
constructed using the sample of original training data. For
each test node, the random selection of k features is provided
to every tree from the set of features so that each decision tree
selects the best feature [35]. The extra tree classifier works
like the random forest algorithm in which multiple decision
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trees are created. Still, unlike the replacement theory in a
random forest, the sampling of each tree is random. This
random sampling helps to create the dataset of each decision
tree with unique samples. In fact, instead of calculating the
entropy or Gini index value for splitting the data, this algo-
rithm randomly selects the split value, which makes this tree
uncorrelated and diversified. Moreover, the extra tree clas-
sifier works using Sckit-learn and helps build classification
and regression models [36].

LGBM Classifier LGBM stands for light gradient boost-
ing machine classifier, which also works on decision trees to
improve its efficiency and reduce the usage of more memory.
LGBM classifier uses two techniques, i.e., exclusive feature
bundling and gradient-based one-side sampling. These tech-
niques help the algorithm overcome the drawback of the
histogram-based algorithm,which ismainly used in all gradi-
ent boosting decision tree frameworks [37]. LGBM splits the
tree in a leaf-wise manner opposite to that of boosting algo-
rithms which grow in the tree levels. The algorithm selects
the leaf with maximum delta loss to grow, and as soon as the
leaf is selected, it has been found that the level-wise algo-
rithmshows agreater loss than the leaf-wise algorithm,which
enhances the accuracy. But on the contrary, the leaf-wise kind
of growth also increases the model’s complexity and causes
overfitting when dealing with a limited dataset. Overall,
LGBM is distributed, fast, and performs well for classifi-
cation, ranking, or any other machine learning task [38].

XGBClassifier XGB stands for extreme gradient boosting
algorithm, which relies on a decision tree and uses boosting
to improve performance. It is one of the most effective types
of machine learning algorithm, producing the best results
compared to other algorithms like the random forest, logistic
regression, etc. In this research work, we have used this algo-
rithm as it works nicelywith the Sckit-learnmachine learning
framework is good at solving regression and classification-
based problems effectively [39].

Artificial Neural Network (ANN) The word ‘artificial neu-
ral network’ derives from the biological nervous system,
which develops the human brain structure. Like the neu-
rons in the human brain are connected, in the same way,
the artificial neural network also has specific neurons, also
called nodes, that are connected to each other in various types
of layers [40]. The role of an artificial neural network is to
make the computer understand things and make decisions as
humans do in a real-life manner. ANN consists of various
elements or layers, such as an input layer, a hidden layer, and
an output layer. The input in the form of weights is received
in the input layer which is further sent to the hidden layer
where bias is added, and an activation function is used to
process the equation. In the last, the output is generated in
the output layer as a predicted value [41]. In Fig. 6, a math-
ematical diagram of ANN is shown where the arrow is the
connection between the two nodes or neurons and represents

Fig. 6 Mathematical architecture of ANN model

the path through which the information is flown. Each con-
nection has a weight which is an integer number used for
controlling the signal between the two neurons. If the output
layer of ANN can compute the desired output, then weights
are not being adjusted, while if the output is undesired, then
the weights are being changed till we get better results from
the ANN model.

In the context of machine learning models, hyperpa-
rameters are essential tuning parameters that influence the
behavior of the model during training. Here, the hyperpa-
rameters for various algorithms, such as random forest (RF),
decision tree (DT), extra trees (ET), LightGBM (LGBM),
XGBoost (XGB), and artificial neural network (ANN), are
provided which have been taken while training them with
the dataset with the value of cross-validation as 3. For the
Random Forest algorithm, the ’n_jobs’ parameter is set to
-1 which enables the usage of all available processors dur-
ing training. The ’Random_state’ parameter is set to 1 for
reproducibility to ensure the consistent results across differ-
ent runs. In case of decision tree, the ’Class_weight’ is not
specified, hence implying equal weight for all classes. The
’Criterion’ is set to ’Gini,’ which signifies the splitting crite-
rion for decision trees in the forest.

Moving to LightGBM, the ’Colsample_bytree’ is set to
0.45 that controls the fraction of features to consider when
building each tree. The ’Learning_rate’ is set to 0.057, and
the ’Max_depth’ is 14 which determine the maximum depth
of the individual trees. Additionally, ’Num_leaves’ is set to 5
that influence themaximum number of leaves in one tree. For
XGBoost, ’Colsample_bytree’ is specified as 0.8 to represent
the fraction of features to be randomly sampled for each tree.
The ’Max_depth’ is set to 2 that determine the maximum
depth of a tree. The ’Gamma’ parameter, which controls the
minimum loss reduction required to make a further partition
on a leaf node, is set to 0. Later, the objective function is
’Binary:logistic,’ that indicates a binary classification prob-
lem.Lastly, for theArtificialNeuralNetwork (ANN), ’Neu-
rons’ represents the number of neurons in the hidden layer
which is set to 132. ’Batch_size’ is set to 32, which indicates
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the number of samples used in each iteration during train-
ing. ’Epochs’ is set to 20, which define the number of times
the learning algorithm will work through the entire training
dataset. The ’Activation’ function is specified as ’Relu,’ and
the ’Seed’ parameter is set to 27 for reproducibility.

These hyperparameter configurations play a crucial role
in shaping the performance and generalization ability of the
respective machine learning models. Proper tuning of these
parameters is vital to achieving optimal results inmodel train-
ing and deployment.

3.4.2 Hyperparameter optimizers

In this section, the hyperparameters of the models have been
fine-tuned using various hyperparameter optimizers such
as grid search CV, random search, hyperband, and genetic
search toobtain optimal results.Grid searchCV is alsoknown
as grid search cross-validation. It searches the configurations
of all the given hyperparameters and later fine-tunes them.
This tool helps in finding the optimal values of a model from
the given set of parameters present in a grid. Grid search
CV uses the parameters such as an estimator, parameter grid,
scoring, cross-validation, verbose, and number of jobs dur-
ing its execution [42]. On integrating with the entire applied
machine learning models with grid search CV, the hyperpa-
rameters obtained are presented in Table 4.

The second hyperparameter optimizer that has been used
is random search, in which the combinations in the search
space are randomly searched but in the bounded domain. It
is somewhat similar to grid search CV, but unlike grid search,
here it is necessary to specify the number of models we train.
In addition, the set of possible values for the hyperparam-
eters is also not selected here, instead of which statistical
distribution is used. Another major difference is that when
we apply grid search CV, every possible combination of pos-

sible hyperparameters is found to obtain the best model. In
contrast, random search does exactly the opposite of it, i.e.,
it tests only the randomly selected combination of hyperpa-
rameters [43]. On integratingwith the entire appliedmachine
learning models with random search, the hyperparameters
obtained are shown in Table 5.

The third hyperparameter optimizer used is hyperband
optimizer which is used to tune iterative algorithms. This
novel optimizer is flexible and simple and allocates prede-
fined resources to the models, such as iterations, number of
data samples, features, etc. This optimizer generates subsets
in small sizes and allocates the aforementioned resources to

every hyperparameter combination based on its performance
[44].On integrating the entire appliedmachine learningmod-
els with hyperband search, the hyperparameters obtained are
shown in Table 6.

The last hyperparameter optimizer used is genetic search
which provides a powerful technique to fine-tune the param-
eters. The parameters used primarily by genetic search are
probability crossover, mutation probability, and population
size. This algorithm is based on natural genetic selection.
It detects the hyperparameter combinations in every gener-
ation, which are then passed to the next one until or unless
the combination which is best-performing is detected [45].
On the contrary, this optimizer also has a drawback: it is not
suited for parallelization. On integrating the entire applied
machine learning models with genetic search, the hyperpa-
rameters obtained are shown in Table 7.

3.5 Evaluative parameters

After integrating themachine learningmodels with themeta-
heuristic optimizers to fine-tune their hyperparameters for
the medical dataset, the performance of these models is
evaluated based on various parameters such as precision,
accuracy, recall, and F1 score [46–50]. Accuracy is an impor-
tant parameter used to compute the model’s effectiveness in
predicting the output class of data. Initially, the models are
trained, and their accuracy values are calculated to check how
efficiently they have been trained. It is shownbyEq. (1).After
accuracy, other values of the models are also computed, such
as Precision, in which the relevant class values are obtained
out of the retrieved values of the class. On the contrary, recall
is the proportion of relevant instances retrieved. These are
computed by Eqs. (2, 3). Based on the harmonic values of
both precision and recall, the F1 score value is generated
using Eq. (4).

Accuracy � True Positive + True Negative

True Positive + False Negative + True Negative + False Positive
(1)

Precision � True Positive

True Positive + False Positive
(2)

Recall � True Positive

True Positive + False Negative
(3)

F1 score � 2
Precision ∗ Recall

Recall + Precision
(4)
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Table 4 Fine-tuning of hyperparameters using GridSeacrhCV

Models Hyperparameters

Random forest ‘n’estimators: [10, 20, 30], criterion: [‘gini’, ‘entropy’], ‘max_depth’: [15, 20, 30, 50]

Decision tree ‘max’depth: [15, 20, 30, 50], ‘n_estimators’: [10, 20, 30], ‘criterion’: [‘gini’, ‘entropy’]

Extra tree criterion: [‘gini’, ‘entropy’], ‘max’depth: [15, 20, 30, 50], ‘n_estimators’: [10, 20, 30],

LGBM ‘learning_rate’:[0.05], ‘nthread’: [4], ‘silent’: [1], ‘objective’:]binary: logistic’],
‘min_child_weight’: [11], ‘subsample’: [0.8], ‘n-estimators’: [5],
‘missing’: [-999], ‘send’ [1337], ‘colsample_bytree’: [0.7], ‘max_depth’: [6],

XGB ‘nthread’: [4], ‘learning’rate: [0.05], ‘objective’: [binary: logistic],
‘max_depth’: [6], ‘silent’ [1], ‘min_child_weight’: [11] ‘subsample’: [0.8],
‘colsample_bytree’: [0.7], ‘missing’: [-999], ‘n_estimators’: [5], ‘seed’ [1337]

ANN ‘patience’: [2, 5], ‘batch’size: [16, 32], ‘activation’: [‘relu’, ‘tanh’], ‘neurons’: [16, 32], ‘epochs’: [20, 50]

Table 5 Fine-tuning of hyperparameters using random search

Models Hyperparameters

Random forest ‘max_depth’: sp_randint (5, 50), ‘n’estimators: sprandint(10, 100),
max_features: sprandint(1, 64), ‘min_samples_leaf’: sp_randint (1, 11),
‘criterion’: [‘entropy’, ‘gini’], ‘min_samples_split’: sp_randint(2, 11),

Decision tree max_features: sprandint(1, 64), ‘n’estimators: sprandint(10, 100), ‘max’depth: sprandint (5, 50),
‘criterion’: [‘gini, ‘entropy’], ‘min_samples_split’: sprandint(2, 11),
‘min_samples_leaf’: sprandint (1, 11)

Extra tree ‘n’estimators: sprandint(10, 100), max_features: sprandint(1, 64), ‘max’depth: sprandint (5, 50),
‘min_samples_split’: sprandint(2, 11), ‘min_samples_leaf’: sprandint (1, 11)
‘criterion’: [‘gini, ‘entropy’]

LGBM ‘max_depth’: sp_randint (5, 50), ‘n’estimators: sprandint(10, 100),
min_samples_split: sprandint(2, 11), max_features: sprandint(1, 64),
min_samples_split: sprandint(1, 11), ‘criterion’: [‘gini, ‘entropy’]

XGB ‘n’estimators: sprandint(10, 100), max_features: sprandint(1, 64), ‘criterion’: [‘gini, ‘entropy’]
min_samples_split: sprandint(2, 11), ‘max’depth: sprandint (5, 50), min_samples_leaf: sprandint (1, 11)

ANN ‘batch’size: [16, 32], ‘epochs’: [20, 50], ‘neurons’: [16, 32]
‘activation’: [‘relu’, ‘tanh’], ‘patience’: [2, 5]

Table 6 Fine-tuning of hyperparameters using hyperband

Models Hyperparameters

Random forest ‘min_samples_split’: list(range(2, 12)), ‘max_depth’: [2, 3, 4]

Extra tree ‘min_samples_split’: list(range(2, 12)), ‘max_depth’: [2, 3, 4]

Decision tree ‘max_depth’: [2, 3, 4], ‘min_samples_split’: list(range(2, 12))

LGBM ‘max_depth’: [2, 3, 4], ‘min_samples_split’: list(range(2, 12))

XGB ‘min_samples_split’: list(range(2, 12)), ‘max_depth’: [2, 3, 4]

ANN ‘batch’size: [16, 32, 64], ‘activation’: [‘relu’, ‘tanh’, ‘neurons’: sprandint(10, 100), ‘patience’: sp_randint(3, 20), ‘epochs’: [20,
50]

4 Results

This section defines the results generated by the models
in terms of accuracy, precision, recall, and F1 score. The
models, such as random forest, extra tree classifier, deci-
sion tree classifier, XGB classifier, LGBM classifier, and
ANN, have been trained without and under each optimizer

like random search, grid search CV, hyperband, and genetic
search. Additionally, the models have been reviewed for the
classes of various diseases such as hypertension, Alzheimer’s
disease, multiple sclerosis, endometriosis, prostate cancer,
heart disease, HIV/AIDS, gastric, skin cancer, kidney dis-
ease, breast cancer, and schizophrenia by generating their
precision, recall, and F1 score values.
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Table 7 Fine-tuning of hyperparameters using genetic search

Models Hyperparameters

Random forest ’n_estimators’: range(10,100), ’max_depth’: range(5,50), ‘min_samples_leaf’:range(1,11), ‘criterion’:[’gini’,’entropy’],
‘min_samples_split’:range(2,11)

Decision tree ’max_depth’: range(5,50), min_samples_leaf: range(1,11)
‘criterion’:[’gini’,’entropy’], ‘min_samples_split’:range(2,11)

Extra tree ‘min_samples_split’:range(2,11), ‘min_samples_leaf’: range(1,11), ’max_depth’: range(5,50), ‘criterion’:[’gini’,’entropy’]

LGBM/ XGB ‘criterion’:[’gini’,’entropy’], ’max_depth’: range(5,50)

ANN ’batch_size’: [16,32,64], ’activation’: [’relu’,’tanh’], ’epochs’: [20,50], ’neurons’:range(10,100), ’patience’:range(3,20)

In Table 8, initially, the models are evaluated for the com-
bined dataset based on accuracy under different optimizers.
In evaluating the performance of various classifiers, it is
evident that the light gradient boosting machine (LGBM)
outperforms other models by achieving the highest accuracy
at 95.54%. The decision tree and artificial neural network
(ANN) also exhibit commendable accuracy levels of 91.25%
and 92.21%, respectively. However, the random forest and
extra tree classifier computed lower accuracies at 76.83%
and 74.77% which indicates potential limitations in their
predictive capabilities. Notably, the XGBoost (XGB) model
lags significantly behind with an accuracy of 43.56% which
thereby suggests a suboptimal performance in comparison
to the other models considered in this analysis. In assess-
ing the model performance with the usage of grid search
cross-validation for hyperparameter tuning, the decision tree,
light gradient boosting machine (LGBM), and artificial neu-
ral network (ANN) stand out by achieving perfect accuracies
of 100%. This suggests that the selected hyperparameters
through the grid search optimization led to highly fitting
models for these algorithms. The random forest and extra tree
classifier also demonstrate strong performances with accura-
cies of 92.39% and 96.91%, respectively. On the other hand,
the XGBoost (XGB) model lags behind the top performers
with an accuracy of 90.67%which indicates a comparatively
lower optimization level through the grid search process. The
applicationof hyperbandoptimization reveals distinctive per-
formance patterns among the considered models. Notably,
LGBM,XGB, andANNexhibit exceptional accuracies, each
achieving a perfect score of 100%. These results suggest that
hyperband effectively identifiedhyperparameters that signifi-
cantly enhance the predictive capabilities of these algorithms.
However, the decision tree, extra tree classifier, and random
forest models show lower accuracies at 67.21%, 59.66%, and
55.83%, respectively. This variance implies that hyperband
may not have been as successful in finding optimal hyperpa-
rameters for these tree-basedmodels, and further exploration
into the specific configurations and potential limitations is
warranted.

Table 8 Evaluation of models based using various optimizers

Optimizers Models Accuracy (%)

Normal Decision tree 91.25

Random forest 76.83

Extra tree classifier 74.77

LGBM 95.54

XGB 43.56

ANN 92.21

Grid search CV Random forest 92.39

LGBM 100

ANN 100

Extra tree classifier 96.91

Decision tree 100

XGB 90.67

Random Search Random forest 100

ANN 100

LGBM 100

Decision tree 100

XGB 100

Extra tree classifier 100

Hyperband XGB 100

Extra tree classifier 59.66

Decision tree 67.21

LGBM 100

Random forest 55.83

ANN 100

Genetic Decision tree 100

Random forest 95.02

Extra tree classifier 93.53

LGBM 100

XGB 100

ANN 100
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On applying genetic optimization, it demonstrates notable
improvements in the execution of various machine learning
models. The decision tree, light gradient boosting machine
(LGBM), XGBoost (XGB), and artificial neural network
(ANN) all achieve perfect accuracies of 100% and indicate
that the genetic algorithm effectively identified hyperparam-
eter configurations that enhance their predictive capabilities.
The random forest and extra tree classifier also exhibit com-
mendable accuracies at 95.02% and 93.53%, respectively,
as well as further highlight the effectiveness of the genetic
optimization approach. The consistent high accuracies across
diverse models suggest that the genetic algorithm provides a
robust and versatile method for optimizing hyperparameters,
contributing to enhanced model performance.

On assaying the results thoroughly, the models performed
better after applying a random search optimizer as they com-
puted the highest accuracy of 100% as compared to getting
trained under other optimizers. On the contrary, when the
same models were calculated without any optimizer, none of
them showed the best accuracy values as they showed after
applying optimizers.

Likewise, in Table 9, the models have also been evaluated
based on precision, recall, and F1 score. In this performance
analysis of various machine learning models across differ-
ent optimizers, we observe notable variations in precision,
F1 score, and recall metrics. Firstly, considering the normal
training scenario, random forest exhibited a high preci-
sion of 0.90, while XGB classifier lagged significantly with
precision as low as 0.17. Decision tree classifier, extra tree
classifier, and ANN presented moderate performance across
the metrics. When employing Grid Search CV for hyper-
parameter tuning, remarkable improvements were observed
for most models. Random forest achieved an impressive pre-
cision of 0.95, and decision tree classifier attained perfect
scores in precision, F1 score, and recall. LGBM Classifier
and XGB classifier also demonstrated significant enhance-
ments in their performance metrics.Random Search further
elevated the model performances to perfect scores for all
metrics, showcasing the effectiveness of this optimization
method. Notably, all models, which include RF, decision
tree classifier, extra tree classifier, LGBM classifier, extreme
gradient boosting classifier, and ANN, achieved maximum
precision, F1 score, and recall. Hyperband optimization
yielded mixed results, with some models experiencing a
decline in performance, particularly in precision and F1
score. LGBM classifier and XGB classifier maintained per-
fect scores, while random forest exhibited a decrease in
precision to 0.42. Finally, genetic algorithms proved effec-
tive in enhancing model performances, with most models
achieving perfect precision, F1 score, and recall. Decision
tree classifier, extra tree classifier, as well as random forest
displayed high precision and recall, emphasizing the robust-
ness of genetic optimization.

Besides this, precision, recall, and F1 score of all the mod-
els under the four applied optimizers, such as grid search CV,
random search, hyperband, and genetic Search, along with
no optimizer for different classes have been also calculated in
the form of the bar plot graph to examine the slope between
them as shown in Fig. 7.

In Fig. 7a, the models were trained and assessed at first
based on precision, recall, and F1 score, and no optimizers
were used. When trained with random forest, it has been
found that the model computed the highest precision value
with 1.00 for the class Alzheimer’s disease, HIV/AIDS,
schizophrenia, and skin cancer. Likewise, in the case of a
recall, the highest value of 1.00 has been obtained for the
class hypertension, breast cancer, Alzheimer’s disease, and
prostate cancer. In the end, while evaluating for F1 score, the
highest values have been computed for the class Alzheimer’s
disease only. On applying the decision tree, it has been dis-
covered that the model obtained the highest precision value
of 1.00 for each class except for endometriosis, gastric, and
heart diseases.

Similarly, the highest recall alongwith the F1 score values
is obtained for all the classes except endometriosis and gastri-
tis. Further,when anothermodel trained the same classes, i.e.,
the extra tree classifier, the classes that fall under the highest
precision are HIV/AIDS, diabetes, endometriosis, gastritis,
heart diseases, kidney disease, and multiple sclerosis with
1.00. Like the decision tree, the highest precision as well as
F1 score value of 1.00 for each class except gastritis and heart
diseases is obtained by the LGBM classifier. In contrast, the
best recall value was computed for all classes except gastri-
tis by the LGBM classifier. But when the same dataset was
calculated using the XGB classifier, the highest F1 score,
precision, and recall were obtained by Alzheimer’s disease
and skin cancer. At the same time, as for the maximum of
the other classes, the model computed 0 values, meaning no
relevant class has been returned from irrelevant ones. When
ANN Model was applied, it generated the highest values of
1.00 for all three evaluative parameters.

In Fig. 7b, using grid search CV, the highest precision
value of 1.00 has been obtained by random forest for the
classes such as HIV/AIDS and schizophrenia and a recall
value of 1.00 for classes like breast cancer, prostate can-
cer, Alzheimer’s disease, and hypertension. On the contrary,
the highest F1 score value has been obtained for the class
hypertension with 0.99, while the least has been obtained
for the class schizophrenia with 0.63. Likewise, the decision
tree, LGBM, and ANN classifier computed the best values
for all the classes of 1.00 in terms of precision, recall, and
F1 score. In the case of the extra tree classifier, the highest
precision, recall, and F1 score have been computed for the
class Alzheimer’s disease, HIV/AIDS, endometriosis, and
skin cancer with 1.00.
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Table 9 Performance of models
for various optimizers Optimizers Models Precision F1 Score Recall

Normal Random forest 0.90 0.87 0.85

Extra tree classifier 0.84 0.68 0.66

Decision tree classifier 0.79 0.81 0.85

XGB classifier 0.17 0.18 0.23

LGBM classifier 0.88 0.90 0.92

ANN 0.79 0.81 0.85

Grid search CV LGBM classifier 1.00 1.00 1.00

Decision tree classifier 1.00 1.00 1.00

Extra tree classifier 0.98 0.98 0.97

ANN 1.00 1.00 1.00

XGB classifier 0.99 0.96 0.95

Random forest 0.95 0.92 0.91

Random search Random forest 1.00 1.00 1.00

XGB 1.00 1.00 1.00

Extra tree classifier 1.00 1.00 1.00

LGBM 1.00 1.00 1.00

Decision tree 1.00 1.00 1.00

ANN 1.00 1.00 1.00

Hyperband Random forest 0.42 0.31 0.33

Decision tree 0.37 0.39 0.46

Extra tree classifier 0.48 0.35 0.38

LGBM 1.00 1.00 1.00

XGB 1.00 1.00 1.00

ANN 1.00 1.00 1.00

Genetic Random forest 0.96 0.94 0.93

XGB 1.00 1.00 1.00

Extra tree classifier 0.98 0.96 0.95

LGBM 1.00 1.00 1.00

Decision tree 1.00 1.00 1.00

ANN 1.00 1.00 1.00

In Fig. 7c, under random search, all the models, such as
RF, XGBoost, DT, LGBM classifier, extra tree classifier, and
ANN, have computed the highest precision, recall, and F1
score values of 1.00 for all the classes. It means that a relevant
search retrieved all the results.

In Fig. 7d, under hyperband search, the LGBM, XGB,
and ANN classifiers all computed 1.00 as the highest score
for recall, precision, and F1 score. At the same time, ran-
dom forest obtained the highest precision for the classes such
as breast cancer, Alzheimer’s disease, HIV/AIDS, and skin
cancer. The best recall has been computed by Alzheimer’s
disease, hypertension, and skin cancer; however, the high-
est F1 score has been calculated by Alzheimer’s disease and
skin cancer. Likewise, decision tree also obtained the highest
precision, recall, and F1 score value for Alzheimer’s disease,
hypertension, kidney disease, and skin cancer. Moving to

extra tree classifier, it has shown the average performance
but on the contrary, these three techniques have also gen-
erated zero precision, recall, and F1 score values for certain
classes which means that they are failing to correctly classify
the instances of those classes.

In Fig. 7e, under genetic search, the models, such as
the decision tree classifier, LightGBM, XGB classifier, and
ANN, have calculated the best recall, precision, and F1 score
values of 1.00 while using random forest classifier, the best
F1 score, precision, and recall value has been acquired for
the classes such as diabetes, endometriosis, hypertension, and
kidney disease with 1.00. In the end, using extra tree classi-
fier, the highest precision values have been computed by all
the classes except hypertension, breast cancer, Alzheimer’s
disease, prostate cancer, and skin cancer. In the same way,
Alzheimer’s disease, endometriosis, high blood pressure,
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Fig. 7 a Graphical analysis of models trained without hyperparame-
ter optimizer, b graphical analysis of models trained with grid search
CV hyperparameter optimizer, c graphical analysis of models trained
with random search hyperparameter optimizer, d graphical analysis of

models trained with hyperband hyperparameter optimizer, e graphical
analysis of models trained with genetic search hyperparameter opti-
mizer
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Fig. 7 continued
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Fig. 7 continued

gastritis, breast cancer, and prostate cancer all have a recall
value of 1.00. On the contrary, the highest F1 score value
was computed by endometriosis and gastritis with the same
value of 1.00.

5 Conclusion

In the past, determining the optimal value of any model
was a labor-intensive task that demanded significant effort,
time, and expertise. Thus, metaheuristic techniques prove
invaluable in helping us to discover optimal solutions quickly
and efficiently. The combination of metaheuristic techniques
with machine learning and deep learning classifiers has
consistently proven to be highly effective, reliable, and
time-efficient. As a result, we employed six machine learn-
ing models and carefully adjusted their hyperparameters
using four hyperparameter optimizers, taking into account
the available information. The models under the random
search optimizer demonstrated exceptional precision, accu-
racy, recall, and F1 score values. It was observed that the
models performed more effectively after undergoing fine-
tuning with hyperparameter optimizers compared to when
they were not.

For future research, there is room to explore poten-
tial improvements by building upon the promising find-
ings obtained from combining metaheuristic techniques and
hyperparameter optimization in machine learning models.

One possible way to improve is by investigating ensem-
ble methods that use the capabilities of multiple models
to develop a classifier that is more resilient and precise.
Ensemble techniques, such as bagging and boosting, have
demonstrated their effectiveness inmitigating overfitting and
enhancing predictive performance.

Moreover, the integration of advanced models, coupled
with optimization techniques, holds significant potential for
augmenting the system’s performance in predicting multi-
ple diseases. This synergistic approach enhances the overall
predictive capabilities of the system.

Conducting a comprehensive analysis of the misclassifi-
cations and understanding their root causes in case of models
on incorporating with hyperband optimizer as well as using
them by default is crucial for resolving the problem of zero
precision, recall, and F1 score values for specific classes.
This analysis could offer valuable insights for creating spe-
cialized strategies to handle the datasets as well as overcome
challenges unique to various classes.

In addition, it is advised to explore state-of-the-art learning
algorithms, such as advanced deep learning architectures, to
capture intricate patterns in the data. Investigating architec-
tures like transformer models or neural architecture search
techniques could provide valuable insights into enhancing
the models’ capacity to comprehend complex relationships
within the data. These enhancements aim to optimize the per-
formance and dependability of the models, tackling existing
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constraints and facilitating their more efficient application in
practical scenarios.
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