
Service Oriented Computing and Applications (2019) 13:297–308
https://doi.org/10.1007/s11761-019-00273-x

SPEC IAL ISSUE PAPER

Energy- and locality-efficient multi-job scheduling based on
MapReduce for heterogeneous datacenter

Lei Chen1 · Zhao-Hua Liu2

Received: 12 July 2019 / Revised: 5 August 2019 / Accepted: 13 August 2019 / Published online: 22 August 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Job scheduling of MapReduce is a research hot spot, especially on the heterogeneous datacenter. Huge energy consumption
and operating costs are key challenges. Most of the previous work only considers the scheduling optimization of a single
job. In this paper, we take multiple jobs of MapReduce as research objects and focus on the goal of “jointly optimizing
the scheduling time, job costs and energy consumption.” For that, an energy- and locality-efficient MapReduce multi-job
scheduling algorithm is developed for the heterogeneous datacenter. Firstly, we use rack as the basic unit of resource in job
scheduling to reduce data communication between jobs and to facilitate energy savings. Secondly, according to the capacity of
heterogeneous rack, we design a multi-job pre-mapping method to optimize the execution order of jobs and jointly optimize
the scheduling time, job costs and energy consumption. Based this pre-mapping method, we can assign one job to the virtual
machine on the same rack, so as to minimize the amount of online rack. This centralized mapping strategy is very helpful to
save energy and reduce data transmission of jobs. Thirdly, the map and reduce tasks of a job will be divided into multiple
task groups for parallel execution, thereby further reducing data communication and energy consumption. Finally, a lot of
experimental results prove the advantages of our algorithm.

Keywords Energy-saving · Data locality · MapReduce · Heterogeneous datacenter

1 Introduction

In big data environment, how to process the massive data [1]
is becoming a hot spot, which has brought great challenge
and opportunity for industry and academia. MapReduce [2],
proposed byGoogle in 2004, is a distributed parallel data pro-
gramming framework which has some prominent features,
such as flexibility, open source, scalability and robustness.
Due to the huge demand forMapReduce, the traditional small
cluster is powerless and a large number of physical resources
are renting from multiple heterogeneous datacenters to
build the advanced MapReduce platform in the cloud [3]
(Cloud MapReduce, simply called CMR), which provides

B Lei Chen
chenlei@hnust.edu.cn

Zhao-Hua Liu
163liuzhaohua@163.com

1 School of Information and Electrical Engineering, Hunan
University of Science and Technology, Xiangtan, China

2 State Key Laboratory of Advanced Design and Manufacturing
for Vehicle Body, Hunan University, Changsha, China

the MapReduce service on a “pay-as-you-go” model. In
MapReduce service, Push, Map and Reduce are three main
phases. Push phase is responsible for splitting large-scale
data into fixed-size blocks.Map phase parallel processes data
blocks to generate the intermediate data. Reduce phase han-
dles and merges the intermediate data to form the final data
results.

In the heterogeneous datacenter, MapReduce scheduling
has the following new challenges:

– Resource heterogeneous In the past works, the resources
of datacenter are considered to be homogeneous. That is,
all nodes are configured with the same RAM, CPU, and
DISK in datacenter. However, this is not in line with real-
ity. The servers or virtual machines always have different
RAM, CPU, and DISK in the heterogeneous datacenter.

– Rack-level management Rack contains a group of servers
with the same properties (CPU, RAM, and DISK). All
servers in the same rack are connected to the same net-
work switch (samebandwidth) and public storage. That is
to say, rack is the base management of the heterogeneous
datacenter.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-019-00273-x&domain=pdf
http://orcid.org/0000-0002-8000-7872

298 Service Oriented Computing and Applications (2019) 13:297–308

– Energy consumption Usually, the heterogeneous data-
center rented lots of heterogeneous servers for providing
multiple services. But, when the amount of online jobs
is small, lots of physical hosts will be idle, and a large
amount of energy will be wasted.

– Multi-job influence The traditional cluster usually exe-
cutes little jobs with specific users. However, a large
number of jobs could be submitted in batches by mul-
tiple users online in the heterogeneous datacenter. So, a
fast and reasonable job scheduling strategy is urgently
needed.

In the past few years, lots of works about optimizing
MapReduce job scheduling have been developed. These
works are mainly divided into the following three cate-
gories: energy-saving optimization, task-mapping optimiza-
tion, and data locality optimization. For energy-saving opti-
mization [4–8], SLA, hardware resource utilization, energy
budget, and data migration are considered to reduce energy
consumption. However, the related balance studies simul-
taneously considering job cost, execution time, and energy
consumption are still very few. For task-mapping optimiza-
tion, authors [9–14] try to reduce the scheduling number of
themap and reduce tasks to optimize the scheduling time and
job cost. Works in [15–17] use task delay strategy to improve
task assignment of the heterogeneous environment. For data
locality optimization, some data placement methods are used
in works [18–20] to enhance the data locality for reducing
the communication from immediate data of Map tasks to
Reduce tasks. Authors [21,22] reduce task execution time by
improving data management and migration.

Based on the above analysis, themotivation of this paper is
to exploit the features of heterogeneous datacenter to optimal
job scheduling for jointing optimizing the job cost, energy,
and scheduling time. To achieve the above motivation, based
on the heterogeneous datacenter environment, we see the
rack as the basic unit of resource for job scheduling, and an
energy- and locality-efficientMapReducemulti-job schedul-
ing algorithm is proposed, calledTPJS. TPJSfirstlymeasures
the capacity of one rack for different jobs from the schedul-
ing time, energy, and execution cost. Secondly, a multi-job
pre-mapping method is developed to dynamically adjust job
assignment order for reducing online resource. Finally, after
multi-job pre-mapping, a parallel task execution method is
used to further enhance the data locality and reduce the data
communication from immediate data of map tasks to corre-
sponding reduce tasks by reduce task mapping.

In summary, based on the capacity of rack, multi-job
scheduling process is divided into two phases: multi-job
pre-mapping and parallel job execution. In the first phase,
multiple jobs are merged into job group to adjust assignment
order for improving resource utilization. And each job in a
group is centrally pre-mapping to multiple booked racks for

decreasing the energy and data transmission. In the second
phases, each reduce task of one job is mapped to multiple
map tasks to form a task group and all virtual machines of
booked racks parallel execute map tasks. After the map tasks
are completed, reduce task would try to be assigned to the
same virtual machine which executes map tasks with the
same group for further enhancing data locality. So, the main
contributions of this paper are as follows:

(1) Amulti-job pre-mapping method is developed to divide
the multiple jobs into job groups, so as to improve the
execution order of jobs and increase the resource utiliza-
tion. By using the multi-job pre-mapping, one job in a
group is centrally mapped to virtual machines located
in the same rack. This mapping straggly can reduce the
data transmission of jobs and save energy.

(2) A parallel task execution method is used to further
enhance the data locality where one reduce task is
mapped to multiple map tasks to form task group, and
all tasks of the same task group try to be executed in
same virtual machines.

The remaining content of this paper is organized as fol-
lows: Section 2 introduces the related works. The problem
of job scheduling in the heterogeneous datacenter and cor-
responding model are described in Sect. 3. The energy-
and locality-efficientMapReduce multi-job scheduling algo-
rithm (TPJS) is presented in Sect. 4. Section 5 demonstrates
the experimental evaluation. Finally, Sect. 6 concludes the
work of this paper.

2 Related works

Currently, MapReduce scheduling problem has attracted the
interest of many scholars and a large number of outstand-
ing results have been achieved. According to optimization
objectives, these works mainly focus on three categories:
energy-saving optimization, task-mapping optimization and
data locality optimization.

Energy-saving optimization An energy-efficient frame-
work is designed in [4] to improve the energy consumption
and satisfy the SLA for job scheduling of MapReduce.
Bampis [5] proposes a polynomial-time constant-factor
approximation algorithm to minimize the total weighted
completion time of a set of MapReduce jobs under a given
budget of energy. Two heuristic energy-aware task schedul-
ing strategies are designed in [6] for improving the data
locality and resource utilization.Maheshwari [7] proposes an
energy-efficient data placement and cluster reconfiguration
algorithm to cut down operational costs and reduce their car-
bon footprint. This algorithm dynamically reconfigures the
cluster based on the current workload and turns cluster nodes
on or off when the average cluster utilization rises above or

123

Service Oriented Computing and Applications (2019) 13:297–308 299

falls below administrator-specified thresholds, respectively.
In additional, an energy-efficientMapReduceworkloadman-
ager is designed in [8] to improve the hardware resource
utilization. However, little work on balancingmultiple objec-
tives (data placement, task scheduling, and energy) of job
scheduling for MapReduce exists at present.

Task-mapping optimization Task placement optimization
is another key research topic for MapReduce scheduling.
The main work on this topic is to optimize the assignment
process among map and reduce tasks. Palanisamy et al. [9]
design, Purlieusa, a MapReduce resource allocation sys-
tem, and the basic idea is to allocate the map and reduce
tasks to the nearby VMs for enhancing the data locality and
reducing network traffic overhead. Based on the bipartite
graph-matching model, a new scheduling system, BGMRS,
is designed in [10]which is a good solution for the slot perfor-
mance heterogeneous and job time variation problem. Tang
et al. [11] propose an adaptive scheduling optimization algo-
rithm SARS. It firstly evaluates the context of each job (task
completion time and output size in map phase) and dynami-
cally adjusts the start time of reduce phase for reducing job
execution time. Some works on makespan optimization [12–
14] have been developed to reduce the job executing time
by different task assignment strategies. Cura [15] develops
a cost optimization MapReduce framework to save MapRe-
duce service costs in the cloud environment. Heintz et al. [16]
summarize phases in MapReduce scheduling process and
propose an across-phase optimal scheduling method where
some tasks is overlapped execution in the four phases to
reduce the whole job execution time. Author [17] further
analyses the connection of the four phases of MapReduce
job scheduling process and designs corresponding optimal
schedulingmethod to enhance the execution speed.However,
all the above works focus on the scheduling of a single job,
which does not consider scheduling process among multiple
jobs. Moreover, in our works, multiple targets (data place-
ment, task scheduling, and energy) are considered as the goal
of job scheduling for multiple jobs.

Data locality optimization Data locality is a hot research
topic, and a large number of algorithms have been proposed
to optimize job scheduling performance of MapReduce.
Based on Hadoop cluster, a data placement strategy for
data-sensitive applications has been proposed [20] where all
data blocks are assigned to each node in a reasonable and
balanced way for enhancing the performance of data pro-
cessing. For common distributed environment, an ADAPT
data placement algorithm has been proposed by Jin [19]. The
basic idea of this work is to use a prediction mechanism to
place data blocks without backup, and the results show that
ADAPT reduces network traffics and improves process per-
formance. Oscar Boykin et al. [18] design a newMapReduce
framework (MRA++) for the heterogeneous and distribution
datacenter. MRA++ considers the data placement and task

scheduling problem together, and a series of algorithms were
proposed to optimal traditional MapReduce scheduling pro-
cess. Papers [21–23] summarize the data management works
under the MapReduce framework and point out new prob-
lems and challenges. However, the aboveworksmainly focus
on the local-aware data placement optimization for the single
job. In our work, local-aware and energy-aware are both con-
sidered for job scheduling optimization. Moreover, multiple
jobs are seen as a group to further optimize the scheduling
process.

In summary, there are still a lot of challenges in het-
erogeneous datacenter environments, especially the balance
among data locality, energy consumption and job cost in
multiple jobs scheduling. Therefore, this paper focuses on
the multiple MapReduce jobs optimization for balancing the
data locality, energy consumption and job cost.

3 Problem analysis andmodel

In this section, the problem analysis and corresponding
model of job scheduling in heterogeneous datacenter are
presented. The common architecture of heterogeneous dat-
acenter is firstly introduced in Sect. 3.1. The problem
statement of job scheduling is shown in Sect. 3.2, and the
corresponding model is built in Sect. 3.3.

3.1 Heterogeneous datacenter architecture

Heterogeneous datacenter is a pooling of large number of het-
erogeneous resources, such as servers, storage and network.
Heterogeneous datacenter could provide different services
of storage, hardware resource and multiple applications for
different areas of society. Figure 1 shows the common
architecture of the heterogeneous datacenter, where servers,
virtual machines, storage and network are four core compo-
nents.

Servers Heterogeneous datacenter usually has a large
number of heterogeneous physical servers.Multiple physical
servers are assembled to one rack. Multiple racks are con-
nected by high network. Generally, multiple physical servers
of one rack are homogeneous and have same profiles. In addi-
tion, all servers of one rack are in a local network and are
connected via high-performance switches. And all servers of
one rack share a public power switch to turn on and off more
easily. In the heterogeneous datacenter, each server config-
ures multiple resources with CPU,MEM and a small amount
of local disk storage. In order to write and read the massive
data, each server is connected to a common storage by using
the SAN rack card.

Virtual machines In order to manage resources more con-
veniently and improve the resource utilization, the virtual
technology is used in heterogeneous datacenter. That is to say,

123

300 Service Oriented Computing and Applications (2019) 13:297–308

Fig. 1 Common architecture of the heterogeneous datacenter

a large number of heterogeneous virtual machines are flex-
ibly generated and managed according to the user demand.
These virtual machines share hardware resources of phys-
ical servers, such as network, storage, CPU, and MEM. In
addition, heterogeneous virtual machines have different con-
figurations of CPU, MEM, and storage. In the real world,
to facilitate management of virtual machines, all virtual
machines of one rack usually are homogeneous.

Storage Due to the storage need for large dataset, local
storage and public storage are used together in the datacenter.
Local storage, the local disk, is integrated with the physical
hosts to satisfy the running demand. The capacity of local
storage is usually small and very difficult for expansion due
to the expensive price. Public storage consists of a lot of stor-
age devices where all storage devices are connected via fiber
optic network. The capacity of public storage is very huge
and of low cost. In additional, any physical host could be
connected to public storage via fiber optic network. There-
fore, public storage has prominent advantages in scalability,
compatibility, capacity, and other characteristics.

Network Network is a very important component in the
heterogeneous datacenter, and all physical hosts and racks
are connectedwith each other by network devices. Generally,
tree (or binary tree) network topology is a common network
structure in the datacenter, such as Fat Tree, Portland and
VL2. From down- to up-prospective, each rack has a high-
performance local switch, and multiple racks are connected
by an aggregation layer switches in whole network topol-
ogy.

3.2 Problem statement

The process of MapReduce scheduling problem on hetero-
geneous datacenter is as follows: CMR platform has a lot
of racks, each rack includes many physical hosts, and each
host builds multiple virtual machines. Multiple MapReduce
jobs J = (job1, . . . , jobn) are submitted to CMR plat-

Fig. 2 Scheduling process of MapReduce job

form, and the number of job list J is N . Each jobi contains
three task sets: data task, map task and reduce task. The
data task is responsible for dividing input data into fixed-
size blocks; the map task computes the content of the data
block; and the reduce task summarizes the results ofmap task.
Moreover, each job has a different resource request Reqi =
(req_cpu, req_mem, req_disk), including MEM, CPU,
and DISK. Based on this request, CMR platform will select
many virtual machines V S = (vm1, . . . , wmk) to execute
the job. The virtual machines on CMR platform are also het-
erogeneous. Each virtual machine vmk has different resource
Cabk = (cab_cpu, cab_mem, cab_disk, cab_en), includ-
ing MEM, CPU, power, DISK, and rack information.
The process of MapReduce scheduling is described in
Fig. 2.

3.3 Model

Based on the problem statement, one MapReduce job is
mapped to virtual machines of J racks to execute. In order
to jointly improve the data transmission, execution time, and
energy, we need to build a scheduling model to minimize the
job cost. Let’s introduce a few definitions first.

Definition 1 A 0–1 variable ai j is designed to represent
whether one MapReduce job is mapped to one rack:

ai j =
{

1, jobi is assigned to rack j
0, jobi is not assigned to rack j

(1)

Definition 2 For one job scheduling, four cost coefficients
of resource waste, rent cost, resource balance, and energy
consumption are defined:

123

Service Oriented Computing and Applications (2019) 13:297–308 301

res_wastei j

=

⎧⎪⎪⎨
⎪⎪⎩
idle_vm_si ze j

− task_surplus_si zei
task_vm_si zei j

, i f res_wastei j > 0

0, i f res_wastei j ≤ 0

(2)

res_renti j = C j · t j (3)

res_balancei j =
∣∣∣∣ req_cpuicab_cpu j

− req_memi

cab_mem j

∣∣∣∣ (4)

res_eni j = idle_vm_si ze j · t j · power j (5)

Equation 2 is the cost coefficient of resource waste,
which indicates the idle number of virtual machines in one
online rack, in which task_vm_si zei j means the number
of tasks of jobi that a virtual machine of rack j can per-
form, idle_vm_si ze j represents the amount of idle virtual
machines of rack j , and task_surplus_si zei indicates the
number of tasks remaining in the current job.

Equation 3 is the cost coefficient of rent cost, where t j
is the job scheduling time in rack j and C j is cost fee per
millisecond.

Equation 4 is the cost coefficient of resource balance,
which represents the balance degree between job requests
and virtual machine capacity. The higher the resource bal-
ance degree is, the better the utilization of virtual machines
in one rack is, and vice versa.

Equation 5 is the cost coefficient of energy consumption,
where t j is the job scheduling time in rack j , power j is
the energy usage per millisecond and idle_vm_si ze j is the
amount of virtual machine in rack j .

Therefore, the job optimization scheduling model can be
constructed as follows:

min
N∑
i=1

J∑
j=1

(
res_wastei j + res_balancei j

+res_renti j + res_eni j

)
· ai j

st .

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cab 〈cab_cpu, cab_mem, cab_disk〉
≥ Req 〈req_cpu, req_mem, req_disk〉

∑
idle_vm_si ze j ∗ task_vm_si zei j

≥ task_surplus_si zei
(6)

4 Our algorithm (TPJS)

In this section, an energy- and locality-efficient MapReduce
multi-job scheduling algorithm is proposed to finish multiple
jobs execution for balancing the performance between job
cost, scheduling time, and energy usage in the heterogeneous
datacenter, called TPJS.

4.1 Rack capacity measure

Rack is the basic cell of resource management in heteroge-
neous datacenter and very important for job scheduling. Rack
is a group of homogenous physical hosts and configures with
the sameCPU,RAM, andDISK.Firstly, all physical hosts are
connected usually to one power switch. Secondly, all servers
are connected to the same high-performance network switch.
The data communication speed between multiple physical
hosts of one rack is very fast. Thirdly, all servers simultane-
ously share the same storage content. Therefore, when we
see the rack as the resource mapping unit, the job execution
speed and scheduling time will be improved.

Based on the advantages of rack in the management, we
developed a rack capacity measure algorithm in our past
work [24]. In this work, we use the measure algorithm to
obtain the best ability of one rack for different jobs. In the
following, we introduce the basic ideas of rack capacity mea-
sure algorithm. The more detailed content can be found in
our past work [24].

In order to jointly optimize the job cost, scheduling time,
and energy usage, an energy efficiency is introduced to mea-
surewhether task allocation of the current rack is the best task
allocation for thewhole job. If the task allocation of each rack
is the best task allocation, then the job cost, scheduling time,
and energy usage are the best for the whole job. Because the
time and used virtual machine number determine the energy
consumption, other more obvious energy term is not consid-
ered. Based on the definition of energy efficiency, it is clear
that the smaller the energy efficiency is, the better the task
allocation will be, and the stronger the capacity of rack for
this job will be. Therefore, the energy efficiency is defined
as follows:

e f fi j =

⎛
⎜⎜⎝

∣∣∣∣∣
(
t j

/
task_vm_si ze j

)
ti

∣∣∣∣∣ −

∣∣∣∣∣∣∣∣

(
task j

/
vm_si ze j

)
task_vm_si ze j

taski

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠

2

(7)

where ti is the final scheduling time of jobi , t j is the task time
of rack j , taski is the number of tasks in jobi , task j is the
number of online tasks in rack j , vm_si ze j is the number of
virtualmachines in rack j , and task_vm_si ze j is the average
task number of each virtual machine execution.

Based on the energy efficiency, the process of rack capac-
itymeasure algorithm is as follows. Firstly, a historical library
is built to store the historical best capacity of rack for dif-
ferent jobs. Secondly, based on a random strategy, the rack
capacity is judged to be whether it needs to be adjusted at
the process of job execution. If the rack capacity needs to be
adjusted, then the task number of the rackwould be randomly
increased or decreased. Otherwise, the rack capacity is not

123

302 Service Oriented Computing and Applications (2019) 13:297–308

(a) (b)

Fig. 3 Comparison between traditional job assignment and multiple
jobs pre-assignment

changed. Finally, when the job finished, the energy efficiency
is computed based on scheduling time and the number of vir-
tual machines used. And update the rack capacity when the
energy-efficient value is smaller than the historical value.

4.2 Rack-level multi-job pre-mapping

Based on the ability of one rack for different jobs, a
rack-level multi-job pre-mapping algorithm is proposed to
jointly improve the job scheduling time, job cost, and
energy usage. The goal of our multi-job pre-mapping algo-
rithm mainly contains two aspects: Firstly, by dynami-
cally adjusting job execution order, it is able to improve
resource utilization and avoid the resource waste; secondly,
by centrally assigning jobs to virtual machines of several
racks, it is able to reduce data communication and energy
consumption. So, before describing our algorithm, let us
firstly introduce the resource waste problem from the tra-
ditional “first-come-first-served” scheduling model, please
see Fig. 3.

In the above figure, a job scheduling scene is pre-
sented where three jobs (job1, job2, job3) with different
requests need to be mapped to virtual machines of three
different racks (rack1, rack2, andrack3) for execution. The
traditional “first-come-first-served” job scheduling model is
shown in Fig. 3a, where the job1 is firstly executed, job2
is next, and job3 is computed at the end. In this scheduling
process, in order to enhance execution speed, job1 selects
the virtual machines of rack1 for execution. Similar, job2
selects the virtual machines of rack2 (or rack3) for execu-
tion because the capacity of rack2 is equal to that of rack3.
When the job3 starts assignment, because the job request
[2core, 2G] of job3 is greater than the capacity of rack3
[1core, 1G], the job is not executed until the job1 is com-
pleted.This is the resourcewaste problem from the traditional
“first-come-first-served” job scheduling model. However, if
we dynamically adjust the job execution order (job3 is firstly
executed, job1 is next, and job2 is final), above resource
waste problem is naturally solved. Based on this idea, the job
scheduling process of ourmulti-job pre-mapping algorithm is

Algorithm 1: multiple_ jobs_premapping(J)
//A rack level multi-job pre-mapping algorithm.
Input: all job list J .
Output: the assignment results.

1 search the idle virtual machines to form the rack groups RL and
sort the rack groups with the number of idle virtual machines in
each rack group.

2 //adjust job execution orders
3 select multiple jobs MJ from queued job list J to merge into a
job group, according to the number of idle resources, and adjust
the execution order of all jobs in the job group.

4 //job pre-assignment
5 for (each jobi in M J) do
6 resort the rack groups RL according to the resource balance

value between jobi and each rack by using Equation (3).
7 for (each rack group rack j in RL) do
8 if (rack j is not booked) then
9 get the job request information (req_cpu, req_mem)

and the property of rack j (cab_cpu, cab_mem).
10 compute the best capacity (task_vm_si zei j) of rack j

for jobi .
11 calculate the resource waste res_waste according to

Equation (2).
12 if (0≥ res_waste) then
13 the rack j is booked for jobi .

14 else
15 the rack with smallest res_waste is booked for

the remaining tasks of jobi .

16 return the final pre-assignment results.;

presented in Fig. 3b. In our algorithm,multiple jobs are firstly
merged into a job group and dynamically adjust job execu-
tion order according to the job request. Based on the new job
execution order, let rack select the right job for improving
the resource utilization. So, in the new job scheduling pro-
cess, job3 is executed firstly, then job2, finally job1. By the
above adjustment, three jobs can be instantly assigned for
improving the resource utilization and reducing job execu-
tion time.

The basic idea of our algorithm is very simple. Multiple
jobs are firstly selected to merge into a job group and adjust
the job execution order by the job request. According to the
new executive order, each job in the group is centrally pre-
mapped to virtual machines for minimizing the amount of
online racks. After the job is pre-assigned, all booked virtual
machines will not execute other jobs until the current job is
finished. This centralized allocation strategy has two major
advantages.On the onehand,manyMapandReduce tasks are
mapped to virtual machines nearby in the same rack, then the
immediate data produced by Map tasks are not or less trans-
mitted, thus the data locality is improved, and transmission
cost is obviously decreased. On the other hand, based on this
centralized map strategy, all virtual machines of a same rack
have higher probability to be idle at the same time. That is
very important to save energy.

123

Service Oriented Computing and Applications (2019) 13:297–308 303

In summary, our rack-level multi-job pre-mapping algo-
rithmcontains three steps, and the corresponding pseudocode
is presented in Algorithm 1.

Step1, all idle virtual machines are scanned to build the
rack group, and the rack group is sorted by the number
of idle virtual machines.
Step2, multiple queued jobs are merged into job group
based on the number of idle virtual machines. Then,
according to job request, the execution order of all jobs
in one job group is adjusted.
Step3, according to new job execution order, all jobs of
one group are centrally mapped to virtual machines of
the same racks for minimizing the rack number. Based
on the rack capacity evaluated by our measure algo-
rithm [24], the resource waste and resource balance of
the current rack are computed for the current job accord-
ing to Eqs. (2) and (4). When the resource waste is more
than zero, the virtual machines with smallest waste value
and smallest resource balance are booked for the current
job. When the resource waste is equal to or less than zero
and the resource balance is less than other racks, then all
virtual machines of this rack are booked for the current
job.

4.3 Parallel task execution

After the multi-job pre-mapping, each job has booked vir-
tual machines of multiple racks to wait for execution. All
virtual machines of booked racks do not execute any task of
other jobs until all tasks of the current job are completed. In
addition, if any virtual machine of booked racks is idle, the
tasks of corresponding job would be assigned to this virtual
machine. Therefore, multiple jobs which book the resource
of racks are parallel executed in virtual machines of booked
racks.

In order to further enhance the data locality, a parallel
task execution method is used to reduce the data commu-
nication from the immediate data of map tasks to reduce
tasks in the job execution process. The basic idea of paral-
lel task execution is that multiple map tasks and one reduce
task are merged into task group and the same label is pasted.
Each virtual machine would calculate multiple tasks with
the same label in the whole job execution process. All virtual
machines of one rack would compute adjacent task groups
which have neighboring label. In the whole job execution
process, all map tasks are firstly executed and the reduce
tasks are executed until all map tasks with the same label
are completed. Due to the heterogamous feature of virtual
racks, computing speed of different racks is different. When
a high-performance virtual machine has calculated one task
group, if any new task group is not executed, then this vir-
tual machine computes the new task group. If there is no

new task group, this high-capacity virtual machine starts to
assist other virtual machines to execute somemap tasks. This
parallel task execution strategy based on task grouping has
two advantages. Firstly, by task grouping, multiple map tasks
and corresponding reduce task are executed in same virtual
machines to decrease the data communication from immedi-
ate data of map tasks to reduce tasks. Secondly, because all
virtual machines of one rack would calculate adjacent task
group, immediate data communication is further decreased
by public storage mapping.

Algorithm 2: parallel_task_execution(jobi , RL)
Input: (i) job request jobi ,
(ii) booked rack list RL of jobi .
Output: the final job execution results.

1 based on the capacity of rack in RL , all map tasks and reduce
tasks are split into multiple task groups TGS, and all tasks of one
task group TG paste a same label.

2 while (jobi is not completed) do
3 each rack j in RL executes tasks in parallel.
4 for (each virtual machine vmk in rack j) do
5 //map task execution
6 if (any new TG in TGS is not executed) then
7 calculates all map tasks in one task group TG

independently .

8 else
9 help other virtual machine to execute map tasks until

all map tasks of jobi are completed.

10 //reduce task execution
11 if (all map tasks of TG are executed on vmk) then
12 the immediate data of map tasks which are executed

on other virtual machines are transferred to vmk and
the corresponding reduce task with same label is
executed on vmk .

13 return the final job results.;

In summary, the whole process of parallel task execution
for one job consists of three steps, and the corresponding
pseudocode is shown in Algorithm 2. In addition, because
multiple jobs book virtual machines of different racks, the
different jobs are parallel executed.

Step1, based on the smallest capacity of the rack in the
booked racks for this job, all map tasks and reduce tasks
are split into multiple task groups, and all tasks of each
task group paste the same label.
Step2, after task grouping, all map tasks are firstly paral-
lel executed on all virtualmachines of booked racks. Each
virtual machine independently calculates all map tasks
in one task group at the beginning. When a task group is
completed and other task group is not executed, then this
virtual machine starts to calculate the next task group. If
there is not any new task group, and job is not completed,
this virtual machine helps other virtual machines to exe-

123

304 Service Oriented Computing and Applications (2019) 13:297–308

Table 1 Illustration of four algorithms

Algorithm Description

MAR++ Scheduling and data placement on MapReduce
for heterogeneous environments [18]

SARS A Self-adaptive Scheduling Algorithm for
Reduce Start Time [11]

EMRSA Energy-aware Scheduling of MapReduce Jobs
for Big Data Applications [4]

TPJS Energy- and Locality-Efficient Multi-job
Scheduling based on MapReduce for
Heterogeneous Datacenter

cute map tasks until all map tasks in all task groups are
completed.
Step3, after all map tasks of one task group are com-
pleted, the corresponding reduce task starts to execute. If
all map tasks are completed in the same virtual machine,
the reduce task is executed on this virtual machine. If all
map tasks are executed in multiple virtual machines, then
the corresponding reduce task is executed in one virtual
machine which calculates most map tasks in this task
group.

4.4 Time complexity

Based on the above description, our proposed algorithm con-
tains mainly two phases, the job pre-assignment and parallel
task execution. For job pre-assignment phase, multiple jobs
are firstly merged into job group and the job execution order
is adjusted according to the job request. In addition, the idea
capacity of one rack for different jobs is pre-judged in the pre-
assignment process. Therefore, the time complexity of job
pre-assignment phases is that O (|J | · |R|) where the term
|J | is the number of multiple jobs and |R| is the number of
idle racks. For parallel task execution phase, all racks parallel
execute tasks ofmultiple jobs. So, the time complexity of par-
allel task execution is O (|V | · |TG| · |T S|), where |V | is the
maximum number of virtual machines in booking racks, the
term |TG| is the task number of each task group and the |T S|
is the average number of task groups which are calculated by
each virtual machine. Therefore, the time complexity of our
proposed algorithm is O (|J | · |R| + |V | · |TG| · |T S|).

5 Experimental evaluation

In this paper, we build a heterogeneous Hadoop cluster to
simulate the heterogeneous datacenter. And, we select three
typical algorithms (MAR ++, SARS, and EMRSA) to com-
pare with our proposed algorithm (TPJS). Table 1 shows the
detailed information of four algorithms.

5.1 Experimental environment

The heterogeneous Hadoop cluster consists of four types het-
erogeneous physical servers, contains 80 physical hosts to
form 16 racks. All physical hosts are set up with JDK 1.6,
Hadoop1.22 and CentOS6.6. Table 2 shows the parameters
of physical servers, including the number of servers, stor-
age, CPU, MEM and power. Table 3 shows the configuration
information of the 16 racks, in which eight racks consist of
40Dell 3010 servers, four racks aremade up of 20HPDL320
hosts, two racks are constituted by ten HP DL160 hosts, and
two racks consist of ten Dell R720 servers.

5.2 Experimental results

We compare the performance of TPJS, MAR++, SARS,
and EMRSA algorithms from job scheduling time, resource
balance rate, rack-to-rack traffic, amount of rack used, and
energy usage. For each benchmark, different jobs are repeat-
edly executed many times to get the average value, where the
processing file size (Input Size) and the number of tasks in
the different jobs are shown in Table 4.

(1) Job scheduling time

Figure 4 shows the scheduling time of four algorithms on
the TeraSort instance. From Fig. 4, we can find that the
job scheduling time is seriously affected by the amount of
tasks. In four algorithms,TPJS algorithm has minimized job
scheduling time, next is SARS and EMRSA is the worst.
More specifically, when the map tasks are small (0–80), job
scheduling time of four algorithms is very similar. But, as the
map tasks grow (80–960), the time of four algorithms grows
linearly, in which EMRSA andMAR++ increase fastest, and
represents they are worst. Figure 5 shows the job execution
time of four algorithms on the PageRank instance. Similar

Table 2 Physical hosts Type Num CPU MEM (g) DISK (g) Power (W)

G1:Dell 3010 40 4 CPUs, 3.3GHz 8G 300G 100W

G2:HP DL320 20 8 CPUs, 2.6GHz 8G 300G 160W

G3:HP DL160 10 8 CPUs, 2.7GHz 16G 300G 200W

G4:Dell R720 10 16 CPU, 2.0GHz 48G 300G 250W

123

Service Oriented Computing and Applications (2019) 13:297–308 305

Table 3 Rack configuration

Rack G1 G2 G3 G4

R1–R8 40/5 0 0 0

R9–R12 0 20/5 0 0

R13–R14 0 0 10/5 0

R15–R16 0 0 0 10/5

to Fig. 4, EMRSA and MAR++ have higher job scheduling
time than SARS and TPJS in all cases. Furthermore, the job
execution speed of SARS is stronger than our TPJS when
the amount of map tasks is less than 320; when the amount
of map tasks is over 320, job scheduling time of our TPJS
is shorter than SARS, and the gap between two algorithms
becomes bigger and bigger.

(2) Resource balance rate

Resource balance rate indicates the percentage between the
CPU utilization and memory utilization. The smaller the
resource balance rate is, the less the resource waste is. Fig-
ure 6 shows the resource balance rate of four algorithms on
the instance of TeraSort. As we can see Fig. 6, the resource
balance rate of four algorithms changes frequently in dif-
ferent jobs. (The number of map tasks is from 0 to 960).
Compared with other three algorithms, resource balance rate
of our TPJS algorithm is relatively stable, and the average
balance rate is only about 0.2.When the amount of map tasks
increases from 320 to 640, the floating range of SARS and
MAR++ algorithms is largest, so resource balance perfor-
mance of these two algorithms is worst; EMRSA algorithm
follows and our TPJS algorithm is best. Figure 7 shows the
resource balance rate of four algorithms on the instance of
PageRank. Based on the figure, TPJS has the smoothest trend
line than the other three algorithms in different jobs where
the amount of map tasks increases from 0 to 960. In partic-
ular, from 240 to 760, the resource balance rate of SARS,
EMRSA and MAR++ sharply floats.

(3) Rack-to-rack traffic

The rack-to-rack traffic is the percentage between commu-
nication sizes of multiple racks and all communication sizes
of whole job execution. The bigger the rack-to-rack traffic is,
the worse the data locality is. Figure 8 shows the cross-rack

traffic of four algorithms on TeraSort instance. From Fig. 8,
we can find that the rack-to-rack traffic of four algorithms
changes frequently. But, Fig. 8 implies a unified trend that
is the cross-rack traffic of four algorithms is growing with
the growth of the amount of tasks (from 80 to 960). In the
four algorithms, TPJS has the smallest rack-to-rack traffic
and tiniest change. Figure 9 shows the performance of four
algorithms on cross-rack traffic in the PageRank instance.
The similar phenomenon is found, and the rack-to-rack traf-
fic changes rapidly with the increase in Map tasks (from 0 to
960).

(4) Amount of rack used

The amount of rackused is an index tomeasure the concentra-
tion of job mapping. The smaller the used rack is, the higher
the concentration of job is. Meanwhile, the rack used is small
and the rack-to-rack traffic is also small. Figures 10 and 11
show the performance of four algorithms on the amount of
rack used in two different instances, TeraSort and PageR-
ank. In the TeraSort instance (Fig. 10), because the trend line
of TPJS is closer to the bottom, TPJS algorithm is signifi-
cantly better than other algorithms. More specifically, as the
number of map tasks (0–960) grows, the used rack grows
correspondingly. The SARS and MAR++ use most racks,
EMRSA follows, and TPJS is minimized. In the PageRank
instance (Fig. 11), when the map tasks are more than 80,
EMRSA and TPJS have smaller used racks than SARS and
MAR++; when the map tasks are over 320, the TPJS uses
smaller racks than EMRSA.

(5) Host energy usage

To compare the energy consumption, the energy usage of
physical hosts with different types is considered to observe
the energy consumption of four algorithms. Figures 12 and13
show heterogeneous hosts usage of four algorithms. Through
multiple repeated experiments on TeraSort and PageRank,
the different performances of four algorithms on occupying
physical hosts are clearly shown. Based on the two figures,
in all cases (the number of map tasks is from 0 to 960), TPJS
uses more low-energy (low-profile) physical hosts than other
three algorithms. That is to say, the used number of physical
hosts Host-G1 and Host-G2 in our TPJS algorithm is bigger
than that in other algorithms. In addition, the usage of four
physical hosts (Host-G1,Host-G2,Host-G3, andHost-G4) in

Table 4 Job parameters Job type Input size (GB) Map tasks

TeraSort 5/9.4/15/20/26.8 /31.8/47.5/52.5/60 80/150/240/320/430 /510/640/760/840/960

PageRank 5/9.4/15/20/26.8 /31.8/47.5/52.5/60 80/150/240/320/430 /510/640/760/840/960

123

306 Service Oriented Computing and Applications (2019) 13:297–308

Fig. 4 Job scheduling time of TeraSort

Fig. 5 Job scheduling time of PageRank

Fig. 6 Resource balance rate of TeraSort

Fig. 7 Resource balance rate of PageRank

EMRSA is more balanced. AndMAR++ and SARS prefer to
use high-energy (high-profile) physical hosts (Host-G3 and
Host-G4). Based on Figs. 12 and 13, we can conclude that
TPJS algorithm can save energy usage in the job scheduling
process by the rack-level job-centralized mapping.

Fig. 8 Rack-to-rack traffic of TeraSort

Fig. 9 Rack-to-rack traffic of PageRank

Fig. 10 Amount of rack used in TeraSort

Fig. 11 Amount of rack used in PageRank

In summary, based on the above experiments, we can find
our TPJS algorithm has better performance with other algo-
rithms from five aspects of job scheduling time, resource
balance rate, rack-to-rack traffic, amount of rack used and
host energy usage. The main reason has two points. On the

123

Service Oriented Computing and Applications (2019) 13:297–308 307

Fig. 12 Physical host usage of TeraSort

Fig. 13 Physical host usage of PageRank

one hand, TPJS takes the rack as the basic unit of resource
allocation and tries her best to assign all tasks to as few racks
as possible. In this way, the number of physical hosts online
can be reduced, energy-saving can be achieved by a large
margin, and management can be facilitated at the same time.
On the other hand, through this centralizedmapping strategy,
map and reduce tasks of one job can be nearby and data trans-
mission between themwill be reduced significantly,while job
execution time will be speeded up.

6 Conclusion

To jointly optimize the job scheduling time, data transmis-
sion, job cost, and energy-saving, an energy- and locality-
efficient multi-job scheduling algorithm is developed to
improve the performance of MapReduce tasks on hetero-
geneous datacenter. The main works of our algorithm are
as follows: (1) Based on the rack capacity, a multi-job pre-
mapping method is designed to enhance the resource utiliza-
tion and avoid the resource waste. By this way, a job will be
centrally allocated to multiple virtual machines of the same
rack to minimize the number of online racks, save energy,
and reduce the data traffic of the job. (2) After that, all pre-

assigned tasks will be executed in parallel to further improve
the data locality and decrease the data communication of the
immediate data between map and reduce tasks. Compared
with other three algorithms, lots of experimental results prove
the advantages of our TPJS algorithm from the five aspects
of job scheduling time, resource balance rate, rack-to-rack
traffic, amount of rack used and host energy usage.

In the future, we will try to test the execution process of
different phases in MapReduce scheduling and further opti-
mize the job scheduling from the idea “overlapping execution
in different phases.”

Acknowledgements This workwas supported by the Science Research
Project of Education Department of Hunan Province (18C0296); the
Open Project of State Key Laboratory of Advanced Design and Man-
ufacturing for Vehicle Body (31715010); Hunan Provincial Natural
Science Foundation of China (2018JJ2134); Hunan Provincial Young
Talents Project (2018RS3095); and Ph.D. research startup foundation
of Hunan University of Science and Technology (E51863).

References

1. Hashem IAT, Anuar NB, Marjani M et al (2018) MapReduce
scheduling algorithms: a review. J Supercomput 2018(1):1–31

2. Dean J, Ghemawat S (2008)Mapreduce: simplified data processing
on large clusters. Commun ACM 51(1):107–113

3. Dahiphale D, Karve R, Vasilakos AV et al (2014) An advanced
mapreduce: cloud mapreduce, enhancements and applications.
IEEE Trans Netw Serv Manag 11(1):101–115

4. Mashayekhy L, Nejad MM, Grosu D et al (2015) Energy-aware
scheduling ofmapreduce jobs for big data applications. IEEETrans
Parallel Distrib Syst 26(10):2720–2733

5. Bampis E, Chau V, Letsios D, Lucarelli G, Milis I, Zois G (2014)
Energy efficient scheduling of mapreduce jobs. In: Euro-Par 2014
parallel processing. Springer

6. Wang J, Li X, Yang J (2015) Energy-aware task scheduling of
mapreduce cluster. In: 2015 international conference on service
science (ICSS)

7. Maheshwari N, Nanduri R, Varma V (2012) Dynamic energy effi-
cient data placement and cluster reconfiguration algorithm for
mapreduce framework. Future Gener Comput Syst 28(1):119–127

8. Chen Y, Alspaugh S, Borthakur D, et al (2012) Energy efficiency
for large-scale mapreduce workloads with significant interactive
analysis. In: Proceedings of the 7th ACM European conference on
computer systems

9. Palanisamy B, Singh A, Liu L, Jain B (2011) Purlieus: locality-
aware resource allocation formapreduce in a cloud. In: Proceedings
of 2011 international conference for high performance computing,
networking, storage and analysis

10. Chen L, Zhang J, Cai L et al (2017) Fast community detection
based on distance dynamics. Tsinghua Sci Technol 22(6):564–585

11. Tang Z, Jiang L, Zhou J, Li K, Li K (2015) A self-adaptive schedul-
ing algorithm for reduce start time. Future Gener Comput Syst
43:51–60

12. Ramanathan R, Latha B (2018) Towards optimal resource provi-
sioning for Hadoop-MapReduce jobs using scale-out strategy and
its performance analysis in private cloud environment. Clust Com-
put 2:1–11

13. Lin JW, Arul JM, Lin CY (2018) Joint deadline-constrained and
influence-aware design for allocating MapReduce jobs in cloud
computing systems. Clust Comput 1:1–14

123

308 Service Oriented Computing and Applications (2019) 13:297–308

14. Zhu Y, Jiang Y, Wu W, Ding L, Teredesai A, Li D, Lee W (2014)
Minimizingmakespan and total completion time inmapreduce-like
systems. In: 2014 proceedings on INFOCOM. IEEE

15. Palanisamy B, Singh A, Liu L (2015) Cost-effective resource pro-
visioning for mapreduce in a cloud. IEEE Trans Parallel Distrib
Syst 26(5):1265–1279

16. Lin M, Zhang L, Wierman A, Tan J (2013) Joint optimization of
overlapping phases in mapreduce. Perform Eval 70(10):720–735

17. HeintzB,ChandraA,Weissman J (2014)Cross-phase optimization
in mapreduce. In: Cloud computing for data-intensive applications

18. Anjos JC, Carrera I, KolbergW, Tibola AL, Arantes LB, Geyer CR
(2015) Mar++: scheduling and data placement on mapreduce for
heterogeneous environments. Future Gener Comput Syst 42:22–35

19. Jin H, Yang X, Sun X-H, Raicu I (2012) Adapt: availability-aware
mapreduce data placement for non-dedicated distributed comput-
ing. In: 2012 IEEE 32nd international conference on distributed
computing systems (ICDCS). IEEE

20. Xie J, Yin S, Ruan X, Ding Z, Tian Y,Majors J, Manzanares A, Qin
X (2010) Improving mapreduce performance through data place-
ment in heterogeneous hadoop clusters. In: 2010 IEEE international

symposium on parallel and distributed processing, workshops and
Ph.D. forum (IPDPSW). IEEE

21. Al-KhasawnehMA,Shamsuddin SM,HasanS et al (2018)MapRe-
duce a comprehensive review. In: 2018 international conference on
smart computing and electronic enterprise (ICSCEE) on IEEE

22. GregoryA,Majumdar S (2018)Resourcemanagement for deadline
constrained MapReduce jobs for minimising energy consumption.
Int J Big Data Intell 5(4):270–287

23. Elzein NM, Majid MA, Hashem IAT et al (2018) Managing big
RDF data in clouds: challenges, opportunities, and solutions. Sus-
tain Cities Soc 39:375–386

24. Chen L, Zhang J, Cai L et al (2016) Locality-aware and energy-
aware job pre-assignment for mapreduce. In: International confer-
ence on intelligent networking and collaborative systems

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Energy- and locality-efficient multi-job scheduling based on MapReduce for heterogeneous datacenter
	Abstract
	1 Introduction
	2 Related works
	3 Problem analysis and model
	3.1 Heterogeneous datacenter architecture
	3.2 Problem statement
	3.3 Model

	4 Our algorithm (TPJS)
	4.1 Rack capacity measure
	4.2 Rack-level multi-job pre-mapping
	4.3 Parallel task execution
	4.4 Time complexity

	5 Experimental evaluation
	5.1 Experimental environment
	5.2 Experimental results
	(1) Job scheduling time
	(2) Resource balance rate
	(3) Rack-to-rack traffic
	(4) Amount of rack used
	(5) Host energy usage

	6 Conclusion
	Acknowledgements
	References

