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Abstract
Advancement in the Internet of Things (IoT) technologiesmakes lifemore convenient for people. Data sensed from the devices
can be used for analyzing and responding to people’s needs seamlessly. An important consequence of such convenience is
that privacy protection becomes a very important issue to be addressed effectively. Various data anonymization model has
been proposed for such issue—one of the most widely applied models is the k-anonymity. The k-anonymity prevents the
re-identification by replacing the input data with its more general form for transforming the data to have at least k identical
tuples. In this paper, we focus on a special case of the input datasets which all the quasi-identifiers, the linkable attributes in
the dataset, have identical data types, so-called identical generalization hierarchy (IGH). The solutions for such case will be
applicable effectively to address the general IoT data privacy protection due to its data nature. We proposed a novel method
to provide a globally optimized k-anonymity solution for the IGH datasets. The proposed algorithms determine an optimal
solution based on the characteristics of the IGH data by visiting and evaluating only essential nodes of generalization lattice
that satisfy the k-anonymity. Since the k-anonymization problem is an NP-hard, we show that our algorithm can efficiently
find an optimal k-anonymity solutions with exploiting such special characteristics of the IGH data, i.e., the optimality between
the nodes in different levels of generalization lattice. From the experimental results, it is obvious that our algorithm is much
more efficient than the comparative algorithms by less searching on the given lattice.

Keywords Privacy protection · Internet of Things · k-anonymity · Global recoding · Data anonymization

1 Introduction

Data privacy has been considered a significant issue for
the past decades. The releasing data need privacy guarantee
such that they cannot be re-identified back to the individ-
uals inside. On the other hand, the very fast adoption rate
for the IoT technologies even though can make people’s life
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more convenient, but the users’ privacy has to be protected
properly [3].

The k-anonymity is one of the most widely used mod-
els for data privacy protection [15]. The model prevents
the re-identification of individuals in the input datasets by
employing data suppression and/or data generalizationmeth-
ods [18]. The suppression method protects data privacy
by deleting some records from the given dataset, whereas
the generalization method replaces the quasi-identifiers,
attributes that can be linked with external data to re-identify
the individuals [16], with amore general data. Generally, data
suppression and data generalization in the k-anonymization
process can affect the data utility or the usefulness of the
data [17]. For ensuring both privacy and utility of the data,
the k-anonymity model aims at the optimal solutions, which
is protecting the data privacy and minimizing the effect of
k-anonymization on the data utility.

In this paper, we focus on preserving the privacy of the
IoT data, which typically the quasi-identifiers in the datasets
have identical data types, so-called identical generalization
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hierarchy (IGH). An example IGH data from IoT devices are
temperature data from the sensors, or the trajectory data and
their timestamp of people from the motion detectors. Solv-
ing such special case effectively as well as efficient means
that the privacy preservation of all the IoT data, which the
nature of data complies to the IGH, can adopt our work. The
proposed algorithm is based on the lattice of generalization
traversal as in [5]; however, we take advantage of the special
characteristics of an IGHdata on k-anonymitymodel, i.e., the
optimality between the nodes in different levels of general-
ization lattice. Our work is evaluated by experiments against
well-known comparative algorithms in various aspects.

The organization of this paper is as follows. The basic
background and definitions are introduced in Sect. 3. The
details on the differences between an optimal k-anonymity
of IGH data and non-IGH data, and our proposed optimal
k-anonymity algorithms on the IGH data are presented in
Sect. 4. The experimental results of the proposed algorithm
with theotherwell-knownalgorithms are presented inSect. 5.
Finally, the conclusion and our future work are given in
Sect. 6.

2 Related works

Privacy is one of the most important issues for IoT. The need
to protect the privacy in IoT contexts is as much as in the
other areas. There are a few attempts which are proposed to
tackle privacy issues. For example, in [4], the privacy pro-
tection framework for IoT has been proposed, and the idea is
to embed the protection mechanism into the system architec-
ture. In [12], a security and privacy algorithm for Unicode
data has been proposed for maintaining the privacy in IoT
ecology. Or, in [9], the authors proposed an approach for
preserving privacy based on the fault tolerance aggregation
technique for the IoT people-centric sensing system.

In the past decade, several approaches have been pro-
posed to address the optimal k-anonymity, which is one
of the most prominent approaches to protect the privacy.
Such optimization problem has been proven to be an NP-
hard [13]. One of the most important approaches to tackle
the problem was proposed by Samarati et al. in [16]. The
proposed algorithm performs a binary search for the solu-
tion on a generalization lattice. Such a lattice structure is
formed by combining the generalization hierarchy of each
attribute of a given dataset. The authors proved that if there
is no generalization of the level at height h that satisfies
the k-anonymity condition, then there is no generalization
in the lower level that satisfies k-anonymity either. Subse-
quently, a few important contributions, which adopted such
an approach for reducing the computation time, have been
made. For example, the Incognito algorithm [11] performs a
bottom-up, breadth-first search on a generalization lattice of

each subset of quasi-identifiers. Then, all subsets are eval-
uated for the k-anonymity condition. In [5], the Optimal
Lattice Anonymization (OLA) algorithm is proposed. The
general idea is to divide the generalization lattice into sublat-
tices and determine the k-anonymity condition by searching
within each sublattice. The process terminates when all sub-
lattices have been evaluated. The Flash algorithm, proposed
by Kohlmayer et al. [10], was developed to search for the
optimal nodes of the lattice by building a path, and then the
algorithm performs a binary search on each path. The algo-
rithm stops when all paths are explored and evaluated and
returns the optimal value.

3 Background

In this section, the basic definitions are introduced. Also,
the concept of generalization based on the lattice structures
which plays an important role in this paper is presented.

3.1 Basic definition

Definition 1 (Quasi-identifier) The quasi-identifier is a set of
attributes QI = Q1, Q2, . . . , Qw in the given dataset T that
could be linked with the external data for re-identifying the
individual.

Definition 2 (k-anonymity) A dataset satisfies the k-anony-
mity condition, where k > 1, when each combination of
quasi-identifiers exists at least k tuples in dataset T such that
t[C] = ti1 [C] = · · · = tik−1[C],C ∈ QI.

Let us consider the dataset in Table 1(a). The quasi-
identifiers in this dataset areQI=Sex, Age, Submissiondate,
while Disease can be considered a sensitive attribute that
must be protected. For satisfying the k-anonymity condition,
each tuple must not be distinguished from at least other k−1
tuples. Setting the k value at 2, it is obvious that the dataset
is not meeting the k-anonymity condition because each tuple
does not have at least other k − 1 identical tuples.

To anonymize the datasets, the generalization method to
replace the original value by its more general form is usu-
ally applied [16]. Such generalization can be formed as the
generalization hierarchy structure.

Definition 3 (Generalization hierarchy) Let the generaliza-

tion for an attribute A be a function on A, and let A0
f0−→

A1
f1−→ · · · fn−1−→ An be a function generalization sequence.

The generalization hierarchy for A is a set of functions
fh : h = 0, 1, . . . , n − 1 such that A = A0 and |An| = 1.

The value in the higher level of the generalization hierar-
chy is less specific than the value at the lower level. From the
running example dataset in Table 1(a), the Age is the numeric
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Table 1 An example of a non-IGH dataset

ID Quasi-identifiers Sensitive data ID Quasi-identifiers Sensitive data

Sex Age Submission date Disease Sex Age Submission date Disease

(a) Original dataset (b) 2-anonymous dataset

1 Male 21 01/01/2014 Flu 1 Person [20–29] Jan 2014 Flu

2 Male 25 04/01/2014 Hepatitis 2 Person [20–29] Jan 2014 Hepatitis

3 Male 27 22/01/2014 Broken Arm 3 Person [20–29] Jan 2014 Broken Arm

4 Female 27 14/01/2014 AIDS 4 Person [20–29] Jan 2014 AIDS

5 Female 28 19/01/2014 Hangnail 5 Person [20–29] Jan 2014 Hangnail

6 Female 41 07/01/2014 Flu 6 Person [40–49] Jan 2014 Flu

7 Male 49 31/01/2014 Bronchitis 7 Person [40–49] Jan 2014 Bronchitis

Table 2 An example of an IGH dataset

ID Quasi-identifiers Sensitive data ID Quasi-identifiers Sensitive data

T1 T2 T3 Age Gender Profession T1 T2 T3 Age Gender Profession

(a) Original dataset (b) 2-anonymous dataset

1 4 0 1 25 M Police 1 [0–5] [0–2] [0–2] 25 M Police

2 4 0 1 23 F Professor 2 [0–5] [0–2] [0–2] 23 F Professor

3 1 1 1 19 F Student 3 [0–5] [0–2] [0–2] 19 F Student

4 1 4 3 29 M Salesman 4 [0–5] [3–5] [3–5] 29 M Salesman

5 1 5 5 21 M Student 5 [0–5] [3–5] [3–5] 21 M Student

6 0 4 4 27 M Police 6 [0–5] [3–5] [3–5] 27 M Police

7 0 4 3 35 F Salesman 7 [0–5] [3–5] [3–5] 35 F Salesman

8 0 4 5 25 M Student 8 [0–5] [3–5] [3–5] 25 M Student

data which could be generalized into the more general inter-
val, Male and Female of a Sex attribute is the categorize data
which can be generalized into Person, and Submission Date
can be generalized from day/month/year format to only year
in the highest level.

The generalization hierarchy of Sex, Age, and Submission
Date is shown in Fig. 1a–c, respectively. Using the general-
ization hierarchies for generalizing the dataset in Table 1(a),
we can obtain the generalized dataset as shown in Table 1(b)
which satisfies the 2-anonymity condition or so-called a 2-
anonymous dataset.

In this paper, we focus on the datasets where the attributes
in the quasi-identifier have the same data type. An example
dataset of such kind is shown in Table 2(a), where the quasi-
identifier is the satisfaction score that users give to the taxi
drivers. Obviously, the scores for taxi drivers are the same
data type. Thus, the generalization hierarchy of the dataset
is also identical. Hence, for privacy preservation, only one
generalization hierarchy in Fig. 2 is used for generalizing
this dataset. We refer to this type of dataset as an “Identical
Generalization Hierarchy” or an IGH data, while other type
of data is a “non-Identical Generalization Hierarchy” or a
non-IGH data.

l

l

(a) Sex

l

l

l

l

l

(b) Age

l

l

l

(c) Submission Date

Fig. 1 The generalization hierarchy of a non-IGH dataset
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l

l

l

Fig. 2 The generalization hierarchy of an IGH dataset

Definition 4 (Identical generalization hierarchy data) Let
H = {H1, H2, . . . , Hm} be the set of the generalization hier-
archy function of attributes {A1, A2, . . . , Am} in a dataset T .
A dataset T is an IGH data if and only if

⋃m
i=1 Hi = H1 =

H2 = · · · = Hm .

For privacy preservation, the IGH dataset in Table 2(a) can
be generalized to satisfy the 2-anonymity condition using
the generalization hierarchy in Fig. 2 into the dataset in
Table 2(b).

3.2 Lattice of generalization

In order to represent the generalized dataset in the context
of privacy preservation problems, the lattice of general-
ization [5] is commonly applied. Each node of the lattice
of generalization indicates the generalization level of each
quasi-identifier attribute, while the successor of each node
is the direct generalization with less specific generalization.
Figure 3a shows an example of the lattice of generalization
from the dataset in Table 1(a) using generalization hierarchy
in Fig. 1. It can be seen that the nodes in the lowest level of
the generalization lattice, node<000>, are the minimal gen-
eralization node, or the original values of quasi-identifier,
while the least specific generalization node, or the highest
level, node<142>, indicates the highest generalization of all
quasi-identifiers.We indicate the generalization nodes which
satisfy the k-anonymity condition, called k-anonymous node,
by the shaded nodes, e.g., node<121>. Note that on the right-
hand side of lattice, we show the generalization level to be
used in the next section. According to [5], the lattice of gen-
eralization has two properties as follows.

1. If a node is a k-anonymous node, then all its successor
nodes are also k-anonymous node.

2. On the other hand, if a node is not a k-anonymous
node, then all its predecessor nodes are also not the k-
anonymous node.

To prevent an over-generalization to the given dataset,
the information loss is measured to the k-anonymity pro-
cess. For quantifying the information, the precision (Prec)
is usually used [19]. The precision is a metric that relates to
the height of generalization-level h of each quasi-identifier

(a) A non-IGH

(b) An IGH

Fig. 3 The lattice of generalization

QI. Let the generalized version of dataset T be denoted as
GT (A1, A2, . . . , Am), and let height(H) be the highest gen-
eralization height of each quasi-identifier. The precision of
GT is given by

Prec(GT ) = 1

m
·

m∑

i=1

hi
height(Hi )

(1)
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The precision of the lowest level node of the lattice of the
generalization is 0, while at the highest generalization node,
the precision is 1. The generalization data with higher preci-
sion metric loses more information than the lower precision.
We specify the precision of each node by the red letter in gen-
eralization lattice nodes. From our running example dataset
in Table 1(a) together with the generalization hierarchies in
Fig. 1a–c, it can be seen that the Prec(<011>) = 0.25, while
Prec(<121>) = 0.67. It can be implied that node<121> loses
more information than node<011>.

3.3 Lattice of generalization on IGH

For the IGH data, the generalization hierarchies of the quasi-
identifier attributes are identical, so the highest generalization
height of each quasi-identifier height(H) is also identical.
Thus, the precision equation of an IGH data can be trans-
formed as in Eq. 2.

Prec(GT ) = 1

m · height(H)
·

m∑

i=1

hi (2)

From the equation, it can be seen that the precision of an
IGH dataset depends on only the term

∑m
i=1 hi . This term

is the summation of the generalization height of each quasi-
identifier which is equal to the level of the generalization
lattice. From the equation, the characteristics of k-anonymity
of IGH data are as follows.

1. The precision of the nodes in the same level of general-
ization lattice is always identical. As the precision of an
IGHdata depends on the summation of the generalization
height of each quasi-identifier, the precision of the nodes
in the same level of generalization lattice is identical. For
example, from the IGH lattice in Fig. 3b, we can see that
identical values are in the same generalization levels.

2. The precision of the nodes in the lower level of gener-
alization lattice is always less than the precision of the
node in the higher level. According to Eq. 2, the pre-
cision of an IGH data is the generalization lattice level
of each node divided by the generalization height and
number of tuples. Thus, at a lower generalization lattice
level, the precision of an IGH data is always lower than
the precision at the higher generalization lattice level. To
illustrate this observation, in 3b, the precision of an IGH
data in the generalization lattice at level 3 is 0.5 which is
always lower than the precision of the nodes in level 4 at
0.67. Unlike non-IGH data, the precision of the nodes in
the lower generalization lattice could be greater than the
precision of the nodes at the higher level. For example,
in Fig. 3a, the precision of the node<102> at level 3 is
greater than the precision of the node<040> at level 4.

3. The highest level of the generalization lattice of an IGH
data generalizes all quasi-identifiers to the same level.
As we can see in Fig. 3b, the highest level of the lattice
generalizes the quasi-identifiers to the same hierarchy at
level 2.

Note here that, for a given k value, there can exist solu-
tions for the k-anonymization, which their precision metric
is the same value. Thus, the models in this paper also apply
the second metric, the discernibility metric (DM) [1] as in
the previous work [20]. Discernibility metric (DM) is the
information loss metric that measures the number of tuples
of the equivalence class, the identical quasi-identifier group
in the generalized dataset. Let E be an equivalence class of
a generalized dataset GT of the original dataset T , the DM
of GT can be calculated as

DM(GT ) =
∑

∀Es.t |E |�k

|E |2 (3)

When the multiple optimal solutions determined by the
precision are found, the DM will be measured to break the
tie by choosing the node with the lowest DM as the single
optimal solution. For example, from Fig. 3b, it is found that
node<211> and node<022> are both optimal solution with
the precision of 0.67. In this case, the single optimal solution
is node<022> since its DM is 22, instead of node<211>
which its DM is 34.

4 Optimal k-anonymity

In this section, we present our proposed algorithm to exploit
the characteristics of IGHdata to improve the efficiencyof the
optimal k-anonymization. The key idea of our algorithm is to
analyze only necessary nodes, which are among the lowest
generalization level found as k-anonymous nodes as com-
pared to other algorithms in the literature that have to examine
all nodes. The algorithm first finds the routes from the root
node of the generalization lattice, i.e., <000> to the highest
level node using pre-order traversal method. All nodes in the
routes are to be determined the k-anonymity started from the
node at the lowest level. The k-anonymous nodes are to be
tagged, and the lowest level found k-anonymous, called k-
anonymous level, is set. The algorithm continues to traverse
to the other routes and visit only the nodes in the lower than
the k-anonymous level until all nodes in the lower than the
k-anonymous level are found and tagged.

From the characteristic of an IGH data, an optimal solu-
tion always among the lowest level found optimal nodes
so-called k-anonymous level. Therefore, to make sure that
the algorithm could find the optimal solution, the Optimal-
IGH algorithm would traverse through the generalization
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lattice with the depth-first search manner until all nodes in
the k-anonymous level and its one lower level are tagged. The
algorithm performs the depth-first search traversal method,
so the algorithm could find the optimal not only the subopti-
mal solution.

4.1 Optimal-IGH algorithm

4.1.1 Optimal-IGH algorithm

The main algorithm Optimal-IGH, shown in Algorithm 1,
first finds the highest level of the input generalization lattice;
then, the arguments would be passed to the subalgorithm
FindAnonymous, illustrated in Algorithm 2. The algorithm
FindAnonymous with the input, Level LV , Quasi-identifier
QI, andTraversalmethodTR, is tofindall routes from the root
node to node in level LV using pre-order traversal method.
Then, for each node in the route, the algorithm will evaluate
the node using two conditions as follows:

1. If a node is a k-anonymous node, then such node and all
its successor nodes are to be tagged as the k-anonymous
node, and the current level in the lattice is set as the lowest
level nLV .

2. If a node is not a k-anonymous node, then such node
and its predecessor nodes are to be tagged as the non
k-anonymous node.

After all nodes in a route are tagged, the algorithm compares
the lowest level nLV and the input level LV . The algorithm
breaks from the loop if nLV is less than LV . Subsequently,
the algorithm recursively executes with the input level nLV
until the lowest level nLV and the input level LV are equal
which means that the level nLV is the lowest level found k-
anonymous nodes. After that, the algorithm FindAnonymous
returns all k-anonymous nodes K in the level nLV back
to Optimal-IGH. Finally, the main algorithm compares the
DM of each generalized dataset using the generalization of
k-anonymous nodes K . Eventually, the globally optimal k-
anonymity node is the node with the lowest DM.

Algorithm 1: Optimal-IGH
Input: Lattice lattice, Quasi-identifiers QI
Output: Optimal k-anonymity node OP

1 begin
2 MaxLV ← Max level of lattice
3 K ← Find Anonymous(MaxLV , QI , “pre − min")
4 OP ← minimum DM among K
5 return OP
6 end

Algorithm 2: Find Anonymous(LV , QI , T R)

Input: Level LV , Quasi-identifiers QI , Traversal T R
Output: k-anonymous nodes K

1 begin
2 nLV ← LV
3 foreach Node N in Level LV do
4 Routes R ← getRoutes(N , T R)
5 foreach Route r in R do
6 foreach Node M in Route r do
7 if M is not tagged then
8 if M is k-anonymous(QI ) then
9 Tag M and all successor nodes as

k-anonymous
10 if M .level < nLV then nLV ← M .level
11 end
12 Tag M and all predecessor nodes as non

k-anonymous
13 end
14 end
15 if nLV < LV then break from foreach loop
16 end
17 end
18 if NL = LV then
19 K ← k-anonymous nodes in the level nLV
20 return K
21 else
22 Find Anonymous(nLV , QI , T R)

23 end
24 end

Algorithm 3: Enhance-Optimal-IGH
Input: Lattice lattice, Quasi-identifiers QI
Output: Optimal k-anonymity node OP

1 begin
2 traversal ←

[“pre-min", “pre-max", “pre-le f t", “pre-right", “post-
min", “post-max", “post-le f t", “post-right"]

3 MaxLV ← Max level of lattice
4 aQI ← first 3 quasi-identifiers of QI
5 foreach Traversal G in traversal do
6 K ← Find Anonymous(MaxLV , aQI ,G)

7 time ← execution time of Find Anonymous with G
traversal

8 end
9 minTraverse ← MI N (time)

10 K ← Find Anonymous(MaxLV , QI ,minTraverse)
11 OP ← minimum DM among k-anonymous nodes K
12 return OP
13 end

4.1.2 Example of Optimal-IGH algorithm

In this section, we explain the algorithm in more detail using
the running example in Table 2 and the lattice in Fig. 3b with
the k value set at 2. The proposed Optimal-IGH algorithm
starts with evaluating the root node of lattice, <000>. Then,
the algorithm traverses to visit the other nodes using a pre-
order traversal method. The nodes<100>,<200>,<210>,
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Table 3 The study result of the traversal method on an Optimal-IGH algorithm

Traversal QI Traversal QI

3 4 5 6 7 8 9 3 4 5 6 7 8 9

(a) Jester dataset (b) Taxi dataset

Pre-left 39 123 144 817 846 878 4556 Pre-left 22 42 88 295 536 1043 2070

Pre-right 39 124 355 881 1916 3797 6962 Pre-right 22 47 87 147 286 579 1126

Pre-min 39 111 132 718 747 779 3915 Pre-min 22 44 70 168 252 440 731

Pre-max 28 65 86 152 212 186 406 Pre-max 22 49 89 319 529 979 1489

Post-left 24 56 57 373 374 375 2021 Post-left 12 19 36 153 285 524 1006

Post-right 24 63 169 400 834 1594 2846 Post-right 12 20 36 66 140 301 592

Post-min 24 49 50 373 374 375 2353 Post-min 11 18 27 66 113 203 407

Post-max 23 36 43 79 104 81 183 Post-max 16 28 44 203 324 574 868

<220>, <221> and <222>, in the first route, are evalu-
ated, respectively. Aswe can see that nodes<100>,<200>,
<210> and <220> are not k-anonymous nodes. Therefore,
the node<221> is a k-anonymous; then, its successor nodes
are tagged as a k-anonymous node. This means that level 5
of the lattice is the current k-anonymous level. Subsequently,
the next route is determined from the root node until such
level 5. Until all nodes are tagged, the algorithm stops this
process. Thus, the last k-anonymous level is 4 and there are
2 k-anonymous nodes in such level, i.e., node<211>, and
node<022>. Finally, the algorithm compares the DM of k-
anonymous nodes in level 4, in which node<022> is found
the optimal k-anonymity node with the least DM.

4.1.3 Enhancement of Optimal-IGH algorithm

In general, the optimal node in the generalization lattice
might be located in a different location depending on the
structure of the given dataset. The Optimal-IGH algorithm
traverses to the nodes in the generalization lattice to deter-
mine an optimal k-anonymity solution using the pre-order
traversal method by visiting the left child first. An issue
is whether the traversal method affects the performance of
the algorithm. Thus, in this paper, we further study the
Optimal-IGH using various traversal methods to evaluate
their performance, i.e., pre-order with left child node first
(pre-left), pre-order with right child node first (pre-right),
pre-order with maximum degree child node first (pre-max),
pre-order with minimum degree child node first (pre-min),
post-order with left child node first (post-left), post-order
with right child node first (post-right), post-order with maxi-
mum degree child node first (post-max) and post-order with
minimum degree child node first (post-min). The evaluation
is conducted on real-life IGHdatasets, i.e., Jester [7] and Taxi
[21]. The k-anonymity condition is set at 3, and the number
of quasi-identifiers is varied from 3 to 9.

The evaluation result shows in Table 3 the number of the
visited nodes on 8 traversal methods. The bold letter cell in
the table indicates the lowest number of the visited nodes of
each number of quasi-identifiers, which is the fastest method
to find an optimal solution. From the result, the traversal
method that produces the lowest number of visited nodes is
diverse among the dataset. Thus, to ensure the efficiency, the
traversal method should be determined and selected differ-
ently. Furthermore, we can see that the traversal method that
visits the lowest number of nodes produces the same per-
formance with regard to the number of quasi-identifiers. For
instance, in Table 3(a), at the number of quasi-identifiers at 3,
the traversal method that produces the lowest number of vis-
ited nodes is the post-order with the maximum degree child
first (post-max). It can be seen that the number of nodes that
the traversal visited is the lowest for any number of quasi-
identifiers.

From the study,we further enhance the performance of our
Optimal-IGH algorithm by determining the traversal method
for the given dataset first. It can be done by performing
the Optimal-IGH algorithm at the lower number of quasi-
identifiers, i.e., 3, since it can be applicable to the other higher
number of quasi-identifiers. Selecting the lower number of
quasi-identifier reduces the execution time as shown in the
literature [2,6,11].

In Algorithm 3, the Enhance-Optimal-IGH algorithm is
shown. It first determines the suitable traversal method and
then continues to find an optimal solution with an Optimal-
IGH algorithm. For instance, the post-max and the post-min
traversal is to be selected for the Jester and Taxi dataset as
the result in Table 3(a) and (b) indicates, respectively.

5 Experimental evaluation

After the algorithm is proposed, this section presents the
experimental results for evaluating our contribution.
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5.1 Dataset

Our work is evaluated using three real-life IGH datasets from
Jester [7], T-drive [21] andMovieLens [8]. The Jester dataset
is the anonymous ratings from the Jester online joke recom-
mender system. The rating score range is between − 10 and
+ 10with 5000 records used in the experiments, and the num-
ber of quasi-identifiers is varied from 6 to 11. The T-drive
dataset contains the GPS trajectories of taxis together with
timestamp. The dataset is pre-processed to select only the tra-
jectorieswith 6–11 timestamps resulting in 2500 records. The
MovieLens dataset contains the rating score that users rated
each movie. Basically, the attributes are the list of movies.
The rating score range is between 0 and 5. For this dataset,
there are 925 records, and the number of quasi-identifiers can
be varied from 6 to 16.

5.2 Experimental configuration

Our proposed algorithms, i.e., Optimal-IGH and Enhance-
Optimal-IGH, are to be compared with five well-known
comparative algorithms including optimal k-anonymity:
Samarati [16], Incognito [11], OLA [5,14], Flash [10] and
the depth-first search (DFS) algorithm. These algorithms all
traverse to the lattices to find optimal solutions with differ-
ent strategies as mentioned in the related work section. All
algorithms are implemented based on Java SE 8. The experi-
ments are proceeded on a 2x IntelX5670with 24GBmemory
runningLinux.We average the execution time/number of vis-
ited nodes in each configuration three times to obtain stable
results.

5.3 Results and discussion

5.3.1 Execution time

In the first section of experiments, we report the performance
of the proposed algorithm by execution time.

Execution time and the number of quasi-identifiers In the
first experiment, the execution time of the proposed algo-
rithm is reported, while the number of quasi-identifiers is
varied. Note that the k value is set at 3. The result on Jester,
T-drive and MovieLens datasets is reported in Fig. 4a–c,
respectively. It can be seen from the results that all the algo-
rithms perform in a similar trend, i.e., the execute time is
increased exponentiallywhen the number of quasi-identifiers
is increased. At the lower number of quasi-identifiers, the
Optimal-IGH algorithm uses the least execution time to
determine an optimal solution followed by the Flash and
Enhance-Optimal-IGH in a slight margin. The reason behind
this is that the Enhance-Optimal-IGH algorithm has to eval-
uate the data to determine the traversal method first. Thus, at

Fig. 4 Execution time per number of quasi-identifiers
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Fig. 5 Execution time per generalization hierarchy level

Fig. 6 Execution time per k value

the lower number of quasi-identifiers, the Enhance-Optimal-
IGH is slightly slower than the other two algorithms. At the
higher number of quasi-identifiers, i.e., 10–11, 9–11 and 8–
16 for the Jester, T-drive and MovieLens, respectively, the
Enhance-Optimal-IGH algorithm uses the least execution
time to determine an optimal k-anonymity. The second fastest
algorithm is Optimal-IGH, since these two algorithms tra-
verse to the node and evaluate the k-anonymity condition
only necessarily.

Execution time per generalization hierarchy level
In the second experiment, the effect of the level of gener-
alization hierarchies to the execution time is investigated.
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Fig. 7 Number of visited nodes per number of quasi-identifiers
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The number of quasi-identifiers is set at 10, and the gener-
alization hierarchy level is varied from 2 to 5. The result is
shown in Fig. 5. Generally, it is obvious that the execution
time of all the algorithm is increased exponentially when the
generalization hierarchy level is increased. The number of
generalization hierarchy levels also increases the number of
nodes in the lattice and hence affects the execution time to tra-
verse and evaluate the k-anonymity. However, it can be seen
that the Enhance-Optimal-IGH is highly efficient for finding
an optimal solution comparing with other algorithms. This
can highly benefit the IoT-IGH data since the algorithm can
copewith various ranges of the data from sensors or actuators
which could be large and then result in a large generalization
hierarchy.

Execution time and k constraint
In Fig. 6a–c, we present the result when the k constraint
from the k-anonymity model is varied on Jester, T-drive and
MovieLens dataset, respectively. From the result, it is clear
that the execution timeof each algorithm is not affected by the
k value. However, it can be seen that the Enhance-Optimal-
IGH algorithm is still the most efficient algorithm to find
optimal solutions.

5.3.2 Node evaluated comparison

In order to evaluate the efficiency of our algorithm in detail,
the number of nodes to be evaluated in the generalization
lattice is reported in this section. In Fig. 7, the result is pre-
sented, the x-axis is the number of quasi-identifiers, while
the y-axis is the number of nodes evaluated by the optimal k-
anonymity algorithms. Note that the numbers are reported in
a logarithmic scale. The label of each bar shows the percent-
age of node visited of each algorithmcompared to the number
of all nodes on the lattice. Clearly, evaluating only fewer
nodes shows that an algorithm is higher efficient, and compar-
ing our Enhance-Optimal-IGH algorithm and Optimal-IGH
algorithm can show the efficiency which can be obtained
from the traversal method selection. From the result, it is
clear that theEnhance-Optimal-IGH algorithm is highly effi-
cient, it evaluates the least number of nodes in all settings. For
instance, at the number of quasi-identity at 7 in Fig. 7a, the
Enhance-Optimal-IGH evaluated 0.173% of all nodes,
while Samarati has evaluated 13.871% of all nodes. The
graph also shows that our Enhance-Optimal-IGH algorithm
has processed less number of nodes than the other algorithms.
The node processing step is the time-consuming process, so
the fewer number of nodes processed the faster find an opti-
mal solution. The trend of a graph exponentially increases
when the number of quasi-identifiers increased. Moreover,
the traversal method selection aids improving the efficiency
though it requires additional scans on the lattice, as we can
see the comparison with the Optimal-IGH algorithm results.

6 Conclusion and future work

In summary, this paper presents a novel optimal k-anonymity
algorithm for the identical generalization hierarchy (IGH)
data which is the main data type in the IoT environment. The
algorithms, Optimal-IGH and Enhance-Optimal-IGH, that
suits for IGH data are presented. The algorithms which are
highly efficient are based on the fact that the IGH data’s prop-
erties, i.e., the identical precision of the nodes in the same
level of generalization lattice, and the relationship between
the precision of the nodes in different levels of generalization
lattice. In the case of the Enhance-Optimal-IGH algorithm,
we further investigate and find that the traversal into the gen-
eralization lattice can affect the efficiency. Thus, we propose
to determine the traversal method first, by evaluating a few
nodes. The experimental results show that our proposed algo-
rithm,Enhance-Optimal-IGH, can efficiently find an optimal
k-anonymity solution. For our future work, we will focus on
the situation where the quasi-identifier of IGH data can be
updated. For example, when more sensors or actuators are
added or removed from the system, coping with such a situ-
ation can help the algorithm to protect data privacy in such
contexts more practically.
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