
SOCA (2017) 11:87–100
DOI 10.1007/s11761-016-0199-0

ORIGINAL RESEARCH PAPER

MADONA: a method for automated provisioning of cloud-based
component-oriented business applications

Hind Benfenatki1 · Catarina Ferreira Da Silva1 · Gavin Kemp1 ·
Aïcha-Nabila Benharkat2 · Parisa Ghodous1 · Zakaria Maamar3

Received: 1 November 2015 / Revised: 25 August 2016 / Accepted: 30 August 2016 / Published online: 13 September 2016
© Springer-Verlag London 2016

Abstract Service-oriented computing and cloud comput-
ing offer many opportunities for developing and deploying
applications. In this paper, we propose and describe a
component-oriented method for automated provisioning of
cloud business applications. The method covers the whole
application’s lifecycle and is based on cloud orchestration
tools that manage the deployment and dependencies of
supplied components. We aim to reduce the necessary tech-
nical knowledge for provisioning component-oriented cloud
applications. To this end, we extend Linked Unified Ser-
vice Description Language to describe services for matching
user’s requirements. We adopt a real case study to show the
feasibility of the method.

Keywords Cloud computing · Linked services ·
Component-oriented business applications development ·
Service description · Cloud orchestration tool

B Hind Benfenatki
hind.benfenatki@liris.cnrs.fr

Catarina Ferreira Da Silva
catarina.ferreira-da-silva@liris.cnrs.fr

Gavin Kemp
gavin.kemp@liris.cnrs.fr

Aïcha-Nabila Benharkat
nabila.benharkat@insa-lyon.fr

Parisa Ghodous
parisa.ghodous@liris.cnrs.fr

Zakaria Maamar
zakaria.Maamar@zu.ac.ae

1 Univ Lyon, Université Claude Bernard Lyon 1, LIRIS UMR
5205 CNRS, 69621 Villeurbanne Cedex, France

2 LIRIS, CNRS, UMR5205, INSA - Lyon, 69621 Lyon, France

3 Zayed University, Dubai, UAE

1 Introduction

Today’s business applications are typically complex calling
for the collaboration of several independent components,
providing each a separate functionality. Service-oriented
computing (SOC) refers to these components as services
that can be assembled in a loosely coupled way. In conjunc-
tion with using SOC to address integration problems, cloud
computing has emerged as another way of helping enter-
prises access hardware and software resources on demand
andpay-per-use. There is a consensus in theR&Dcommunity
that both SOC and cloud computing constitute a successful
combination for the management of Service-Oriented Cloud
Computing Architecture (SOCCA) [1]. On the one hand,
SOC automates the development of composite applications.
On the other hand, cloud computing provisions deployment
environments for these applications.

Several efforts are put into developing support tools
and languages for the deployment of applications on cloud
environments such as Amazon Web Services (AWS) Cloud-
Formation [2], Heat [3], TOSCA [4], and Juju [5]. These
tools and languages use scripts to describe components of
the future cloud applications and necessary infrastructure
resources. Unfortunately, developing such scripts requires a
good technical knowledge of both the deployment language
and the necessary components of the applications. It is worth
noting that these scripts only allow a static composition of the
underlying application components. As a result, they do not
accommodate changes in components smoothly. This con-
stitutes a major limitation to the use of scripts in dynamic
environments. In fact, an implementation change or upgrade
of a component can have an impact for instance, on its com-
posability, necessary resources for its deployment, and its
configurability. These changes cannot be taken into account

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-016-0199-0&domain=pdf

88 SOCA (2017) 11:87–100

automatically if we would work with a ready to use script
only.

In this paper, we leverage the benefits of cloud computing
and Service-Oriented Architecture (SOA) in order to reduce
the necessary technical knowledge and human involve-
ment in provisioning component-oriented cloud applications
(component composition and application deployment). Our
first contribution is MADONA that stands for Method
for AutomateD prOvisioning of cloud-based component-
oriented busiNess Applications. MADONA consists of the
following phases: (a) Requirement elicitation; (b) Appli-
cation components discovery; (c) Integration of new com-
ponents if necessary; (d) Composition plans generation;
(e) Infrastructure as a Service (IaaS) discovery for appli-
cation hosting; (f) Composition plans ranking and selection;
(g) Application configuration and customization; (h) Auto-
matic deployment of cloud application; and (i) Test and
Validation of the deployed application. Human involve-
ment and technical knowledge are reduced since MADONA
phases are automated. In fact, the user intervenes only in
requirement elicitation phase and when the application is
deployed and ready to use.

The application components discovery and IaaS discovery
phases rely on Linked Unified Service Description Lan-
guage (USDL) [6–8] descriptions of available application
components and IaaS. According to Thoma et al. [9] Linked
USDL is the only current standardization effort driven by
large corporations (such as SAP, Siemens and Attensity) with
the goal of expressing not only purely functional aspects of
a service, but also the business and operational aspects. A
comprehensive introduction into each can be found in [10].
Our second contribution aims to increase composability of a
component [11] to favor the development of cloud compo-
nent business applications. We extend Linked USDL to track
relations that a component can have andmust havewith other
peers. Based on this extension, our third contribution is an
algorithm for generation of components composition plans
meeting user’s requirements and taking into account each
component’s composition constraints and possibilities.

The rest of this paper is organized as follows. Section 2
describes existing service description languages and appli-
cation development and deployment approaches. Section 3
presents MADONA’s phases. Section 4 describes the imple-
mentation of MADONA. Sections 5 and 6, respectively,
evaluates and discusses our work. Section 7 draws final con-
clusions.

2 Related work

Our literature review resulted into classifying service-oriented
cloud application provisioning into two categories: (1) cloud
application development environments and architectures [12,

13] and (2) cloud application deployment languages and
tools [4,5].

Several efforts are put into providing environments for
developing service-oriented cloud applications. SOCCA [1]
combines SOA and cloud computing so that clouds can inter-
operate with each other when developing service-oriented
applications. In [1], Software as a Service (SaaS) appli-
cations are built by assembling services which, unlike
traditional SOA, are packages that can be deployed on
different clouds. We refer to these services as compo-
nents. A cloud broker is used for discovering the necessary
cloud platform and infrastructure resources for SaaS compo-
nents. In [13], Sun et al. describe Service-Oriented Software
Development Cloud (SOSDC); it is a cloud platform for
developing a service-oriented software and dynamic hosting
environment. SOSDC’s architecture encompasses the three
levels of cloud services. IaaS level provides infrastructure
resources. Platform as a Service (PaaS) level provides App
Engine for hosting, testing, running, and monitoring service-
oriented software applications. And SaaS level provides
online service-oriented software development environment.
Once an application is built, the developer may request
an App Engine for hosting the application by specifying
requirements like Virtual Machine (VM) images and soft-
ware appliance. Zhou et al. [14] extend the conventional
architecture of cloud computing by inserting “Composition
as a Service” (CaaS) layer between SaaS and PaaS layers for
dynamic composition of services. The CaaS layer provides
users with a Cloud-based Middleware for Dynamic Service
Composition (CM4SC) that allows automatic service discov-
ery and automatic and dynamic composition ofWeb services.

Other works focus on the deployment of cloud appli-
cations. AWS CloudFormation [2] and Heat [3] (Open-
Stack [15] module) describe the necessary infrastructure for
supporting cloud application execution. In [4], Binz et al.
describe the Topology and Orchestration Specification for
CloudApplications (TOSCA)OASIS standard language [16,
17]. TOSCA defines a topology for deploying cloud appli-
cations in terms of components and relations between these
components. TOSCA, also, allows to describe management
plans, which can be executed automatically to deploy, con-
figure, and operate a cloud application. Juju [5], an open
source orchestration management tool allows to deploy, con-
figure, and compose software components on the cloud
using high-level scripts (close to natural language, e.g., “juju
deploy mysql”). These scripts call charms, which describe
YAML Ain’t Markup Language (YAML) configuration files
and hooks. Juju environment can be bootstrapped on many
clouds: Amazon Elastic Compute Cloud (EC2) [18], HP
Cloud Services [19], Microsoft Windows Azure [20], Open-
Stack, etc.

The aforementioned works are used to deploy cloud
applications but require a good prior knowledge of (1) the

123

SOCA (2017) 11:87–100 89

application components [2–5], (2) the necessary environment
for deploying each component [4], and (3) the infrastructure
resources for component deployment [2,3].

Our work aims to reduce the necessary technical knowl-
edge for provisioning component-oriented cloud applica-
tions. We rely on Linked USDL to describe application
components and IaaS. Linked USDL describes business and
cloud services and is based on Linked Data principles [21],
which eases its extension. It reuses several linked vocab-
ularies to describe business (e.g., legal issue and provider
information), operational (e.g., service features and opera-
tions), and technical (e.g., used ports and protocols) aspects.
Furthermore, Linked USDL is based on HTTP URIs allow-
ing a global service identification, and on HTTP URLs and
RDF to access service descriptions in a global, standard,
and uniform manner [22]. However, Linked USDL does not
describe composition interactions that a component has with
peers. Nguyen et al. [23] describe services using blueprints.
A blueprint describes a service’s offers, requirements, and
performance constraints. Nonetheless, Nguyen et al. cover
environment and composition constraints in the requirement
description. In fact, requirements can be either database
(composition) or Web server (environment). Encompassing
environment and composition constraints in the sameconcept
is not suitable while automating the composition of compo-
nents.

3 Method for automated provisioning of
component-oriented cloud business applications

This section describes first services and then MADONA in
terms of main phases, rationales, and illustrations.

3.1 Overview

Figure 1 illustrates MADONA’s phases. MADONA is built
upon SOA and cloud computing principles so that automatic
provisioning of component-oriented cloud applications is
achieved (i.e., component composition and deployment). It
takes user’s requirements as input and generates composition
plans as output for future composite applications to deploy on
the cloud. A composition plan is an abstract application that
assigns components to IaaS. If there are not components that
meet user’s functional requirements, assistance is provided
to the user so that she integrates new components into the
service repository. Juju charms store [24] is an example of
service repository that offers open source application com-
ponents. We enrich this store by adding cloud services such
as IaaS for hosting the generated application. We refer to the
set of application components and IaaS as services. We use
cloud orchestration tools (e.g., Juju) to deploy an abstract
application on the preselected IaaS. Indeed, orchestration
tools allow software deployment, integration, and scaling on

Fig. 1 MADONA’s main phases

123

90 SOCA (2017) 11:87–100

several clouds. Deployment constraints represent IaaS upon
which an orchestration tool can deploy application compo-
nents.

Our case study refers to a user who needs to provision a
projectmanagement system for a software development com-
pany. The user, also, needs a version control system so that
developers can store, retrieve, andmerge different versions of
application development. A particular project management
system may require components, which in turn may require
other components to function. It can be composed with a
particular version control system (VCS) or may not have any
possibilities to be composed with a VCS. We do not expect
from the user to specify these technical details of this require-
ment. Instead, the user focuses on high-level functional
(such as project management and version control systems)
and nonfunctional requirements (e.g., application cost). The
user prefers to host the generated application in Europe, on
“Amazon” [18] due to successful previous uses, and to pay
application use costs in “Euro,” below 50 euros per month.
Three challenges are associated with this scenario: (1) how
to provision a project management application dynamically
on the cloud with minimal human intervention, (2) how
to specify and model the project management scenario’s
functional and nonfunctional requirements, and (3) how to
adapt or extend service description languages to facilitate
the selection and composition of the project management’s
components.

3.2 Description of services

Providers are expected to describe supplied application com-
ponents and IaaS. Each component has deployment and
configuration scripts and an additional script that connects
it to other components. We extend USDL core module [25]
(Fig. 2) to track the composition interactions that a compo-
nent has with peers. We consider two types of interactions
when describing a component: constraints and possibili-
ties. Constraints refer to an application’s necessary compo-
nents, environment, and resources. And possibilities refer
to optional components that can be composed together. We
consider that environment constraints (e.g., Web server) are
automatically integrated into the deployment scripts. Com-
position constraints concern the application components.

To automate the configuration and deployment of com-
ponents, we describe configurable parameters and minimal
required resources for each component. In Fig. 2, the new
properties are numbered from 1 to 7 and the new concepts are
at the top of these properties. Each component is described
as follows S = {CC, CP, CCP, MRR}.

– CC is the set ofCompositionConstraints on a component.
Constraints are either hard or soft. The former describe

Fig. 2 Extended linked USDL core module

the components that must be put together, e.g., Medi-
aWiki and MySQL database. The latter describe choices
like MSSQL versus PostgreSQL versus MySQL data-
bases to connect to Joomla.

– CP represents Composition Possibilities of a component,
i.e., compositions that a component can have with peers
(e.g., memcached, a memory caching component repre-
sents a possible composition of MediaWiki).

– CCPdescribesComponentConfigurable Parameters, like
name and logo. Each configurable parameter is described
with a name and type of the Web page element (e.g., text
area or drop-down list) which serves to generate config-
uration Web interfaces (Sect. 3.3.7).

– MRR represents the Minimal Resource Requirements of
a component (e.g., number of CPU and memory size).

1 < h t t p : / / mydomain . f r / u s d l s / p r o j e c tman >
2 <Pro j e c tMan >
3 a u s d l : s e r v i c e ;
4
5 g r : name " P r o j e c tMan " ;
6
7 u s d l : h a s D e s c r i p t i o n " P r o j e c tMan i s a p r o j e c t
8 management e n g i n e . " ;
9

10 u s d l : h a s H a r d C o n s t r a i n t
11 [
12 a u s d l : s e r v i c e ;
13 g r : name "MySQL" ;
14]
15
16 u s d l : h a s H a r d C o n s t r a i n t
17 [
18 a u s d l : s e r v i c e ;
19 g r : name "MyCRM" ;
20]
21
22 u s d l : h a s P o s s i b l e C omp o s i t i o n
23 [
24 a u s d l : s e r v i c e ;
25 g r : name "MyVCS" ;
26]
27
28 u s d l : h a s P o s s i b l e C omp o s i t i o n
29 [
30 a u s d l : s e r v i c e ;
31 g r : name "Memcached " ;
32]
33
34 u s d l : h a sM i n ima lR e s o u r c eR e q u i r emen t s
35 [
36 a u s d l : M i n ima lR e s o u r c eRequ i r emen t s
37 u s d l : hasCpu " 4 " ;
38 u s d l : hasMemory "1G" ;
39]
40
41 h a s C o n f i g u r a b l e P a r am e t e r
42 [
43 a u s d l : C o n f i g u r a b l e P a r am e t e r
44 g r : name " name "
45 u s d l : hasType " t e x t a r e a "
46] .

Listing 1 ProjectMan description via .usdl file

123

SOCA (2017) 11:87–100 91

Fig. 3 RIVAL’s concepts and properties

Services’ descriptions are stored in .usdl files. Listing. 1
illustrates the description of ProjectMan, a project man-
agement component, using the extended Linked USDL.
ProjectMan has two possible compositions with, respec-
tively, MyVCS (lines 22–26), a version control component
and Memcached (lines 28–32), a memory caching compo-
nent. It requires MySQL database to store data (lines 10–14)
and MyCRM (lines 16–20), a CRM component, to link
employees with the customer who initiated the project. Pro-
jectMan component requiresminimalVMconfigurationwith
4 CPU and 1 Go memory (lines 34–39) and can be personal-
ized by its name (lines 41–46). In addition, MyCRM needs
to communicate with EmployMan (an employees’ manage-
ment system) to identify the employees involved in a project.
MyCRM, EmployMan, and MyVCS, each requires MySQL
database.

3.3 MADONA’s phases

This subsection illustrates MADONA’s phases (Fig. 1) from
requirement elicitation to tests and validation of deployed
application.

3.3.1 Requirement elicitation phase

This phase describes user’s requirements for the future cloud
applications using RequIrement VocAbuLary (RIVAL).
RIVAL formalizes these requirements using linked vocab-
ularies and introduces a distinction between primary and
secondary functionalities. These latter help, respectively,
select primary components and their possible compositions.
The functionality of the desired application is considered
as primary, e.g., a project management functionality in our

scenario.Any additional functionality to this projectmanage-
ment application is considered as secondary, e.g., requiring
a version control system with the project management com-
ponent to store several development versions of a project.
Only one primary functionality is allowed by project. Sev-
eral secondary functionalities can be associatedwith it. Fig. 3
illustratesRIVALclasses that describe vocabulary’s concepts
and properties describing relations between concepts.

It is challenging for a user to estimate acceptable tolerance
thresholds for QoS parameters such as service availability
and data integrity. In fact, users always aim for a maximum
quality. For these reasons, we use weights that a user affects
to QoS parameters according to her priority in the way that
the sum of affected weights equals 10. The choice of the
amount of weights of QoS parameters to equal to 10 is due
to the simplicity, in our view, to distribute 10 points rather
than a percentage.

User preferences concern application cost and deploy-
ment. The former concerns the maximum cost authorized,
currency, and purchase period. The latter concerns the pre-
ferred provider and location.

Requirements are translated into a .rival file. Listing. 2
illustrates a .rival file generated for the project management
scenario. Lines 3 and 4 describe, respectively, the user’s pri-
mary and secondary functionalities. The user’s preferences
are described from lines 6 to 17, including the preferred
deployment provider and location (lines 8–9), and price spec-
ification (lines 10–16). Lines 19–39 describe the user’s QoS
requirements. The .rival file is used in the application com-
ponent discovery phase.

User’s requirements may generate conflicts among them-
selves. A conflict occurs when requirements generate incom-
patibilities between common software attributes [26] orwhen

123

92 SOCA (2017) 11:87–100

performing an activity that prevents the execution of another
one [27]. It can be due to inconsistency in the specifications
in case of multiple stakeholders [28]. In our work:

– QoS requirements are expressed as weights rather than
as precise values for each QoS parameter in order to try
to avoid conflicts, such as imposing multiple authentica-
tions (security) and requiring a minimum time to login at
the same time.

– If conflicts exist between two components, they will not
be reflected on the generated application. In fact, the
generation of composition plans consists of composing
components that can be composed and the ones that have
to be composed (composition constraints and possibili-
ties).

1 < h t t p : / / mydomain . f r / r i v a l / p r o j e c t _manag emen t >
2 < P r o j e c t management s c e n a r i o > a r i v a l : P r o j e c t
3 r i v a l : h a s P r i m a r y F u n c t i o n a l i t y " p r o j e c t management " ;
4 r i v a l : h a s S e c o n d a r y F u n c t i o n a l i t y " v e r s i o n c o n t r o l s y s t em " ;
5
6 r i v a l : w i t h P r e f e r e n c e s
7 [a r i v a l : P r e f e r e n c e ;
8 r i v a l : h a s P r e f e r r e dD e p l o ym e n t P r o v i d e r "Amazon " ;
9 r i v a l : h a s P r e f e r r e dD e p l o ym e n t L o c a t i o n " Europe " ;
10 g r : h a s P r i c e S p e c i f i c a t i o n ;
11 [
12 a g r : P r i c e S p e c i f i c a t i o n ;
13 g r : h a sCu r r e n c y " e u r o " ;
14 g r : h a sCu r r e n c yVa l u e " 5 0 " ;
15 u s d l : p e r P e r i o dO f " month " ;
16]
17]
18
19 r i v a l : w i t hQoSRequ i r emen t s
20 [
21 a r i v a l : QoSRequ i remen t ;
22 g r : h a sVa l u e " D a t a _ P r i v a c y " ;
23 g r : h a s I n t e g e r V a l u e "4 "
24] ,
25 [
26 a r i v a l : QoSRequ i remen t ;
27 g r : h a sVa l u e " Response_Time " ;
28 g r : h a s I n t e g e r V a l u e "1 "
29] ,
30 [
31 a r i v a l : QoSRequ i remen t ;
32 g r : h a sVa l u e " D a t a _ l o s s " ;
33 g r : h a s I n t e g e r V a l u e "4 "
34] ,
35 [
36 a r i v a l : QoSRequ i remen t ;
37 g r : h a sVa l u e " A v a i l a b i l i t y " ;
38 g r : h a s I n t e g e r V a l u e "1 "
39] .

Listing 2 Project management scenario described via .rival file

3.3.2 Application components discovery phase

This phase consists of looking for application components
that meet user requirements’ functionalities (primary and
secondary). This requires matching the user requirements
with existing components. For the sake of simplicity, we
adopt a syntactic matching. Semantic matching is part of
our future work and could be based on some well-defined
techniques [29,30].

Listing. 3 illustrates the SPARQL Protocol and RDF
Query Language (SPARQL) query that returns the compo-
nents satisfying the user’s requirements. The query construc-
tion is automatically done by the system. It follows these
steps: check if the user has a preferred component meet-
ing her requirements based on previous experiences. If so,

the selection is done following the component’s name rather
than using keywords (lines 2–3); the discovery query also
retrieves the composition constraints of components meeting
the primary functionality (line 4); for each desired secondary
functionality, selects the components meeting the latter and
that can be composed with the primary components (lines
5–7).
1 SELECT ? i ? e ? f WHERE {
2 ? x u s d l : h a s D e s c r i p t i o n " p r o j e c t management " .
3 ? x g r : name ? e .
4 ? x u s d l : h a s h a r d C o n s t r a i n t s ? f .
5 ? x u s d l : h a s P o s s i b l e C omp o s i t i o n ? g .
6 ? g u s d l : h a s D e s c r i p t i o n " v e r s i o n c o n t r o l s y s t em " .
7 ? g g r : name ? i . }

Listing 3 SPARQL query for a project management application

The components discovery phase returns three key lists:
(1) Matched Primary Components (MPC), (2) Matched Pri-
mary Components Constraints (MPCC), and (3) Matched
Secondary Components (MSC): for each desired secondary
functionality, an MSC is created.

While generating composition plans, we look for compo-
sition constraints per component involved in a composition
plan via another SPARQL query (Sect. 3.3.4).

3.3.3 Integration of new components phase

The user can upload new components to the service repos-
itory when the existing ones do not meet her requirements.
This phase consists of two steps.

1. Integration into the service repository of deployment,
configuration, and composition scripts: these scripts are
used, respectively, to automate the deployment and cus-
tomization of a component, and the management of
dependencies with other components. These scripts are
developed by a component’s provider and are uploaded
to the service repository via a Web interface. This step
is dependent on an orchestration tool. It allows, in our
implementation, to integrate charms of new components
into Juju store.

2. Component description: this is introduced via aWeb form
and automatically translated into .usdl files that constitute
our repository of services.

3.3.4 Composition plans generation phase

Wegenerate composition plans thatmeet user’s requirements
and components’ constraints (Listing 4). A composition plan
consists of functional and deployment parts. The former con-
sists of a list of relations that connects components together.
Composition plans’ functional part is generated as follows:
let i be the index of a primary component in MPC, n the
number of desired secondary functionalities, and j the index
of needed secondary functionalities. We associate with each
primary component inMPC a composition plan.We generate

123

SOCA (2017) 11:87–100 93

Fig. 4 Possible composition plans generated for the project manage-
ment scenario

the possible combinations betweenMSC[i, j] (j = 0, j < n) so
that one component from each MSC[i, j] is present. For each
possible combination, we combine MPC[i] and MPCC[i] to
generate the first relation of the plan. For each component
(from the second component) of the first relation, we look for
its composition constraints through a new SPARQL query. If
a query’s result is not null, a new relation is created contain-
ing the component and its constraints. The added relations are
also checked for their composition constraints. The deploy-
ment part of a composition plan represents the IaaS upon
which it can be deployed.

Figure 4 illustrates the composition plans generated for
the running scenario. The functional part of the first plan is
composed of three relations. The first one is composed of
ProjectMan, a primary component; MySQL and MyCRM,
its composition constraints; and MyVCS a component that
provides version control management functionalities and
represents a possible composition of ProjectMan. The other
two relations bound, respectively, MyCRM and MyVCS
with their composition constraints. The functional part of
the second composition plan is composed of one relation
because none of the composition constrains and possibilities
of MyProject has a composition constraint.
1 MPC: Matched P r ima r y Components ;
2 MPCC: Matched P r ima r y Components C o n s t r a i n t s ;
3 MSC: Matched Se conda r y Components ;
4 CP : L i s t o f c omp o s i t i o n p l a n s ;
5 cp : A c ompo s i t i o n p l a n (L i s t o f r e l a t i o n s) ;
6 Re l a t i o n , Re l : L i s t o f componen t s i n v o l v e d i n a
7 r e l a t i o n ;
8
9 f o r (i n t i =0 , i <MPC. s i z e , i ++)
10 {
11 R e l a t i o n . add (MPC. g e t (i)) ;
12 i f (MPCC. g e t (i) . s i z e ! = 0)
13 {
14 f o r (i n t q =0 , q<MPCC. g e t (i) . s i z e , q ++)
15 {
16 R e l a t i o n . add (MPCC. g e t (i) . g e t (q)) ;
17 }
18 }
19 CMB= a l l p o s s i b l e c omb i n a t i o n s mee t i n g a l l u s e r ’ s
20 s e c o n d a r y f u n c t i o n a l i t i e s f rom MSC. g e t (i)
21 i f (CMB. i sEmp ty ())
22 {
23 cp . add (R e l a t i o n) ;
24 cp= v e r i f C o n s t r a i n t s (cp) ;
25 CP . add (cp) ;
26 }
27 e l s e
28 {
29 Rel = R e l a t i o n ;
30 f o r e a ch c omb i n a t i o n cmb from CMB
31 {
32 R e l a t i o n . add (cmb) ;
33 cp . add (R e l a t i o n) ;
34 cp= v e r i f C o n s t r a i n t s (cp) ;
35 CP . add (cp) ;
36 R e l a t i o n =Re l ;
37 }
38 }
39 R e l a t i o n =new (l i s t) ;
40 }
41

42 c omp o s i t i o n _ p l a n v e r i f C o n s t r a i n t s (c omp o s i t i o n _ p l a n cp)
43 {
44 i n t l =0 ; i n t n b _ r e l a t i o n =1 ;
45 wh i l e (l < n b _ r e l a t i o n)
46 {
47 f o r (i n t k =1 , k<cp . g e t (l) . s i z e , k ++)
48 {
49 i f (g e t C o n s t r a i n t s (cp . g e t (l) .
50 g e t (k)) n o t n u l l)
51 {
52 R e l a t i o n =new (l i s t) ;
53 R e l a t i o n . add (cp . g e t (l) . g e t (k)) ;
54 f o r (i n t m=0 ; m< g e t C o n s t r a i n t s (cp . g e t (l) .
55 g e t (k)) . s i z e , m++)
56 {
57 R e l a t i o n . add (g e t C o n s t r a i n t s (cp . g e t (l) .
58 g e t (k)) . g e t (m)) ;
59 }
60 n b _ r e l a t i o n ++;
61 cp . add (R e l a t i o n) ;
62 }
63 }
64 l ++;
65 }
66 r e t u r n (cp) ;
67 }

Listing 4 Composition plan generation algorithm

3.3.5 IaaS discovery phase

This phase selects the IaaS necessary to deploy the generated
composition plans. IaaS available in the service repository
are those upon which the orchestration tool can deploy
components. A SPARQL query (Listing 5) is automatically
generated to select IaaS (line 2) meeting user’s preferences:
preferred location (line 3) and preferred deployment provider
(line 4).
1 SELECT ?x WHERE {
2 ? x u s d l : h a s C l a s s i f i c a t i o n " I a aS " .
3 ? x g r : l o c a t i o n " Europe " .
4 ? x g r : name "Amazon " . }

Listing 5 SPARQL query for IaaS selection

The discovered IaaS are ranked according to QoS require-
ments (service ranking is described in Sect. 3.3.6). The one
with the highest rank is selected. The price of each previ-
ously generated composition plans using the selected IaaS
is estimated. If the cost of a composition plan exceeds the
maximum cost set by the user, the corresponding composi-
tion plan is excluded. If no composition plan remains, the
IaaS having the next better rank is selected. Else, the func-
tional part of the remaining composition plans is ranked. The
configuration file of the orchestration tool is automatically
updated to set the deployment environment upon the selected
IaaS.

In the running scenario, the user prefersAmazon inEurope
for hosting needs. The latter allows to deploy the two gener-
ated composition planswithout exceeding themaximum cost
set by the user. In Fig. 4, Amazon Europe has been added as
a deployment part to the composition plans.

3.3.6 Composition plans ranking and selection phase

Composition plan’s services are ranked according to user’s
QoS requirements and thanks to a “history of service invoca-
tion.” The latter provides the QoS parameters describing the
services according to their previous invocations.We consider

123

94 SOCA (2017) 11:87–100

that the history of service invocation is provided by an inde-
pendent third-party service as now we see the proliferation
of cloud services comparison Web sites. Cloud armor [31]
andCloudorado [32] provide such third-party evaluation.The
former provides a dataset of cloud services consumers’ QoS
ranking (availability, response time, ease of use, etc). The
latter provides a comparison of cloud providers in terms of
SLA level, price, and features.

Two scenarios are available for QoS parameters: (1) the
highest the value of the QoS parameter is, the better the ser-
vice is (e.g., availability), and (2) the lowest the value of
the QoS parameter is, the better the service is (e.g., response
time). Rupper and Rlower are, respectively, the ranks regard-
ing these two kinds of QoS parameters. Let Si be a service
and Q j be a QoS parameter.

R(Si , Q j)

⎧
⎨

⎩

Rupper = Val(Si ,Q j)

Max(Q j)
∗ Coefficient

Rlower =
(
1 − Val(Si ,Q j)

Max(Q j)

)
∗ Coefficient

(1)

where:

– Val is the value of the QoS parameter for a given service.
– Max is the maximum value of the QoS parameter among
all services supplying the same functionality.

– And, Coefficient is the weight previously assigned to the
QoS parameter by the user.

Let R(Si) be the global ranking regarding the whole QoS
parameters for Si .

R(Si) =
m∑

j=1

R(Si , Q j) (2)

The rank associated with each possible composition plan
is calculated as the average rank of the components involved
in it (Eq 3). The plan that has the highest rank is selected.

R(CompositionPlan) =
∑N B

i=1 R(Si)

N B
(3)

WhereNB is the number of components involved in the com-
position plan.

3.3.7 Business application configuration phase

Some components can be configured according to user’s
preferences. For the selected composition plan, several Web
interfaces are automatically displayed to the user according
to the selected components and their configurable parame-
ters so that she can personalize the generated applicationwith

specific details related to its business. For example, the user
can personalize the component with the name and logo of
her organization. She can also introduce username and pass-
word of the administrator and so on. From these information
(introduced by the user via the Web form), the orchestration
dedicated scripts are automatically created to configure the
application.

3.3.8 Business application deployment phase

This phase consists of deploying the highly ranked com-
position plan that was generated in the composition plans
generation phase. We generate a high-level script deploy-
ing the components and considering the relations between
them. The script is dedicated to the cloud orchestration tool
used (“Juju” in our implementation) inMADONAsystem for
managing components deployment, configuration, and com-
position. It is generated as illustrated in Listing 6. For each
relation from the selected composition plan, the first compo-
nent is deployed. Then, each other component of the relation
is deployed and related to the first component (lines 13–17).
Finally, the first component of the first relation is exposed
(line 20) to allow the user access the deployed application.

1 I n p u t : P l a n (r e p r e s e n t s t h e s e l e c t e d p l a n)
2 Ou tpu t : s c r i p t (d ep l oymen t s c r i p t)
3
4 f o r (i n t i =0 , i < P l a n . s i z e , i ++)
5 {
6 f o r (i n t j =0 ; j < P l a n . g e t (i) . s i z e ; j ++)
7 {
8 i f (P l a n . g e t (i) . g e t (j) h a s n o t been d e p l o y e d y e t)
9 {

10 s c r i p t = s c r i p t +" J u j u d e p l o y "
11 + P l a n . g e t (i) . g e t (j) ;
12 }
13 i f (j >1)
14 {
15 s c r i p t = s c r i p t +" j u j u add−r e l a t i o n "
16 + P l a n . g e t (i) . g e t (j) + " "+ P l a n . g e t (i) . g e t (0) ;
17 }
18 }
19 }
20 s c r i p t = s c r i p t +" j u j u expo s e "+ P l a n . g e t (0) . g e t (0) ;

Listing 6 Deployment script generation algorithm

Listing 7 illustrates the automatically generated Juju ded-
icated command lines that deploy the selected composition
plan. For each component deployment, we take into account
its minimal resource requirements (line 1 of Listing 7).

1 j u j u d e p l o y −−c o n s t r a i n t s " cpu−c o r e s =4 mem=1G" p r o j e c tMan ;
2 j u j u d e p l o y mysql ;
3 j u j u add−r e l a t i o n MySQL p r o j e c tMan ;
4 j u j u d e p l o y MyCRM;
5 j u j u add−r e l a t i o n MyCRM p ro j e c tMan ;
6 j u j u d e p l o y MyVCS;
7 j u j u add−r e l a t i o n MyVCS p r o j e c tMan ;
8 j u j u add−r e l a t i o n MySQL MyCRM;
9 j u j u d e p l o y EmployMan ;

10 j u j u a d d _ r e l a t i o n EmployMan MyCRM,
11 j u j u add−r e l a t i o n MySQL MyVCS;
12 j u j u expo s e p r o j e c tMan ;

Listing 7 The generated deployment script for the "project manage-
ment" scenario

Redeployment can occur if the user does not validate the
resulted business application after the tests have occurred. In
this case, the allocated resources for the previous deployment
are released and another composition is deployed.

123

SOCA (2017) 11:87–100 95

3.3.9 Tests and validation phase

The validation is done by the user after testing the deployed
business application. Two types of tests are considered: per-
formance and conformity. The former is done automatically
using a testing tool such as Gatling [33]. The latter is done
by the user who compares her requirements to the resulted
business application. After tests, the user submits to the sys-
tem her validation (satisfaction or dissatisfaction) regarding
the deployed application. If the user is unsatisfied, another
composition is deployed, other tests are performed, and the
user has to notify her validation. This cycle is repeated until
the user satisfaction is achieved or no other composition is
possible.

4 Implementation

Tovalidate and evaluate our approach,we implemented a sys-
tem for MADONA as a Web application. A video of the sys-
tem is available at liris.cnrs.fr/hind.benfenatki/demo.mp4.
We chose Grails [34] as a framework that allows the
development of applications following the Model, View,
Controller (MVC) pattern. MADONA is based on an orches-
tration tool for managing the deployment of application
components of a composition plan. We chose Juju as an
orchestration tool; it allows component deployment, config-
uration, and composition using high-level scripts which is
more suitable for automating the deployment phase. Further-
more, Juju store offers components that have the necessary
support for our implementation. We use, respectively, Jena
API and Jena-arq API to model and query .rival and .usdl
files.

The system is deployed on top of a Dell machine, 1.80
GHz with 16 GB memory, running Windows 8.1. We used
VirtualBox to install two guest Ubuntu VMs which get 4
GB of memory and 80 GB of disk in dynamic allocation.
We installed MADONA system on one VM and Juju envi-
ronment on the second. Juju VM hosts the Web application
generated byMADONA. In fact, Juju environment simulates
a cloud environment uponwhich several Linux containers are
instantiated. Necessary components are deployed on these
Linux containers. The two VMs communicate using Open-
SSH.

Figure 5 illustrates the architecture of MADONA system.
It is composed of three levels. The interface level is responsi-
ble for communicating with the user. A controller routes data
inputs (introduced by the user via Web interfaces) between
various Java classes. Five views have been created. “New-
Project” view to introduce requirements for a new project.
“Config” view to introduce configuration parameters. “Add-
Charm” view to upload new charms. “AddDescription” view

to describe new added components. And “Home” view to
display the status of deployed components.

The application level allows to generate and deploy com-
position plans. First, user’s requirements are translated into
.rival file (“RivalGen” class). A SPARQL query is gen-
erated and launched on the .usdl descriptions of services,
and composition plans are generated (“DiscoCompo” class).
The latter are ranked and ordered using a bubble sort and
their identification is stored in a text file (“RankingCal-
cul” class). The user introduces her configuration parameters
(“Config” view) for the composition plan with the highest
rank. Configuration and deployment scripts are generated
(“DeployConfigScriptGen” class) and sent to Juju server
using SSH for execution (respectively, “AutoConfig” and
“AutoDeploy” classes). The user is then sent back to the
“Home” page where the matched application is made avail-
able with the status “is being deployed.” An auto refresh
of the Web page insures that a script is sent and executed
every thirty seconds to obtain the status of Juju (“IPFind”
class). The latter is analyzed using java String tools andwhen
the IP address appears a link is provided to that application.
To allow integrating new components to Juju store, three
other classes havebeen implemented. “UploadCharm”which
allows to transfer charms archive of a new component to Juju
VM. “USDLGen” class generates .usdl descriptions in turtle
format, from a given description introduced via the “AddDe-
scription” view. For each new component, “QoSToXML”
class generates randomly QoS values within a predefined
interval for each QoS parameter and stores them in an XML
file. The QoS XML files are used in the composition plans
ranking phase.

The service level consists of USDL descriptions, QoS
XML files, and distributed components packages.

5 Comparing our system to Bitnami and Juju

We evaluate MADONA system by comparing the provi-
sioning of MediaWiki, WordPress, and the running scenario
using: (1) Bitnami IaaS [35], (2) orchestration tool Juju,
(3) MADONA system, and (4) local deployment in Ubuntu
machine.

Bitnami allows to deploy ready and static cloud appli-
cations in a simple and automated manner. The user has to
select the appropriate application, deployment provider and
location, operating system, server type, disk size, application
options such as login and password of the application, devel-
opment options to include the installation of Web servers,
and application properties such as language and nickname.
These inputs have default values to allow the user to deploy
her application easily.

Figure 6 shows the setup time of the Juju environment
according to the different phases: installation, configuration,

123

96 SOCA (2017) 11:87–100

Fig. 5 Architecture of MADONA system

Fig. 6 Juju environment setup time

and bootstrap. Bitnami,MADONA, and local deployment do
not require any environment installation.

Figure 7 shows the provisioning time of MediaWiki and
WordPress scenarios. Each scenario is composed of three
components. The choice to evaluate provisioning time using
MediaWiki andWordPress scenarios is guidedby the fact that
the components involved are available in Bitnami and Juju.
The discovery and deployment times are hard to evaluate for
Juju and local deployment due to the limited control over any
manual work. In fact, the discovery process varies depend-
ing on how it is done, what selection criteria are, and so on.

Fig. 7 Provisioning time of MediaWiki and WordPress

And the deployment time varies depending on how familiar
the user is with this kind of installation. The provisioning
of MediaWiki and WordPress using MADONA consumes
more time than Bitnami. In fact, an increase of 13 s (+3%)
is observed while provisioning MediaWiki. The purpose of
evaluating provisioning time with Bitnami and MADONA
is to show that MADONA provisions applications in a
satisfactory time in comparison with an industrial solu-
tion. The provisioning of MediaWiki and WordPress using
MADONA consumes more time than Juju (an increase of
3 s (+1%) is observed while provisioning MediaWiki). How-

123

SOCA (2017) 11:87–100 97

Fig. 8 Execution time of MADONA’s phases using three scenarios

ever,MADONAautomates the phases before the deployment
and is based on Juju. We choose to evaluate the provisioning
time instead of resource consumption to analyze efficiency
through computational cost for the following reasons:

– Bitnami is an industrial platform, so it is hard to com-
pare MADONA with Bitnami because we do not have
any information related to resource allocation and con-
sumption for the provisioning using Bitnami.

– Optimizing the computational cost through provisioning
time and resource consumption is out of the scope of this
work.

Despite a larger provisioning time using MADONA, it
allows to compose components on the fly and automati-
cally meeting user’s requirements. MADONA reduces the
technical knowledge needed to provision any cloud-based
component-oriented business applications (Figs. 9, 10). In
fact, each phase of MADONA is fully automated, and the
user’s requirements are expressed in a high-level regarding
the technical details (in terms of functionalities, QoS require-
ments, and cost and deployment preferences). Conversely,
Bitnami deploys only ready applications, and Juju requires
user’s intervention in the selection of the required compo-
nents and in the deployment script generation.

Figure 8 illustrates the execution time of MADONA’s
phases following three scenarios varying the number of (1)
desired functionalities, (2) generated composition plans, and
(3) components and relations in each composition plan. The
phases consumingmore time are thosemanipulatingfiles.We
observe a remarkable increase in composition plans ranking
time as the size of the obtained results increases (in terms of
number of generated composition plans, relations, and com-
ponents involved). This is due to the fact that the ranking
phase queries one QoS XML file per component involved in
the generated composition plans.

Fig. 9 Quantity of script lines needed to deployMediaWiki andWord-
press

Fig. 10 Components the user has to know to provision our running
scenario following different approaches

Fig. 11 MADONA Versus Bitnami when existing components do not
meet user’s requirements

Out of Fig. 9, we observe that the user has to deploy the
application components using scripts for orchestration tool
Juju and local deployment in Ubuntu machine, while in Bit-
nami IaaS and MADONA system, the scripts are generated
automatically. The deployment on an IaaS (like Bitnami) is
easy to complete, but this is done in a preconfigured VM
upon which the primary component and its composition con-
straints are deployed on a same machine. The composition

123

98 SOCA (2017) 11:87–100

Ta
bl
e
1

B
itn

am
iv

er
su
s
Ju
ju

ve
rs
us

M
A
D
O
N
A

Ph
as
e

B
itn

am
i

Ju
ju

M
A
D
O
N
A

R
eq
ui
re
m
en
te
lic

ita
tio

n
C
on

si
de
rs
on

ly
pr
im

ar
y
fu
nc
tio

na
lit
ie
s.
T
he

us
er

ch
oo

se
s
ex
pl
ic
itl
y
th
e
ap
pl
ic
at
io
n
to

de
pl
oy
.

T
he

us
er

ha
s
to

ch
oo

se
fr
om

a
se
to

f
ex
is
tin

g
ap
pl
ic
at
io
ns

C
on

si
de
rs
on

ly
pr
im

ar
y
fu
nc
tio

na
lit
ie
s.
T
he

us
er

ch
oo

se
s
ex
pl
ic
itl
y
co
m
po

ne
nt
s
to

de
pl
oy

an
d

co
m
po
se
.T

he
us
er

ha
s
to

ch
oo
se

fr
om

a
se
to

f
ex
is
tin

g
co
m
po
ne
nt
s

C
on
si
de
rs
pr
im

ar
y
an
d
se
co
nd
ar
y
fu
nc
tio

na
lit
ie
s.

N
ee
de
d
co
m
po
ne
nt
s
ar
e
de
sc
ri
be
d
in

te
rm

s
of

fu
nc
tio

na
lit
ie
s
or

by
th
ei
r
na
m
e

A
pp

lic
at
io
n

co
m
po
ne
nt
s

di
sc
ov
er
y

N
o
di
sc
ov
er
y
si
nc
e
th
e
us
er

ch
oo
se
s
th
e
ne
ed
ed

ap
pl
ic
at
io
n

N
o
di
sc
ov
er
y
si
nc
e
th
e
us
er

ch
oo
se
s
th
e
ne
ed
ed

co
m
po
ne
nt
s

C
om

po
ne
nt
s
ar
e
ch
os
en

ba
se
d
on

re
qu
ir
ed

fu
nc
tio

na
lit
ie
s
or

re
qu

ir
ed

co
m
po

ne
nt
s.

D
is
co
ve
ry

co
nc
er
ns

ne
ed
ed

co
m
po
ne
nt
s
an
d

th
ei
r
co
m
po

si
tio

n
co
ns
tr
ai
nt
s
an
d
po

ss
ib
ili
tie

s

In
te
gr
at
io
n
of

ne
w

co
m
po
ne
nt
s

Is
po
ss
ib
le
on
ly

by
th
e
pr
ov
id
er
.T

he
us
er

ha
s,

ho
w
ev
er
,t
he

po
ss
ib
ili
ty

to
im

po
rt
he
r
V
M
s

fr
om

A
m
az
on
.W

ith
ou
tt
he

de
sc
ri
pt
io
n
of

th
e

ne
w
ly

in
te
gr
at
ed

co
m
po
ne
nt
s,
th
e
la
tte
r
ca
nn
ot

be
au
to
m
at
ic
al
ly

co
nn

ec
te
d
to

ot
he
r

co
m
po
ne
nt
s
in

fu
tu
re

co
m
po
si
tio

ns

T
he

us
er

ha
s
th
e
ab
ili
ty

to
in
te
gr
at
e
ne
w

co
m
po
ne
nt
s
to

th
e
Ju
ju

ch
ar
m
s
st
or
e
by

in
te
gr
at
in
g
sc
ri
pt
s
fo
r
de
pl
oy
m
en
t,

co
nfi

gu
ra
tio

n
an
d
co
m
po
si
tio

n
w
ith

ot
he
r
co
m
po
ne
nt
s

T
he

us
er

ha
s
th
e
ab
ili
ty

to
in
te
gr
at
e
ne
w

co
m
po
ne
nt
s
to

th
e
se
rv
ic
e
re
po
si
to
ry

th
ro
ug
h

th
e
in
te
gr
at
io
n
of

co
m
po
ne
nt
s
de
sc
ri
pt
io
ns
.S

he
al
so

in
te
gr
at
e
to

th
e
Ju
ju

ch
ar
m
s
st
or
e
sc
ri
pt
s

fo
r
de
pl
oy
m
en
t,
co
nfi

gu
ra
tio

n
an
d
co
m
po
si
tio

n
w
ith

ot
he
r
co
m
po

ne
nt
s.
T
he

ne
w
ly

in
te
gr
at
ed

co
m
po

ne
nt
s
ar
e
au
to
m
at
ic
al
ly

ta
ke
n
in
to

ac
co
un
ti
n
fu
tu
re

co
m
po
si
tio

ns
th
an
ks

to
th
ei
r

de
sc
ri
pt
io
n

C
om

po
si
tio

n
pl
an
s

ge
ne
ra
tio

n
D
oe
s
no

te
xi
st
.C

om
po

si
tio

n
po

ss
ib
ili
tie

s
ar
e
no

t
ta
ke
n
in
to

ac
co
un

t.
T
he

us
er

se
le
ct
s
th
e

ap
pl
ic
at
io
n
to

de
pl
oy

D
oe
s
no
te
xi
st
.C

om
po
si
tio

n
co
ns
tr
ai
nt
s
ar
e

kn
ow

n
bu
tn

ot
ta
ke
n
in
to

ac
co
un
t

au
to
m
at
ic
al
ly
.T

he
us
er

se
le
ct
s
th
e
co
m
po

ne
nt
s

to
de
pl
oy

an
d
to

co
m
po
se

C
om

po
si
tio

n
co
ns
tr
ai
nt
s
an
d
po

ss
ib
ili
tie

s
ar
e

kn
ow

n
(f
ro
m

co
m
po
ne
nt
’s
de
sc
ri
pt
io
n)

an
d

ta
ke
n
in
to

ac
co
un

ta
ut
om

at
ic
al
ly

to
ge
ne
ra
te

co
m
po
si
tio

n
pl
an
s.
T
he

us
er

do
es

no
th

av
e
to

ch
ec
k
w
he
th
er

co
m
po
ne
nt
s
w
or
k
w
el
lt
og
et
he
r

Ia
aS

di
sc
ov
er
y

D
oe
s
no
te
xi
st
.T

he
us
er

m
us
tc
ho
os
e
an

Ia
aS

fo
r

th
e
de
pl
oy
m
en
t.
T
he

us
er

ha
s
to

kn
ow

(o
r

in
qu

ir
e
ab
ou

t)
pr
ic
es

of
a
gi
ve
n
V
M

in
a
gi
ve
n

Ia
aS

D
oe
s
no
te
xi
st
.T

he
us
er

m
us
tc
ho
os
e
an

Ia
aS

fo
r

th
e
de
pl
oy
m
en
t.
T
he

us
er

ha
s
to

kn
ow

(o
r

in
qu

ir
e
ab
ou

t)
pr
ic
es

of
a
gi
ve
n
V
M

in
a
gi
ve
n

Ia
aS

A
n
Ia
aS

is
se
le
ct
ed

au
to
m
at
ic
al
ly

ac
co
rd
in
g
to

us
er

pr
ef
er
en
ce
s
if
sh
e
pr
ov
id
es

th
em

(p
re
fe
rr
ed

lo
ca
tio

n
an
d
pr
ov
id
er
),
Q
oS

re
qu
ir
em

en
ts
,a
nd

de
pl
oy
m
en
tc
os
tt
o
no
te
xc
ee
d

C
om

po
si
tio

n
pl
an
s

ra
nk

in
g
an
d
se
le
ct
io
n

N
ot

ta
ke
n
in
to

ac
co
un

t
N
ot

ta
ke
n
in
to

ac
co
un

t
C
om

po
si
tio

n
pl
an
s
ar
e
ra
nk
ed

to
se
le
ct
th
e

be
st
on
e
(i
n
te
rm

s
of

Q
oS

)

B
us
in
es
s
ap
pl
ic
at
io
n

co
nfi

gu
ra
tio

n
T
hr
ou
gh

a
W
eb

in
te
rf
ac
e
an
d
sp
ec
ifi
c
to

ea
ch

ap
pl
ic
at
io
n

T
hr
ou
gh

co
nfi

gu
ra
tio

n
sc
ri
pt
s
an
d
sp
ec
ifi
c

to
ea
ch

ap
pl
ic
at
io
n
co
m
po

ne
nt

T
hr
ou

gh
a
W
eb

in
te
rf
ac
e
an
d
sp
ec
ifi
c
to

ea
ch

ap
pl
ic
at
io
n
co
m
po

ne
nt

B
us
in
es
s
ap
pl
ic
at
io
n

de
pl
oy
m
en
t

A
ty
pe

of
V
M

sh
ou
ld

be
se
le
ct
ed

fo
r
th
e

de
pl
oy
m
en
to

f
th
e
ap
pl
ic
at
io
n.
A
de
fa
ul
tv

al
ue

ex
is
ts
to

re
du
ce

th
e
re
qu
ir
ed

kn
ow

le
dg
e

⇒
T
he

us
er

ha
s
to

kn
ow

th
e
m
in
im

al
co
nfi

gu
ra
tio

n
al
lo
w
in
g
th
e
go
od

fu
nc
tio

ni
ng

of
th
e

ap
pl
ic
at
io
n

A
ty
pe

of
V
M

sh
ou
ld

be
se
le
ct
ed

fo
r
th
e

de
pl
oy
m
en
to

f
co
m
po
ne
nt
s.
It
ha
s
to

be
m
en
tio

ne
d
in

Ju
ju

co
nfi

gu
ra
tio

n
fil
e.
A
de
fa
ul
t

va
lu
e
ex
is
ts
to

re
du
ce

th
e
re
qu
ir
ed

kn
ow

le
dg
e

⇒
T
he

us
er

ha
s
to

kn
ow

th
e
m
in
im

al
co
nfi

gu
ra
tio

n
al
lo
w
in
g
th
e
go
od

fu
nc
tio

ni
ng

of
th
e
co
m
po
ne
nt
.T

he
us
er

cr
ea
te
s
th
e

de
pl
oy
m
en
ts
cr
ip
t

M
in
im

al
re
qu
ir
ed

re
so
ur
ce
s
(C
PU

an
d
m
em

or
y)

ar
e
kn
ow

n
(f
ro
m

co
m
po
ne
nt

de
sc
ri
pt
io
n
as

ill
us
tr
at
ed

in
L
is
tin

g
1)

al
lo
w
in
g
to

de
pl
oy

th
e

co
m
po
ne
nt

in
a
V
M

ha
vi
ng

su
ffi
ci
en
t

re
so
ur
ce
s.
T
hi
s
is
ta
ke
n
in
to

ac
co
un

t
au
to
m
at
ic
al
ly
.D

ep
lo
ym

en
ts
cr
ip
ti
s

au
to
m
at
ic
al
ly

ge
ne
ra
te
d
an
d
ex
ec
ut
ed

123

SOCA (2017) 11:87–100 99

Table 2 Local deployment
versus using Juju versus using
Bitnami versus using MADONA

System Local deployment Using Juju Using Bitnami Using MADONA

Prerequisite Web server Juju server Web browser Web browser

Data base server

Components’ packages

Table 3 MADONA versus the related work

Work Approach Cloud level Comments

SOSDC [13] Service-Oriented SaaS, PaaS, IaaS Platform specific

TOSCA [4] Package oriented SaaS, IaaS Topology for the deployment of a cloud application describing the
structural description of the application

Juju [5] Orchestration tool IaaS Allows to deploy components using charms

Bitnami [35] Application hosting platform SaaS Allows to deploy supplied applications

MADONA Component-Oriented SaaS, IaaS Complete method for automatic and dynamic cloud application
provisioning

is not done dynamically, but rather the several compositions
have to be known and scripted in a static way.

Figure 10 illustrates the components that a user has to
be aware of to provision an application with two desired
functionalities and three composition constraints (such as
the first composition plan generated for the running sce-
nario). For both local deployment, Juju, and TOSCA, the
user has to know all the components involved in the desired
application. Using Bitnami, the user has not to worry about
the composition constraints. However, Bitnami does not
take into account composition possibilities when deploy-
ing applications. So, the two components meeting the two
functionalities are not composed. UsingMADONA, the user
does not have to know any component of the desired appli-
cation.

Figure 11 compares Bitnami and MADONA when avail-
able components do not meet user’s functional and nonfunc-
tional requirements. While MADONA allows the user to
enrich the repository of services by adding external com-
ponents, Bitnami just allows users to import their EC2
instances. Using MADONA, new components are auto-
matically integrated into the service repository and used
(discovered, composed and deployed) in future provision-
ings.

As a first conclusion, MADONA system “is close” to
Bitnami in the fact that the user does not need to write
any script to deploy the needed application and does not
require any preinstallation. However, these two systems dif-
fer essentially in the necessary technical knowledge when
provisioning of the desired application (Fig. 10; Table 1),
and in the provisioning lifecycle as illustrated in Table 1.
Differences between MADONA and Bitnami are explained
in the next Section.

6 Discussion

We have cited various cloud application development and
deployment approaches. Each covers SaaS, PaaS and/or IaaS
levels.

Tables 1 and 2 highlight the common and varied properties
between Bitnami, Juju, local deployment, and MADONA.
Even if the deployment of the desired application is auto-
mated for Bitnami and MADONA systems, the application
construction is different. In fact, with Bitnami, the user
chooses the application to deploy, the IaaS upon which it
will be deployed, and the necessary VM type. The com-
position constraints are automatically taken into account in
a static way, i.e., Bitnami does not compose application
components on the fly following users’ requirements. Fur-
thermore, Bitnami does not take into account composition
possibilities in application deployment. Using MADONA,
composition constraints and possibilities management are
done automatically and dynamically making the process
generic and enrichable. Furthermore, the discovery process
usingMADONA reduces technical knowledge because users
are asked to supply the information about the needed func-
tionality instead of the application name, and they do not
have to select IaaS provider and VM types.

Table 3 illustrates the comparison between the related
work and our approach according to the following crite-
ria: cloud level covered and used approaches. It appears
that the related work is focusing on a special issue such as
deployment of cloud applications [4,5], or development envi-
ronment [13].MADONAprovides a requirement vocabulary
for cloud applications; extends Linked USDL to describe
the composition constraints and composition possibilities in
order tomake the composition plan generation automatic and

123

100 SOCA (2017) 11:87–100

dynamic; automates the deployment process; uses orchestra-
tion tools to deploy and manage constraints and possibilities
between components in a dynamic way.

7 Conclusion

In this paper, we presented MADONA—aMethod for Auto-
mateD prOvisioning of cloud-based component-oriented
busiNess Applications—that reduces the technical burden on
users of knowing cloud application provisioning. MADONA
covers application provisioning lifecycle from requirement
elicitation to validation phases. It is iterative and adaptive
to user needs allowing to deploy several applications until
user’s requirements are met. We also defined RIVAL—a
RequIrements VocAbuLary—for describing users require-
ments in order to provision a cloud business application. To
automate the discovery of components, we extended Linked
USDL to track the relations that a component can and must
have with peers such as composition constraints and pos-
sibilities. We use “Juju,” a cloud orchestration tool, which
facilitates the deployment and management of dependen-
cies of components. Component dependency management is
done dynamically making the process generic and the repos-
itory of services enrichable. MADONA system has been
developed and tested following a running scenario.

As part of our ongoing work, we intend to integrate a
discovery approach allowing to query distributed repositories
of services.Wealsoplan to integrate semanticmatching in the
components discovery phase. Also, a negotiator module will
be added to allow the system to negotiate user preferences,
while composition plans are generated.

Acknowledgements The authors would like to thank Professor Jorge
Cardoso for commenting earlier versions of themanuscript. Theywould
also like to thank the anonymous reviewers for their constructive feed-
back.

References

1. Tsai WT, Sun X, Balasooriya J (2010) Service-oriented cloud
computing architecture. In: Seventh international conference on
information technology: new generations (ITNG). IEEE, pp 684–
689

2. Amazon CloudFormation (2016) https://aws.amazon.com/fr/
cloudformation/

3. Heat (2016) https://Wiki.openstack.org/Wiki/Heat
4. Binz T, Breitenbücher U, Kopp O, Leymann F (2014) TOSCA:

portable automated deployment and management of cloud appli-
cations. In: Bouguettaya A, Sheng QZ, Daniel F (eds) Advanced
web services. Springer, New York, pp 527–549

5. Juju (2016) https://juju.ubuntu.com/
6. Linked USDL (2013) http://www.linked-usdl.org/
7. Cardoso J (2013) A unified language for service descrip-

tion: a brief overview. http://www.issip.org/2013/04/26/
a-unified-language-for-service-description-a-brief-overview/

8. Pedrinaci C, Cardoso J, Leidig T (2014) Linked USDL: a vocab-
ulary for web-scale service trading. The semantic web: trends and
challenges. Springer, Berlin, pp 68–82

9. ThomaM,AntonescuAF,Mintsi T,BraunT (2013)Linked services
for enabling interoperability in the sensing enterprise. Enterprise
interoperability. Springer, Berlin, pp 131–144

10. BarrosA,OberleD (2012)Handbook of service description:USDL
and its methods. Springer, Berlin

11. Gu Q, Lago P (2009) Exploring service-oriented system engi-
neering challenges: a systematic literature review. Service oriented
computing and applications. Springer, Berlin

12. Ardagna D, Di Nitto E, Casale G, Petcu D, Mohagheghi P, Mosser
S, Matthews P, Gericke A, Ballagny C, D’Andria F, Nechifor
CS, Sheridan C (2012) Modaclouds: A model-driven approach for
the design and execution of applications on multiple clouds. In:
4th international workshop on modeling in software engineering.
IEEE, pp 50–56

13. Sun H, Wang X, Zhou C, Huang Z, Liu X (2010) Early experience
of building a cloud platform for service oriented software devel-
opment. In: IEEE international conference on cluster computing
workshops and posters (CLUSTER WORKSHOPS). IEEE, pp 1–
4

14. Zhou J, Athukorala K, Gilman E, Riekki J, Ylianttila M (2012)
Cloud architecture for dynamic service composition. Int J Grid
High Perfor Comp (IJGHPC) 4:17–31

15. OpenStack open source cloud computing software (2014) https://
www.openstack.org/

16. OASIS-Advanced open standards for the information society
(2014) https://www.oasis-open.org/

17. TOSCA Language (2014) http://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403635

18. Amazon elastic compute cloud (2014) http://aws.amazon.com/fr/
ec2/

19. HP Cloud (2014) http://www.hpcloud.com/
20. Windows Azure (2014) http://azure.microsoft.com/fr-fr/
21. Linked data - connect distributed data across the web (2013) http://

www.linkeddata.org/
22. Cardoso J, Binz T, Breitenbücher U, Kopp O, Leymann F (2013)

Cloud computing automation: integrating USDL and TOSCA.
In: Conference on advanced information systems engineering.
Springer, Berlin

23. Nguyen DK, Lelli F, Papazoglou MP, Van den Heuvel WJ (2012)
Issue in automatic combination of cloud services. In: IEEE 10th
international symposium on parallel and distributed processing
with applications (ISPA). IEEE, pp 487–493

24. Juju charms store (2016) https://jujucharms.com/store
25. Linked USDL modules (2013) https://github.com/linked-usdl
26. Egyed A, Grunbacher P (2004) Identifying requirements conflicts

and cooperation: how quality attributes and automated traceability
can help. IEEE Softw 21:50–58

27. Hausmann JH, Heckel R, Taentzer G (2002) Detection of conflict-
ing functional requirements in a use case-driven approach: a static
analysis technique based on graph transformation.In: 24th interna-
tional conference on software engineering. ACM, pp 105–115

28. Easterbrook S (1994) Resolving requirements conflicts with
computer-supported negotiation. Requirements engineering: social
and technical issues. ACM pp 41–65

29. Vu LH, HauswirthM, Aberer K (2005) Towards P2P-based seman-
tic web service discovery with QoS support. In: International
conference on business process management. Springer, pp 18–31

30. Nayak R, Lee B (2007) Web service discovery with additional
semantics and clustering. In: International conference onweb intel-
ligence. IEEE, pp 555–558

31. Cloud Armor (2016) http://cs.adelaide.edu.au/~cloudarmor/ds.
html

32. Cloudorado (2016) https://www.cloudorado.com/
33. Gatling: Load testing tool (2014) http://gatling-tool.org/
34. Grails framework (2015) https://grails.org/
35. Bitnami: Cloud hosting (2014) https://bitnami.com/

123

https://aws.amazon.com/fr/cloudformation/
https://aws.amazon.com/fr/cloudformation/
https://Wiki.openstack.org/Wiki/Heat
https://juju.ubuntu.com/
http://www.linked-usdl.org/
http://www.issip.org/2013/04/26/a-unified-language-for-service-description-a-brief-overview/
http://www.issip.org/2013/04/26/a-unified-language-for-service-description-a-brief-overview/
https://www.openstack.org/
https://www.openstack.org/
https://www.oasis-open.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403635
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html#_Toc356403635
http://aws.amazon.com/fr/ec2/
http://aws.amazon.com/fr/ec2/
http://www.hpcloud.com/
http://azure.microsoft.com/fr-fr/
http://www.linkeddata.org/
http://www.linkeddata.org/
https://jujucharms.com/store
https://github.com/linked-usdl
http://cs.adelaide.edu.au/~cloudarmor/ds.html
http://cs.adelaide.edu.au/~cloudarmor/ds.html
https://www.cloudorado.com/
http://gatling-tool.org/
https://grails.org/
https://bitnami.com/

	MADONA: a method for automated provisioning of cloud-based component-oriented business applications
	Abstract
	1 Introduction
	2 Related work
	3 Method for automated provisioning of component-oriented cloud business applications
	3.1 Overview
	3.2 Description of services
	3.3 MADONA's phases
	3.3.1 Requirement elicitation phase
	3.3.2 Application components discovery phase
	3.3.3 Integration of new components phase
	3.3.4 Composition plans generation phase
	3.3.5 IaaS discovery phase
	3.3.6 Composition plans ranking and selection phase
	3.3.7 Business application configuration phase
	3.3.8 Business application deployment phase
	3.3.9 Tests and validation phase

	4 Implementation
	5 Comparing our system to Bitnami and Juju
	6 Discussion
	7 Conclusion
	Acknowledgements
	References

