SOCA (2016) 10:413-435
DOI 10.1007/s11761-016-0193-6

@ CrossMark

ORIGINAL RESEARCH PAPER

FRWSC: a framework for robust Web service composition

Mohamed El Kholy! - Ahmed El Fatatry!

Received: 12 November 2015 / Revised: 7 January 2016 / Accepted: 19 March 2016 / Published online: 5 April 2016

© Springer-Verlag London 2016

Abstract The deployment of Web services in a highly
dynamic environment brings about a number of research
challenges. In dynamic Web services composition, failures
and changes to atomic services cannot be detected before
invocation. Hence, the failure or even the change in an atomic
service may lead to the overall failure of the composite ser-
vice. In addition, SOAP error code is not sufficient for the
client to analyze the failure reason and handle it. In this
work, we introduce a framework to deal with unexpected fail-
ures during runtime composition. The proposed framework
is built on top of composite services stack as an interface
between the composite service and its external service part-
ners. The evaluation results show that by using the proposed
framework, it is possible to avoid composite service failures
that are caused by changes or failures in atomic services.

Keywords Web service composition - SOAP errors -
Runtime failure - BPEL - Service replacement

1 Introduction

Web services composition is a promising technology that
supports interoperability between heterogeneous business
organizations. Web services are usually deployed in highly
dynamic environments. In such environments, flexibility and
reliability are key requirements. Web services composition
aggregates different services from different organizations

B><I Mohamed EI Kholy
eng_mikholy @alexu.edu.eg

Ahmed El Fatatry
elfatatry @alexu.edu.eg

Institute of Graduate Studies and Research, Alexandria
University, El Horia Road, Alexandria, Egypt

with various functional and nonfunctional properties. How-
ever, it is beyond the human ability to create the composition
plan manually or to monitor its execution [1]. Artificial intel-
ligence (Al)-based techniques have been extensively used in
service composition research [2]. Ideally, given one or more
goals and a set of available Web services, the task of an Al
planner is to find a collection of Web services that can achieve
the required goals [3,4]. This work focuses on building flexi-
bility in composite services to overcome unexpected runtime
failures. During the execution of the planned composite ser-
vice, one or more services may fail to perform the required
functionality various [5]. Such failures may lead to an over-
all failure of the composite service [6]. In many applications,
especially in real-time application, it is not possible to stop
execution to perform service maintenance. Recovery steps
should be done on the fly.

In this work, we introduce a framework for robust Web
service composition (FRWSC). The framework proposes a
method to detect, analyze, and overcome individual service
failure in composite Web services. To overcome a failure in
such a dynamic environment, each service should be mon-
itored. In a service-oriented environment, service execution
takes place at the provider side. In such case, the consumer
cannot monitor the actual service execution. Instead of moni-
toring the Web services execution, we propose monitoring its
interface with the composite service. The interface between
the composite service and its individual service is the SOAP
messages [1,7,8]. In this work, we present a method to mon-
itor the SOAP traffic to detect the behavior of each service
and the possible failures [1,3]. Using this approach, it is pos-
sible to identify the failure reason and the possible solution.
The composite service is considered as a closed system that
interacts with the outside world through the interface of its
services. The framework is built on top of the composite ser-
vice as an extra interface between the composite service and

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-016-0193-6&domain=pdf

414

SOCA (2016) 10:413-435

the external world. FRWSC is general and can be used for
any composite service. However, we focus on the BPEL as
the common language for orchestrating service composition
[2—4]. In addition, we focus on SOAP as a common protocol
to exchange messages in Web services [8]. The framework
performs five tasks that facilitate building flexibility and reli-
ability into composite Web services. The five tasks are listed
as follows.

Detecting composite service failure.
Identifying failed processes.

Analyzing the type of failure and its reason(s).
Recovering failed services.

Resuming composite service execution.

BAREER ol S

The first step to fix a failure is to detect it. It is important
to identify which process has failed and analyze both the
type and the reason for the failure. Identifying the reason for
the failure helps perform the correct solution to recover such
failure [6]. Then, the execution of the composite service can
be resumed safely.

This paper is organized as follows: Sect. 2 introduces the
related work in the area of composite services failure and
recovery. Section 3 specifies the problem of service failure
and the solution requirements. Section 4 discusses failure
types and solutions, and then maps each failure to one or
more solutions. Section 5 discusses service replacement and
dependency between services. Section 6 presents the struc-
ture of the proposed framework. The work is evaluated in
Sect. 7 using a proof of concept prototype and experimental
results. Finally, Sect. 8 discusses the conclusions and future
work.

2 Related work

Approaches reported in the literature to deal with the problem
of atomic service failure during composite service execution
can be summarized into three main categories. Following is a
discussion of the strengths and weaknesses of each approach.

2.1 First approach: software variability

Traditional software variability is based on two main con-
cepts: variation points and variants. Variation points are the
locations of expected failures. Variants are the alternatives
of the expected errors. The aim of the variability approach is
to combine traditional software variability with Web service
composition technology [9]. Sun et al. in [9] propose a solu-
tion for the problem of service unavailability while executing
a composite service by using variability management. Vari-
ation points are inserted at the invocation of each service.
At each variant point, a set of alternative variant services

@ Springer

that can be selected at such points are defined. At runtime,
when a service becomes unavailable, a backup service with
the same functionality can be invoked instead. Their work
focuses on the design level and on introducing methods to
insert variant points into software design. They introduced
general extensions to UML diagrams to support modeling
of variability using UML. Their work has been mapped to
SOA using the extended UML diagrams. However, their work
did not consider the dependencies between services. It also
assumes that when two services have the same functionality,
they can replace each other. Such assumption is not always
correct. Two services may have the same functionality, but
when composing them with other service, they may have a
different behavior. This situation may occur because the two
services require different messages as input, or require dif-
ferent preconditions. For instance, two services may perform
the same functionality such as money transfer from a bank
account. One service may require the client to perform a digi-
tal signature for his request while the other may not. Another
limitation of the approach is that it does not define when
to take the replacement decision. The work did not include
the criteria for choosing the new service. Finally, the work
does not support the case where there is no service that can
perform the same functionality.

Software variability solution was discussed at the imple-
mentation level by Koning et al., in [10]. They introduced
VxBPEL as an extension to BPEL language that allows
variability management. VXBPEL contains additional XML
elements that store variability information in a BPEL file.
Variability information is defined inside the process defini-
tion. VXBPEL adds the variability information as extension
elements using a different namespace. Their work added vari-
ation points to the BPEL code to support service replacement.
They added new instructions (activities) to the BPEL file
including variant point specification and then a set of vari-
ant services. These variant services can be invoked instead
of the unavailable services. The main advantage of VxBPEL
is that the variant services can be discovered dynamically.
This allows dynamic changes to existing variation points
in a VXBPEL process. However, the work is limited to the
implementation level and on BPEL. Hence, the scope of the
solution is narrow. Moreover, it does not analyze the reason
of the failure and treats all failures in the same way. It does not
provide a solution for the problem if the failure is associated
with the client input parameters or precondition status.

2.2 Second approach: fault tolerance

This approach is more general and aims to deliver a cor-
rect service composition even in the presence of individual
faults. The composed service is enriched with checkpoints
that monitor the service execution. In case of a failure, all
running processes terminate until the failed process is recov-

SOCA (2016) 10:413-435

415

ered by substituting its service. Here we discuss two methods
related to the fault-tolerance approach to solve the problem
of individual service failure.

Liu et al. in [11] developed a framework to solve this
challenging problem by allowing fault-tolerant composition
of Web services. Their framework discussed how to deliver
reliable service composition over individual unreliable ser-
vices. They divide service failure into three main categories.

1. Logical failure is a type of failure that takes place when
the business logic of the invoked service fails. For exam-
ple, a service is required to book four tickets where there
are only two tickets available.

2. System failure occurs when the server that hosts the ser-
vice detects that the requested service does not exist.

3. Content failure occurs when the returned value of a previ-
ous service is not accurate. For example, wrong distance
between two towns or wrong temperature degree.

Their approach to use fault tolerance to solve the ser-
vice failure depends on monitoring the WSDL file and the
BPEL file. Any specified operation is declared in a WSDL
document [7]. Hence, the namespaces that are used in the
WSDL document can be used as a unique name for failure. In
this way, information about failure is collected from WSDL
namespaces. Hence, the logical failure name is the name of
the operation that failed in the WSDL file. At each opera-
tion, a checkpoint that has three possible values is created.
These values are (completed, failed, canceled). According
to the check value, a decision is taken. BPEL file is used to
detect system failure. When a failure is detected, the com-
posite service stops and a service replacement procedure is
run. The work depends on the BPEL exception handling
method to detect content failure. Such method is not effective
because business rules undergo continuous changes. Hence,
the throw—catch expressions have to be changed every time
business rules change.

Omid Bushehrian et al. in [6] propose that fault tolerance
for composite services should be handled at a higher level of
abstraction. They built a language-independent method for
Web service fault tolerance at the workflow level. In case
of failure, the workflow applies a rollback operation. The
rollback operation removes any effect of already executed
service that has dependency relationship with the failed ser-
vice. It also locks any running service and rolls back all
services to the last dependent point. The work presents a
good contribution to remove the effect of the executed service
in case of failure. However, it does not provide a complete
solution for the problem of service failure. It did not provide
details about replacement methods or how to resume execu-
tion. It also did not deal with the local variables and how to
store them. They apply a rollback mechanism to reach the
last executed dependent service. Hence, after the composite

service resumes execution, it must execute all the rolled back
services.

2.3 The third approach: service replication

The replication approach has been used in solving failure
problems associated with distributed systems. According to
[12], only three countries provide 55.5 % of the available Web
services. This means that the countries that consume these
services will be affected by any Internet disconnections to
these three countries. One solution to solve this problem is
to have a set of replicate services in different physical places
all over the world. There are two main types of replication:
active replication and passive replication. Active replication
means that the user requests are processed by all service
replicas. Service requests should be processed in the same
order in all the replicas to guarantee that all replicas execute
the service request while having the same state. Hence, all
replicas will produce the same output. If one replica failed
under any condition, the rest of the replicas will provide the
same functionality in a transparent manner to the requester.

The other type is passive replication which means that one
replica service acts as master and another acts as backup.
Hence, only the primary service will execute the client
request. Upon the failure of the primary service, one of the
backup services will take its place. Zibin Zheng and Michael
R. Lyu [12] built a hybrid strategy of services replication.
Their strategy combines both time redundancy and space
redundancy. They divided the space redundancy into passive
and active redundancy. The combination between time redun-
dancy, passive redundancy, and active redundancy created
nine possible solutions. Then they analyzed the conditions
of utilization of each combined solution.

Jorge Salas et al. [13] point out that the availability of
Web services must be guaranteed in case of failures and
network disconnections. They created a Web service repli-
cation framework that solves the problem of service failure
by replicating Web services. Their framework allows active
replication of Web services in a transparent way to the client.
The client sends a request to WS-Replication framework
which internally transforms the request into several requests
to the service replicas. Their framework contains a multi-
cast component that provides group communication based
on SOAP. A controller monitors these SOAP messages to
make sure that the right result is sent to the client. Replication
approach can help solve the service failure due to bad network
connections or service inexistence at the suggested location
(service access failure) [14]. However, it cannot solve the
problem of service failure due to functional, semantic, secu-
rity, data matching, and logical failure issues. Moreover, it is
very complex and increases the service cost to have multiple
copies of each service.

@ Springer

416

SOCA (2016) 10:413-435

3 Problem statement and solution requirements
3.1 Problem statement

The first problem discussed in this work is the failure of
a composite service as a result of change in one or more
of its individual services [6,9,14]. Web services composi-
tion has proved to be difficult to maintain when one of its
individual services fails or changes its interface [6,9,14].
After planning the composition, the specified services are
discovered and then selected according to the defined crite-
ria [15]. Atruntime, binding takes place between the selected
service and its concrete functionality. In the dynamic environ-
ment of the Web services, some services may fail to perform
their functionality. Other services may change their inter-
face. As the Web services are invoked on the fly, failures
and changes are difficult to detect before invocation. Con-
sequently, the failure or even the change in an individual
service may lead to the overall failure of the composite ser-
vice.

The second problem is that the SOAP error code is not
sufficient for the client to analyze the failure reason and han-
dle it [16]. Also, SOAP messages cannot detect semantic
failures in the client’s request or the provider’s reply. For
instance, SOAP exception handler cannot detect unrealistic
temperature degree as shown in the following example. A
SOAP request may have no response at all. To clarify this
problem, we implemented a Web service that has two oper-
ations. The first operation returns the temperature of capital
cities of Mediterranean countries. The service takes the short
name of the country as input, and then returns the tempera-
ture of its capital. This service was invoked with wrong input
parameters and the response of each invocation was mon-
itored. Table 1 shows a number of wrong parameters and
their respective responses. It is clear that that although the
input parameter is wrong, no explicit error is returned back.
The SOAP response contains implicit errors that cannot be
detected by the user. The second operation returns the sum
of two integers. Invoking the service with wrong parameters,
the SOAP error response is the same. Hence, in a composite
service, the user cannot clearly specify the invocation error
to repair it. Table 2 presents the SOAP response for wrong
invocations.

Table 1 Implicit SOAP error codes for different wrong input parame-
ters

Input parameter SOAP response

No input at all No error, temperature=0

Wrong string No error, temperature=0

Integer No error, temperature=0

@ Springer

Table 2 Explicit SOAP errors for different wrong input parameters

Input parameter SOAP response
First input is digit and the second is null HTTP error 505
First input is digit and the second is float HTTP error 505
First input is digit and the second is string HTTP error 505
First input is Null and the second is digit HTTP error 505

3.2 Solution requirement

RQI

There is a need for a mechanism to monitor the outgoing
SOAP messages of a composite service and validate it. The
parameters included in the SOAP request should be com-
patible with the required inputs of the invoked service. Any
wrong parameters such as type mismatch or different num-
ber of parameters will lead to service failure. For instance, a
service that requires two integer values as input should not
be invoked with only one integer. Also, it cannot be invoked
with two string values.

RQ2

There is a need for monitoring the incoming SOAP
response and differentiating between failed and successful
invocations. SOAP error may be an explicit error or implicit
error. Explicit error should be declared in the form of failure
message informing the client that his invocation has failed.
The implicit error may not be declared and is in the form
of traditional SOAP reply but including a wrong result. This
has to be treated.

RQ3

There is a need for a mechanism to specify and analyze
the failure reason. The failures which are detected through
monitoring the SOAP traffic should be analyzed to determine
the type of each failure and its reason.

RQ4

There is a need for a mechanism to create a recovery plan
to maintain failures in composite services. Such plan should
consider the dependency between services and minimize the
repair time.

RQ5

The composite service should safely resume execution
after the recovery of individual service failure.

3.3 Motivation example

This section presents an example of a composite service
failure as a result of failure or change in one of its atomic
services. The “Travel planner” composite service aggregates
different services from different organizations to arrange

SOCA (2016) 10:413-435

417

trips. Each atomic service in the “Travel planner” is inde-
pendent from other services. However, when these services
are aggregated together, composition dependencies issues
appear. For instance, the output of one service could be the
input to another service. Any failure or change in one of the
atomic services will lead to an overall failure of the com-
posite service. In addition, the failure may not be reported
to the client to avoid its reason in the next invocation. The
failure reason could be wrong parameters that are provided
by the user, for instance wrong name of the destination
town. A more complex reason: one of the component ser-
vices changes its input or output parameters. Such situation
will affect the previous or successive service of the changed
one.

4 Failure reasons

In this section, the different reasons for failures of individual
Web services are analyzed. The analysis helps in developing
methods to deal with the impact of individual service fail-
ure on the composite service. The individual service failure
recovery is more efficient than replacing it because selec-
tion and discovery phases will not be repeated. Moreover,
service replacement may lead to composite service failure.
Such situation takes place if the new service is not adapted
to the successive services in the composite service workflow.
The new service is considered to be adapted to the successive
service if it satisfies the following demands. First, the output
parameters of the new service should be the same as the input
parameters of its successive service. Second, the effect of the
new service should satisfy the precondition of the successive
services. In order to overcome a Web service failure, the rea-
sons and location of the failure should be clearly specified. In
this section, the process of service invocation is traced from
its beginning to end.

The proposed framework divides the service failure into
three main categories according to the location of failure.
Then the reasons of failure at each location are analyzed
by tracing all processes that occur at each location. The three
main categories are client-side errors, communication errors,
and provider-side errors. The first failure location can be at
the client side where the service invocation starts. The client
creates a service request that encapsulates his input para-
meters in a SOAP message. The second failure location can
be at the communication path between the client and the
provider. Such category includes the transformation of client
request over the Internet to the service provider side and
the transformation of the results back to the provider. The
third location is the provider side where client parameters
are extracted from the request message. Then the service
execution takes place and the result is sent back to the client
side

4.1 Client request

Web service invocation process starts with a client request in
the form of SOAP message [8]. The client request encap-
sulates service input parameters that are extracted from
the WSDL file [1,16]. Such process is complex to be
done manually. Hence, an automated client-side interface
is responsible for extracting service requirements and gen-
erating the request message. The client requests are sent
to service providers in the form of SOAP messages over
HTTP protocol. In case of invocation success, the client-
side interface receives the SOAP reply from the service
provider. The result parameters are extracted and then passed
to the client. SOAP protocol is limited to exchange mes-
sage between two end points (requester and provider) [17].
The exact data type specification for invocation parame-
ters is offered by WSDL file. WSDL supports any type
definition [1,7,16]; most services use XML Schema Def-
inition (XSD) to define service parameters such as (int,
string) [7]. The WSDL file can also import external defin-
ition using “import” element that specifies the location of
external schema definition. Invocation problems occur when
a service changes its required input parameters. For instance,
a parameter with type float is changed into int type. More-
over, the imported types in WSDL file may be changed at
its external locations without being locally changed at the
WSDL file. The client-side interface uses the parameters
extracted from the WSDL file to invoke the service [17].
The client-side interface is not aware of the change in ser-
vice parameters or with external definition changes. Hence,
service invocation is done using old parameters which are not
compatible with the new service requirements. In such cases,
a service failure may take place due to clients’ requests. The
SOAP errors that the client receives do not clearly describe
the failure reason as mentioned in Sect. 3.1. Such problem
worsens by increasing the number of invoked services. The
client request may contain one or more of the following
errors.

e Wrong number of input parameters.

e Wrong type of input parameters.

e Time delay for sending input parameters in synchronous
service invocation.

4.2 Communication between service client and service
provider

Web services technology relies on Internet connections and
protocols to exchange messages between the consumer and
the provider. Hence, it may suffer from connection prob-
lems at different network layers [4,12]. Although this paper
focuses mainly at the application layer, this section dis-
cusses the connection failures at the other layers to present

@ Springer

418

SOCA (2016) 10:413-435

Table 3 Data size in request and reply message for the first service

Size of request message Size of reply message

Empty SOAP message “with no header and no body element”
SOAP message containing null value of client parameters
SOAP message containing 2 bytes (client request)

SOAP message containing 4 bytes (client request)

117 bytes 325 bytes
279 bytes 1664 bytes
281 bytes 325 bytes
283 bytes 326 bytes

Table 4 Data size in request and reply message for the second service

Size of request message Size of reply message

Empty SOAP message “with no header and no body element’
SOAP message containing null value of client parameters
SOAP message containing 25 bytes of client request

SOAP message containing 50 bytes of client request

117 bytes 325 bytes
2134 bytes 1520 bytes
2134 bytes 943 bytes
2159 bytes 968 bytes

its impact on service failure. Web services is considered as
a remote procedure call (RPC) between heterogonous sys-
tems [8]. However, Web services require additional features
over traditional RPC to be able to communicate in platform-
independent environment. The request message sent from
the client should be able to interact with any environment.
Hence, there is a need for a platform-independent protocol to
transfer data. SOAP protocol has risen as the common pro-
tocol to exchange Web services messages [16]. SOAP offers
the flexibility features needed to support the communica-
tion of heterogeneous systems [8,16]. SOAP does not have
any restrictions about the data types included in the message
body and can use any XML schema definition [17]. Also,
transferring the client request by SOAP messaging does not
limit the client to any rate for requests. The client can per-
form any number of requests per second according to the
available speed. Other messaging protocols such as REST
limits the client to 15 requests per second [16]. SOAP mes-
sages can be transferred over any transport protocol such
as HTTP, SMTP, and MQSeries [16,17]. HTTP is the most
widely used protocol to transfer SOAP messages [16]. The
main advantage of using HTTP is that the SOAP envelope
is integrated into a standard HTTP request. Hence, the ser-
vice interaction is done through port 80 and is interpreted as
a Web request by all firewall systems. Hence, using SOAP
messages over HTTP does not need any more reconfigura-
tions for communication management and security policies
[17]. Moreover, HTTP is a request response-based protocol,
so it is suitable to be used with Web services which belong to
the RPC paradigm. Despite these benefits, SOAP over HTTP
is the suitable protocol to exchange messages in Web services
paradigm [16].

The simplicity and flexibility features of SOAP protocol
have a number of drawbacks. SOAP has poor performance
and is loaded with overhead even in case of transferring small

@ Springer

sizes of data [8]. To analyze the performance of SOAP pro-
tocol, two Web services were built with different sizes of
parameter data. A client-side interface was built for each ser-
vice to send and receive data. The size of data transferred
between the sender and the provider was calculated. The
first service requires two input parameters of type integer
and returns one output of the same type. The second ser-
vice requires 50 inputs of type double and returns 25 double
numbers. Then, the two services were invoked with different
sizes of input data. The SOAP messages were then captured
to calculate its size. Tables 3, 4 shows the overheads added
to client data to be sent as SOAP messages. The overhead
added to SOAP messages to be delivered by HTTP protocol
is given in Table 2. Table 3 shows that to send only 4 bytes
of client data the message size has to be increased to 281
bytes. Such problem is scalable when the size of client data
increases. Table 4 shows that to send 50 bytes of client data
the message size increases to 2.1 K bytes.

The delay time in SOAP messaging has many reasons.
The SOAP is transferred over HTTP which requires estab-
lishing TCP connection before starting to send its packets
[8]. Thus, a hand check method has to take place between
the client and the provider before sending any data [16].
In addition, the client must wait after sending packets until
receiving acknowledgment message from the provider. Then,
after the client finishes sending all the required requests it has
to wait until the provider ends the connection session [16].
The provider waits for the maximum segment life time before
it closes the session. Hence, the client cannot start any new
connection or send any new requests before receiving end of
session message.

The impact of SOAP delay is more evident in wireless
connections. SOAP over HTTP suffers from problems in the
TCP protocol features which result in decreasing the sending
rate in the case of segment losses [17]. Hence, frame loss due

SOCA (2016) 10:413-435

419

to wireless connections will increase the SOAP delay [16].
SOAP delay leads to SOAP failure when the delay increases
the threshold time of waiting for the reply message. In other
cases, the delay leads to incorrect SOAP order which leads to
implicit service error [8]. Thus the message transfer suffers
from failure at SOAP level, HTTP level, TCP level, and data
link level. The error produced from failed invocation is either
SOAP error or HTTP error. Since the SOAP protocol is car-
ried over HTTP, any communication error at the underlying
network layers will be recognized as HTTP error [17], while
SOAP errors imply that the data were transferred safely until
HTTP layer, and the failure occurred at the client side or the
provider side.

4.3 Provider-side error

When the client request arrives at the provider side, the
provider starts to extract the client parameters which are
encapsulated in the SOAP message [17]. The XML SOAP
message is parsed and interpreted. There are many different
types of XML parsers that the provider can use [16]. The
schema definition XSD that is included in the SOAP mes-
sage provides the needed basic types for encoding different
data types of the client parameters [8]. Hence, the provider
maps the client parameters to the corresponding input in the
provider code. Then, the client executes its service, and the
result value is then encapsulated into a SOAP message to be
sent back to the client. Failures that may take place at the
provider side can be summarized as follows.

1. Unavailable provider.

2. The XML parser that is used with the provider is incom-
patible with the client SOAP message.

3. Errors in the provider code that lead to service failure.

4. Errors in encapsulating the result in a SOAP message
(such as XSD errors).

5. Errors in binding SOAP reply to HTTP protocol.

5 Service replacement

Composite Web services are executed in an open, unreliable,
and rapidly changing environment [18]. Hence, individual
services may be temporarily unavailable due to network prob-
lems. Other services may be deleted from service registries
as their providers stop offering them [19]. Moreover, many
services may change their interface, requirements, or QoS
parameters [18]. In such cases, replacement of individual
services takes place. Service replacement may also be done
to substitute a service that fails to fulfill the required function-
ality. Hence, service replacement is a continuous activity in
the composite service life cycle. Composite Web services are

commonly composed of a large number of services [20,21].
Such services are developed by different teams with their
own goals. Each service encapsulates its functional descrip-
tion and interface requirements. Service composition results
in dependencies between the constituent services. A number
of approaches for solving the issue of service dependency
have been reported in the literature. These approaches focus
on the data dependency extracted from input and output para-
meters [21]. Most of these approaches assume that the data
types are the same in all service descriptions [22]. In this
work, we differentiate between different data types accord-
ing to the schema definition used in each XML file that
describes each service. In addition, this work considers dif-
ferent dependency types such as control and precondition
dependency.

There are two solutions to avoid failure while replacing
an individual service with another one. The first solution is
to choose a service identical to the replaced one. We define
identical services as follows: two services are identical if
they have the same functionality, the same parameters (inputs
and outputs), the same preconditions, and the same post-
conditions. The two services should also be described by
using the same schema definition (XSD).

The second solution is to adapt the new service to the
execution context of the composite service. In such case,
different dependencies between services should be detected
to ensure safe resuming after service substitution. The issue
of dependency in Web services differs from dependency in
traditional software because the source code of the service
is not available in case of Web services [23,24]. This work
addresses the problems that are caused as a result of hav-
ing interdepended services by parsing WSDL files to create
UML diagrams. Then these UML diagrams (class diagrams)
are used to detect dependencies between services [25]. The
reason for choosing UML is that it is the standard modeling
language for OO systems. This approach can benefit from
analytical studies that are concerned with dependencies in
UML diagrams. Another benefit from transforming WSDL
file to UML diagrams is that the UML diagrams are human
readable and understandable [25], rather than WSDL files
which are not suitable for human use. To achieve this, there
should be mapping mechanism between services and classes
in UML diagrams.

5.1 Types of dependencies between services

Discovering dependency between Web services helps in two
points. The first is to detect the impact of a service failure
on other services. The second helps to understand the reason
of service failure by tracing its dependent services. In this
work, the service dependencies are divided into two types:
data dependency and precondition dependency.

@ Springer

420

SOCA (2016) 10:413-435

5.1.1 Data dependency

The input and output parameter types are extracted from the
WSDL file of each service. In order to exchange parameters
between services, the parameter types should be compatible.
The key challenge in Web service parameter description is
that there are many type definitions. In traditional OOP, each
language has its own types [25]. However, in Web service
environments, services parameters (input, output types) are
described by different schemas according to the used XSD
[26]. In order to pass the output parameters from one service
to be used as input for another service, the transferred para-
meters should be compatible [27]. The number of outputs
should be the same as the inputs of the successive service,
as well as the parameter types and their definitions [27,28].
XSD includes attribute declaration which define the name
and the type of each attribute. XSD provides several differ-
ent primitive data types that constrain the textual value of
each attribute [28]. XML provides the flexibility to constrain
the values of each attribute [28]. A case in point is using
a valid date, or a specific range of numbers. Such flexibil-
ity features is included in the XSD of the XML file. The
XSD provides the facility to construct complex types from
the primitive data types. Hence, each service description that
is written in XML file has its own type definition according
to the used XSD.

5.1.2 Precondition dependency

Each Web service has its own requirements to offer its func-
tionality [29]. It first needs to be invoked by an invocation
message from a trusted node. Invocation should be done
according to the service interface description [27,29]. The
interface description includes the required input parameters.
These requirements are considered as explicit requirements.
Behind this, there are a set of preconditions that should be
satisfied before service invocation takes place. In case of
invoking a single service, it may be easy to detect these pre-
conditions before invocation, or to detect it from the error
messages. By considering a composite service that aggre-
gates a large number of services, precondition should be
considered in both the design and the implementation phases
[30]. In case of service replacement after composition, pre-
condition parameters may lead to failure in two different
ways: first, if the new service requires precondition that dif-
fers from the replaced service; second, when the new service
has implicit effects that differ from the replaced service and
these effects are needed for the successive service.

5.2 Extracting UML diagrams from WSDL files

UML diagrams can be used to formally describe Web ser-
vice composition [25]. UML-S has been introduced as an

@ Springer

extension to UML to formally describe Web services. In
the literature, many researchers suggest using UML-S class
diagram to model Web services [25]. The UML-S class dia-
grams model the service as a set of methods that represent
the service operations [31]. Then the class attributes rep-
resent the service parameters. Such modeling is suitable
to describe individual services in a static mode [25]. The
proposed work reverses the modeling process by extracting
the UML class diagram from the service description. Such
process is done by parsing the WSDL file of each service
to build a supporting class diagram. Class diagrams are con-
structed to allow solving dependency problems using both
manual and automated methods [31]. (Manual methods can
be used such as UML diagrams which are human readable).
Automated methods can use dependency solving programs
that take UML diagrams as inputs. UML-S class diagrams
provide useful information that can help in solving depen-
dency problems in static mode [31]. However, class diagram
cannot support dynamic interaction between services in a
composite service. To help modeling of dynamic interaction
between service activity, the proposed work extends the use
of UML-S to use activity diagrams.

The WSDL file describes Web services in terms of ports
that include one or more operations [7]. Parsing the WSDL
file reveals the tag “interface name” which includes the ser-
vice name [1]. Then, the tag “operation name” that indicates
the methods of the class representing the service [1]. The
service parameters are extracted from the “types” tag that
includes both simple types and complex types. These para-
meters are mapped to the attributes of the service class
diagram. The class diagrams model the service interface and
service parameters in a static mode [7]. Figure 1 shows the
transformation from WSDL file to service class diagram.
The interaction between the service and the control flow of
the composite service are modeled by activity diagram. The
activity diagrams are extracted from the composition lan-
guage (BPEL) [23]. BPEL includes “basic activities” such
as wait, invoke, and reply [24]. The control flow is done
by “structure activities” such as flow, sequence, assign and
split. Parsing a BPEL file maps each invocation process to an
activity [23], while the control flow will be mapped to each
corresponding meaning in the activity diagram. For exam-
ple, sequence activity in BPEL is mapped to serial execution
while flow is mapped to parallel execution.

6 Structure of FRWSC

The proposed framework is built on top of composite ser-
vices stack as an interface between the composite service
and its external service partners. FRWSC is a lightweight
general framework that can be implemented in any compo-
sition language. The proposed framework monitors SOAP

SOCA (2016) 10:413-435

421

<wsdl:types>

<s:element name="addlongnumber">

<s:element ...name="xlong" type="s:long"/>
<s:element ...name="ylong"type="s:long"/>
<s:element name="longnumberResponse">

—"

<s:element ... name="longnumberResult" type="s:long"/>

<s:element name="addinteger">

<s:element ... name="x" type="s:int"/>
<s:element ... name="y" type="s:int"/>

<s:element name="addintegerResponse">

<s:element ... name="addintegerResult" type="s:iny//>
<wsdl:portType name="WebServicelSoap">
</wsdl:operation>

<wsdl:operation name="addlongnumber"=

\

WebService 1

\ xlong:long

ylong:long
x:int
T

y:int

</wsdl:operation>
</wsdl:portType>

<wsdl:operation name="addinteger"> _

—> addlongnumber()

————— addinteger()

WSDL file of web servicel

Fig. 1 Transformation from WSDL file to class diagram

traffic to detect any service failure. The detected failure is
analyzed to specify the failure reason and its type. The rea-
son is then passed to a solution provider to find the suitable
solution. FRWSC consists of two main parts that interact
together to detect SOAP failures and overcome these fail-
ures. The first part is the failure detector, while the second
is the solution provider. The failure detector monitors SOAP
messages and detects both explicit and implicit errors. The
explicit errors include SOAP error messages and time out
errors. The implicit errors include the errors in the content of
SOAP messages without any error messages. For instance,
a temperature service that returns a value over 80C degrees
is considered an implicit error. Explicit errors are the errors
which are supported with error messages such as “server
busy.” Figure 2 shows the sequence of the failure detector
and its interaction with SOAP messages. The second part of
our framework is the solution provider. The solution provider
receives the SOAP failure and its type from the failure detec-
tor. The solution provider uses Al methods to analyze the
failures to find the optimal solution.

6.1 Failure detector
The failure detector monitors the execution of the running

composite service. Every captured SOAP message is used to
detect unexpected failures of composite service activities.

Class diagram of web servicel

Step one

Before the failure detectors starts, its database is enriched
with all the composite service activities to be monitored. The
database is also enriched with all the known SOAP errors as
well as all the ranges of the input and output contents of
SOAP messages. Such data are extracted from the WSDL
file of each service.

Step two

The SOAP traffic is captured and the failure detector
checks the parameters of the invoked service that are sent
in a SOAP request. If the parameters are out of range of the
values in the requirements of the invoked service, then a ser-
vice failure is predicted. Hence, it is possible to predict the
service failure before invocation. In this case, the execution
is terminated and the failure reason is passed to the solution
provider. Otherwise, the service invocation is performed.

Step three

The failure detector calculates the time before the reply
message is sent back. If the waiting time exceeds a threshold
time, the composite service is terminated. Then, the invoked
service is passed to the solution provider with the reason
of failure. If the time violates the response time included in
the QoS properties, a violation report is produced, and the
composite service completes execution.

Step four

The SOAP message of the service reply is checked for
known errors. If the reply is an error message, the execu-

@ Springer

422

SOCA (2016) 10:413-435

Read output SOAP
message

1/0 ranges

of SOAP

Output SOAP =
range

Proceed invocation

i

No Terminate Execution, go
to solution provider

Wait for response
and calculate time

Wait > Threshold
time

Wait > Response time

Yes
Terminate execution, go

to solution provider

Yes Report QoS violation

Read output SOAP message

SOAP error message

o

Yes SOAP result in range

Fig. 2 Detecting service failure by monitoring SOAP Message

tion is terminated, and the service and its failure reasons are
passed to the solution provider. Otherwise, the content para-
meters are checked, if they are in the expected range, the
service execution is completed and the next service begins
execution. If the reply parameters are out of range, the exe-
cution terminates and the service and its failure reason are
then passed to the solution provider.

@ Springer

Yes
Terminate execution, go

to solution provider

Terminate Execution, go
to solution provider

6.2 Solution provider

The aim of the solution provider is to find the optimal solution
for unexpected failures that occur at runtime. The open envi-
ronment in which the composite services run brings about
different restrictions on the provided solution. Different ser-
vices from different organizations are aggregated together.

SOCA (2016) 10:413-435

423

BPMN from
planning stag

Set of

discovered BPEL file after

services from selection stage

discover stage

N

Errors from
failure detector

—_—

Change SOAP
errors to defined

Al format

Solution

Decision Maker >

Fig. 3 Structure of the solution provider

The change in any individual service has an impact on the
others services and on the overall execution of the compos-
ite service. The failure solutions are divided into three main
categories according to their impact on other services in the
composite service.

6.2.1 Solution types

e Simple solution

The simple solution has a limited effect on other services
as it does not perform service substitution. Such effect is lim-
ited to the delay of service execution that may affect another
service waiting for output parameters. The simple solution
includes the following three actions.

1. Invoking the same service after correcting the out coming
SOAP message.

2. Invoking the same service after a period of time.

3. Invoking the same service from another place.

e Intermediate solution

This solution includes the replacement of the service with
another equivalent service. Even if the equivalent service has
the same functionality as the replaced one, the two services
may differ in parameters or precondition requirements or in
QoS. Such changes may affect the other services which inter-
act with the service that has been replaced. In this solution,
a list of all interacting services with the replaced service is
created. Then, the data exchange between these services is
analyzed to determine the impact of change. In such a case,
the change impact is examined at the implementation level.

e Complex solution

This solution is last choice to overcome service failure.
The composite service is rolled back to the planning stage to

specify a new process. Then, a new process is mapped to a
new service. The new service is inserted inside the composite
service to replace the failed service. In this case, the impact of
adding the new service is analyzed at the design level which
leads to more complex recovery.

6.2.2 Structure of the solution provider

The solution provider is supported with an Al machine that
helps in the decision-making process. After composing the
composite service, the Al machine is enriched with the Busi-
ness Process Modeling Notation (BPMN), which represents
the modeling notations of the composite service, as well as
the BPEL file. Figure 3 shows the structure of the solution
provider and its inputs and outputs. At runtime, the solution
provider accepts the names of the failed services and the rea-
son of each failure. The SOAP errors are analyzed with the
Al programs to produce the optimal solution. The decision
maker solves the failure starting with the simplest solution.
It begins with simple solution then intermediate solution and
at last: the complex solution. For each solution, the impact
analysis is performed to ensure safe recovery before resum-
ing execution (Fig. 4).

7 Empirical evaluation of the proposed framework

The research in the area of Web service composition can be
evaluated from different perspectives such as performance,
security, and cost [24]. However, in this work, the perspec-
tive of the evaluation is the flexibility of composite services.
The proposed framework addresses the problem of failures
in individual services during dynamic service composition.
To evaluate such work, we analyzed the behavior of compos-
ite services against different failure situations. This section
evaluates the response of the composite service to changes
or failures in its atomic services. We created different situa-
tions of atomic service failures and measured the possibility

@ Springer

424

SOCA (2016) 10:413-435

Service Partners

o O

SOAP Failures

and Reasons) Solution
Failure SOIUF'On
SOAP Monitoring Interface detector provider [—>
IN coming Out coming
SOAP SOAP
BPEL Engine

Fig. 4 Structure of FRWSC

of their recovery. The results of using the proposed frame-
work were compared to other approaches using the same
scenarios.

The evaluation of composite service against failure has
been reported in the literature using different methods. Nik
Looker et al. in [44] evaluated their work to avoid service
failure in distributed system by creating a fault injector. The
fault injector inserts errors in SOAP messages. Then, they
measure the possibility of their work to overcome different
failures. Omid Bushehrian et al. in [45] also used error injec-
tion method to evaluate their work at the design level. They
evaluated the composite service workflow by assuming dif-
ferent individual service failures. Vadym Borovskiy et al. in
[46] presented a solution to avoid failure of service invoca-
tion when the service changes its interface in WSDL file.
They used the “.NET” framework to compare between the
old and new versions of WSDL file.

The empirical evaluation of the proposed work measures
the ability of the proposed framework to detect and avoid
composite service failure. Different failure scenarios were
traced during the execution of the composite service. The
results are based on fulfillment of the requirements listed in
Sect. 3. The evaluation process compares between the tradi-
tional design of composite service and the enhanced design
using FRWSC. A set of metrics were chosen to measure the
flexibility improvement of the composite service after using
FRWSC features. The evaluation was performed at both the
design level and the coding level. Evaluating the framework
at the coding allows tracing the composite service at run-
time. However, the evaluation at the design level gives clearer
vision of the structure of the framework [47].

7.1 Evaluation perspective
The proposed framework can be evaluated from different per-

spectives such as performance, security aspects, and failure
protection. However, the main goal of the framework is to

@ Springer

maintain composite service execution and manage failures
in atomic services. Thus, the evaluation process is concerned
with error detection and failure recovery. Error detection and
failure recovery process is broken into the following sub-
processes.

1. Detecting errors in the SOAP message sent from the
client-side interface.

2. Calculating the response time of the service provider and
comparing it with the response time in the QoS attributes
of the invoked service.

3. Detecting errors in the SOAP messages sent back from
the provider to the client.

4. Extracting the failure reasons from the SOAP response
messages.

5. Taking the decision of when and how to replace one ser-
vice with another.

7.2 Evaluation process

The evaluation process has been designed to trace different
atomic service failures to inspect if they can be avoided using
the proposed framework. Hence, the aim of the evaluation
process is to prove that the framework can overcome failures
that traditional composite service cannot detect or overcome.
A “Travel planner” composite Web service has been created
and different failures were injected during execution. “Travel
planner” aggregates different services such as flight booking,
travel insurance, hotel reservation, and car rental to arrange
a trip. “Travel planner” aggregates different services from
different separated organizations. Each service has its own
functionality that is separate from other services. However,
when the services are aggregated together, different com-
position dependencies appear. The proposed work divides
the composition dependencies between services into control
flow, data flow, and precondition dependency. Four different
designs were created to compare the proposed framework

SOCA (2016) 10:413-435

425

with other approaches that protect composite service from
failures. The comparison was made at both the design level
and implementation level.

The first design is the traditional service composition
using BPEL. The second is the same composite service after
applying FRWSC features. The third design applies the vari-
ability approach [9,10,24], and the fourth applies service
replication approaches to avoid failure [11,24]. The evalua-
tion process is carried out by tracing the design and execution
of a composite service that aggregates different services to
arrange a journey for a client. The client provides the com-
posite service with his name, address, telephone number,
payment, destination, and the traveling date. Atomic services
are built using Java or invoked from “Xmethod” repository.
The services were built using Java on Eclipse environment
and compiled using Java development toolkit 7 (JDK7). Then
Apache Tomcat Server has been used to transform the Java
code to Web services. Each Java class has been converted
to an operation in a Web service. Using the apache server
a local host server has been created at port 8080 to act as
a server provider. Then a SOAP client-side interface has
been created to accept the client data required to establish
the invocation process. Performing the evaluation process as
mentioned before is based on the following reasons.

1. The proposed method supports monitoring SOAP request
of the client messages and extracting the client parame-
ters to check the type and value of these parameters.

2. Itis possible to calculate the exact time between sending
the SOAP request and receiving the SOAP response from
the provider.

3. It is possible to monitor the SOAP response from the
provider and extract the implicit and explicit errors.

After the implementation of the atomic service, the BPEL
engine has been used to orchestrate the composite service.
The reason behind using BPEL is that it enables the descrip-
tion of business process in terms of message exchange
between collaborating services. In addition, BPEL is an
XML document that allows parameter exchange between ser-
vices in SOAP form. This feature gives BPEL an advantage
over other programing languages. Traditional programming
languages need to preform SOAP encoding and decoding
process when parameters are exchanged between services.
Thus BPEL requires less computational overhead and has
higher performance.

Different scenarios have been used to trace the composite
service. Each scenario represents a failure reason from those
discussed in Sect. 4. Then, the behavior of the composite
service is measured according to different metrics listed in
Sect. 7.3. The following cases have been used.

e Traditional composite service

e Composite service supported against failure with the pro-
posed framework

e Composite service enriched with variability approach
and service replication approach.

7.3 Evaluation metrics

The criteria to choose the evaluation metrics are based on the
ability of each metric to measure the flexibility improvement
to composite services. The chosen metrics should demon-
strate the difference between the traditional and the FRWSC
based composite service in dealing with errors. In addi-
tion, the chosen metric should differentiate between different
kinds of errors according to their frequency of occurrence.
For instance, the errors that occur frequently should have
a higher weight than errors that rarely occur. Following is
the evaluation metrics list that satisfies the previous require-
ments.

e The number of errors that can be avoided. Different errors
should not be treated the same. Some error types occur
frequently compared to others.

e The number of failures that can be repaired.

e The number of failures that the proposed work can over-
come.

e The degree to which it is possible to preserve the func-
tionality of the composite service after the process of
service replacement.

e The impact on the performance of the composite service
execution.

7.4 Evaluation results

The composite service of “Travel planner” is orchestrated
using the BPEL engine under Eclipse. Then, the Orchestra-
tion Device Engine (ODE) has been used to aggregate service
orchestration from different providers. Figure 5 shows the
difference between traditional design of the composite ser-
vice and the design supported by FRWSC. FRWSC is added
to the composite service design to support it with the suffi-
cient flexibility to respond to errors during runtime. Then,
different types of error scenarios were inserted at different
places during the composite service execution. The error sce-
narios are related to the client side, the provider side, and the
communication between them. The following list presents
the errors which are detected and identified by applying
FRWSC to the composite service.

. Wrong type of input parameters

. Wrong number of input parameters

. Application layer communication errors
. Transport layer communication error

. QoS response time violation

N AW =

@ Springer

426 SOCA (2016) 10:413-435

a
) BPEL - BPEL-WSmoni pelContent/WS_INVOcationmonitor.bpel - Eclipse €8x
File Edit Navigate Search Project Run Window Help
IR GRS I IS & Quick Access |i| 9| §9 JovaEE
5 £ *WS_INVOcationmonitor.bpel $3 = 2@ WS_INVOcationmonitorArtifacts.wsdl = 8 5
B . o 2 WS_INVOcati o=
) fp Part.. & %
e B client
n - PartnerLink
= main © Vori % %
& =
- B input
- output
5 @ Corr. % %
i & | receivelnput from client BMes. e %
i
Z
=] .
= AssignlnputToSOAPRequest
>
& Invoke partner service i
= AssignOutPutToResult
4| replyOutput to client
=
Design[Souue,
(€] bpekp /bpek:sequence/bpel:assig
b
{8) speL.- BpEL Wsmoniorc RO cssionmonier o~ Es< I - 1 — Lo
File Edit Navigate Search Project Run Window Help
s o 1L > S A g e e 3 (<) Quick Access || @3 | ¥ Java EE
& 2 WSINVOcationmonitor.bpel 52 =0 | s
B — [Rwsanvoest o=
fp Part...4 %
= o . M client
o = rI\aln PartnerLink
- T ® Vari.. & %
o . . input
& & | receivelnput from client s
= & Corr.. & %
1m} == AssigninputToSOAPRequest # Mes.. & %
a2
£
(=] 4 Check If Client parameters is in the correct range
€]
=
&P Invoke partner service
® Wait for provider reply
|+ Validate waiting time
& Check If Provider results are in the correct range
&
= AssignOutPutToResult
5] replyOutput to client |)l
Design | Source|

Fig. 5 a Snapshot of traditional design of a composite service, b snapshot of workflow design of composite service supported with FRWSC
features

@ Springer

SOCA (2016) 10:413-435 427
6. Bugsi id ice that result i t t of 2
. Bugs in provider service that result in parameters out o g
ey b |8z 3z Bz 3Bz 2z
the range. |28 38 58 58 §8
. . o| €3 £ 3 £ 3 £ 3 £ 5
7. Time out of provider server 51838 23 g3 238 £38
312 2° Z° z8 ZF
wn
The same experiment has been performed using both the vari-
ability approach and replication approach. The traditional 03 o B g « 5 3
composite service design is also traced against the same 2 5] ED 5] ED 5 g g 2
w2 w2 (%2} 122}
errors and the results are listed in Table 5. 2|88 E£8_ 5 8. 8%
. . Q Q Q
The errors listed in Table 6 cannot be detected by any |82 3BZ f-é 2 32 3B
. . . 5| E= = 5% Fb
of the approaches listed in the related work. Software vari- E 2 § g § g2 E 2 g; = g, =
ability and service replication treat all errors in the same e
way. These approaches cannot differentiate between differ-
2}
ent failure reasons. To prove the ability of FRWSC to deal g 2
. % 2
with wrong parameters in client input and provider result, § 5=
. . . . 2 = = z @ = =
“Travel planning” was traced in two different scenarios. In o 2 % é = =
. . . 5] IS 3 < <
the first scenario, a wrong input parameter was inserted. The “ | o w - -
inserted input is invalid destination town name. The vari-
ability approach stopped execution at the failed variant point 8 o
and invoked another service. The new service returned the g o 5 P
. . = & = Q
same error as the client input has not been changed. The 5| 2 :e: ‘g 9 z £
. Q = = =
service replication approach invoked the same service from 8 E o 2 o S 2 z
. = [o — @ =
another location. However, this action did not repair the Zle |l & ° = 9 e o
. : . . . Sla |z z o = z
failure because invoking the same service with the same
wrong parameters will return the same error. By applying "
. =
such wrong parameter to FRWSC, the results showed that it g g a N,
2 @ =2 2 =2
detected the wrong parameter. Then, a message was returned 3 0 82 82 82
. e 2 Sl= k= z 2 2 2 zZ 2
to the client indicating the error. Moreover, FRWSC stops 2 5 g % s g s 38
the composite service execution and saves all the client data. 2 ol B = . ~ ~
The second scenario focuses on tracing “Travel plan- 3
ner” service by invoking an atomic service including code 5 9
. oqe . . 12}
bugs. The variability approach invoked another service and g o8 5 @
. o < = = = Q
repaired the failure. Service replication approach invoked the 3§ 22| g - 29 2 g
. . . o= = 5] o g =
same service from another location and the failure was not = £ E A g o g e %
. = =~ © = [9) = @ o) =]
recovered. However FRWSC was capable to recognize and & § ElE 2 = £ = 2
identify the failure reasons. FRWSC took the right decision |
to replace the service with an identical one. Hence, the com- % -
. E]
posite service was protected from failure and continued its 8 =
. o x
execution safely. = 8= = = - -
5 g| s |8 3 3 2 2
5| f|d|g & & & &
7.5 Runtime evaluation = g
=1 Q
o =
. . . b= g
This subsection evaluates the framework from failure recov- <5 é 2
] —
i - 3| & o =
ery perspective. 2 Sl & O = 0
2 s 2] ¢ S o 2 Z
Q S| 9 = = = 2 1] 1)
. . o = gle|s S ° 8 & 2
7.5.1 Detecting atomic service failure 8 2 = | & g e s 2 8
Q gl E|E) =2 = o
. _ . 2 =la | = z e = z
To prove that FRWSC is able to deal with various types of 3
failures at runtime, different composite services failures have & ~ ° = 5 Ny
. . % 4] o .9 o) IS) —~
been analyzed with and without the framework support. The 215 2388 g 5 g2t 5 -E 5. g
. . . oy o O k=] —~ 3
evaluation criteria were chosen to prove the ability of FRWSC § = = &g = § £ 5 32 B8 3 ; 2
. . a o = of =gy dg @ b
to detect, report, and overcome different failure reasons. The Sl Ewd EwE S E3S8 578 & °g
. . . . © = 08 « 0 & =T T e o =
evaluation process demonstrates different failure scenarios = |25 £5 § S5 £ E E 22 23 Z B E <)
.] v B =2 .2 S22 0o 000« = @ -~ o
that could occur during service invocation due to different = Q@ @) @) O & &

@ Springer

428

SOCA (2016) 10:413-435

Table 6 Action taken by different approaches to avoid composite service failure

Design approach

@ Springer

FRWSC

Service replication

Variability

Error types

Action taken

Error explanation

Action taken

Action taken Error explanation

Error explanation

Another service No failure The same service Detailed message The client input

No failure explanation

Client input data

is corrected and

the failure is
recovered

with wrong

input

will be invoked
from another
location with

explanation

will be invoked
with the same
wrong

(wrong type of

input

parameters)

the same wrong

parameters

parameters

Another service

Detailed reason

The same service

No failure

Another service

No failure explanation

Provider-side

from selected

of provider

error

will be invoked
from another

explanation
location

will be invoked

Recovery is
possible

error (Bugs in

provider
service)

services will be
invoked to

recover the

error

Resulting in the
same failure

reasons. Then, the same failed service is invoked again with
the same failure reason but after applying the framework.
The results proved that the FRWSC was capable to detect
SOAP errors that were not detected by traditional invocation
methods. The proposed framework has been implemented as
an interface between the composite service and its atomic
services. FRWSC monitors the SOAP messages between the
composite service and different individual services. Thus,
different errors could be detected and identified.

FRWSC has been evaluated against three failure reasons

1. Service failure due to wrong client input parameters.

2. Service failure due to mismatch in XML schema defini-
tion.

3. Service failure due to errors in the provider software.

1. Service failure due to wrong client input parameters
Wrong input parameters can be a reason for Web service
failure [6]. Such failure reason is not reported to the user as
mentioned before in Sect. 3. Section 3 demonstrated a case
for a service which calculates the temperature of the Mediter-
ranean capitals. The service accepts the double code of the
country and returns the temperature of its capital. If the ser-
vice is invoked with wrong parameters, the SOAP reply will
not include any error. Such situation means that neither the
client nor the composed service will detect that this invoca-
tion has failed. In this scenario, the string “We” was used as
input. “We” is not a legal double code of any Mediterranean
country. The reply is “0” and no error message is reported
to the user and such value could be passed to another ser-
vice. To evaluate the proposed framework, the same service
has been invoked with the same error but after applying the
framework. FRWSC monitored the out coming SOAP mes-
sages and checked its parameters to detect whether it is in
the permissible range or not. The framework interrupted the
requested message including “We” and recognized that it
is not a legal input. Then, it reported an error message to
the client advertising him to change the wrong input with a
correct one. Figure 6a shows the SOAP messages between
the client and the provider without using FRWSC. While
Fig. 6b shows the SOAP request and response after applying
FRWSC. Figure 9b shows that FRWSC is able to detect and
overcome service failure due to wrong input parameter.

2. Service failure due to mismatching in XML schema defi-
nition.

The second failure reason that can be avoided and reported
using FRWSC is the incompatibility of different XML
schema definition. The user input parameters could have legal
value, but due to different schema definition, type mismatch
occurs between user parameters and the provider service.
To give an example of such situation, the same temperature
service was implemented using different environments. The

SOCA (2016) 10:413-435 429
a
it Request1
M In) .
PR 0D 5 |t focahostd9T03 WebSenice amy va 1 @
g [<soapenv Envelope i soapenv="hitschemas xmisoap org/soaplenvelopel xminsteme| & ; § 3 <soap Envelope xmins:soap="htpschemas xmisoap.org/soaplenvelope! xmins ="ty www. w3 org 200 1ML Schema-tal &
| <soapenvHeader’s 2| <«soapBodys
B <oapenvBody> /oI <tempretwreResponse sty empuriong
H , 2
o H o emtempretures ! tempretureResut:0<emprefureResut:
<-Opfionaf--» <ftemprefureResponse>
<temeountrycode:WE<emcountrycode: </s0apBody>
<temtempreture> </soapEnvelope:
</soapenv.Body:
</s0apenvEnvelope:
b
it Request1
P E DD W |psocahostddisTMebSenicel s i+ @
E‘ [<soap:Envelope xmins:soap="htip:/Iwww.w3.0rg/2003/(& ; '_z" (& <soap:Envelope xmins:soap="http:/Iwww.w3.0rg/’2003/05/s0ap-envelope" xmins:xsi="hitp:/iwww.w3.0rg/2001/XMLSchema-instance" xmins:xsd="hitp:/iwww.w3.0rg(&
| <soapHeader’> |2 <soapBody>
: E <soapBody: EE] <tempretureResponse xmins="http:/empuri.org/">
) [<demiempretures 8 <tempretureResutt=errorin input paramter</tempretureResult:
<-Optional—-> </tempretureResponse>
<temdobelcountrycode:WE</tem:dobelcountrycod </soap:Body>
<ftemtempreture> </soap:Envelope>
</so0ap:Body>
<[s0ap:Envelope>

Fig. 6 a Snapshot for SOAP messaging including the error without
applying FRWSC

service in Sect. 3 was implemented using .Net framework and
ASP.Net to build the client-side interface. The same service
functionality was built using Java Eclipse, and then, Apache
Tomcat server was used to create the Web service. Then, we
created a local host at port 8080 which was used to acts as a
service provider. The service was invoked using correct para-
meter (a double code of Mediterranean country). The service
failed to return the correct result. By applying the proposed
framework during service invocation, the framework mon-
itored the SOAP request. It recognized that the parameters
in the SOAP request are correct. However, while monitor-
ing the SOAP reply, the framework detected the error. The
solution provider which is enriched with the WSDL file of
the invoked service detected the mismatch between the input
parameter and the WSDL file. Hence, it advices the client
to replace this service by another one. Listing 1 shows the

FRWSC, b Snapshot for SOAP messaging including the same error after

difference between the WSDL files of both service imple-
mentations (using .Net framework and using Java Eclipse).
Figure 7a shows the SOAP request and reply for the service
built using .Net framework. The service was invoked using
“IT” as input which represents the double code of Italy. The
service returned the correct result. Figure 7b shows the SOAP
messaging for the service which is implemented using Java.
The same input “IT” was used, but the SOAP reply is not
correct. The reason for such error is the difference in schema
definition which defines the input string that is passed to
the service. If such service had been invoked without using
FRWSC, it would have not been possible to detect the error.
However, the result shown in Fig. 10 proves that FRWSC is
able to detect service failure as a result of mismatch in XML
schema. The failed service has been replaced.

@ Springer

430 SOCA (2016) 10:413-435

a
it Request] it
P EOD 0 bte/lochostaMessencelam %+
g [<soapenv:Envelope xmlns:soapenv=’http:llschernas.xmboap,orglJ: ; g E]Fsoasznvelupexmlns:soap='hﬂp:llschemas.xmlsoap‘orglsoaplenvek)pef xming:xsi="hitp:www.w3.0rg/2001XMLS chema-instance”)(mlns,)(sd=”hﬂﬂA
| <soapenvHeader’> 2|2 <oapBody:
;El <soapenvBody> BE] <tempretureResponse xmins="htip:/empuriorg/>
2 [<demiempreture: i <tempretureResut-20<tempretureResut:
<-Optional-- <[tempretureResponse>
<temcountrycode:IT<temcountrycode: </soapBody>
<emiempretures <Isoap:Envelopes
<IsoapenvBody>
</soapenv.Envelope:
b
i Reuest]
pEEEODe ‘http://localhost8080/evaluatdservices/Temp "%+ (,
3’ [<soapenv:Envelope xrins soapenv="hipschems xmlso A ; g |:soapenv:Envebpexmlns:soapenv=’http:/lscnemas.xmlsoap.urglsuaplenvelopef xming.xsd="hetp:www.w3.orgR2001/XHLSchema" xmins:xsihtp:/www. w3.0rg 4
S| <soapenvHeader> [<soapenv:Body:
BE] <goapenvBody> : <tempResponse xmins="hitplevaluate™
&B <gvaltemps 2 <tempReturn=000<empReturn
<vabrelTelevabx: <ftempResponse
<Jevattemps </soapenv.Body>
</soapenv:Body> <IsoapenvEnvelopes
<Jsoapenv:Envelopes

Fig. 7 a Snapshot for SOAP request and response for a successful invocation with user input “IT,” b snapshot for SOAP request and response for
a failed invocation using same input “IT”

Listing 1.a WSDL file for temperature service built using Listing 1.b WSDL file for the temperature service built
.Net frameworks using Java Eclipse

<wsdl.definitions targetNamespace="http://tempuri.org/"™>
<wsdl:types>

<s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
<s:element name="tempreture'>

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="countrycode" type="s:string"/>
</s:sequence>

</s:complexType>

</s:element>

@ Springer

SOCA (2016) 10:413-435

431

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="htp.//evaluate” xmlns:apachesoap="http.//xml.apache.org/xml-soap"
xmlns:impl="http.//evaluate” xmlns:intf="http://evaluate” xmlns:wsdl="http://schemas.xmilsoap.org/wsdl/"
xmlns:wsdlsoap="http.//schemas.xmlsoap.org/wsdl/soap/" xmlns:xsd="http.://www.w3.0rg/2001/XMLSchema'>

<wsdl:types>

<schema elementFormDefault="qualified" targetNamespace="http://evaluate"

xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="temp ">

<complexType>

<sequence>

<element name="countrycode" type="xsd:string"/>

</sequence>

3. Service failure due to errors in the provider software.

When a client invokes a composite service, he gets back
the final output. The problems of the individual services
within the composite service are not reported to the client.
The failure reason could be due to a bug in the provider soft-
ware. To illustrate such situation, the temperature service was
invoked using correct input, but due to a possible software
bug, the provider software returned the value 88. This result
is not a valid temperature for any city. If this value is passed
as input to another service, any other calculation will be done
with such wrong input.

By applying FRWSC, it monitored the SOAP message
including the provider reply. It checked the value of the invo-
cation result and detected that it is out of the permissible
range. So it returned an error message to the client with the
failure and its reason. Figure 8a shows a legal invocation
using the string “FR” which is the double code of France.
The SOAP reply returned “88” which is a wrong result due
to a software bug in the provider code. Such error cannot be
detected and this value could have been be passed to another
service as input. At the end of this scenario, the composite
service would return a wrong result without knowing which
service is responsible for the error. Figure 8b shows the same
service invoked by the same parameter “FR” but after apply-
ing FRWSC. The framework detected the error in the reply
message and reported an error message to the client. Hence,
FRWSC is able to detect failures that results from bugs in
provider code.

7.5.2 Composite service failure due to mismatching
between successive services

Although the evaluation at design level gives a better vision
of the evaluated system, the FRWSC is evaluated and traced
during execution to proof the validation of the proposed
concept. After designing the composite service using BPEL
Eclipse, an ODE engine was created to manage the orches-
tration of different service partners. The ODE was used
to create the executable WSDL file from the XML based

BPEL file. Then, the WSDL file was tested during execu-
tion with “Web service explorer” which allows monitoring
the composite service during execution. The communication
between the composite service and its constituent services
was performed via SOAP messages. In several situations,
the parameters included in the SOAP response of one service
had to be transferred to the SOAP request of the successive
service.

In the traced scenario, a partner service sends its response
parameters including a variable in string type. Then, these
parameters were passed to another partner service that
accepts the input in integer type. This situation was traced
during the execution and resulted in the error shown in Fig. 9.
Figure 9 shows a snapshot of testing the composite service
execution in which there are errors at the server side or at the
HTTP communication. The lower side of the figure shows
that the server has started successfully. At port 8080 of the
local host, the communication layer has no errors. The real
error occurred because of the mismatch between the output
of a service and the input of the successive one. The returned
message does not clearly identify the error so the client could
not repair it. When such situation is applied to the FRWSC,
the returned message clearly identifies the error and the solu-
tion provider can swap the second invoked service with a
service that accepts string input type.

7.6 Average recovery time

This section evaluates the mechanism of service replace-
ment. “Mediterranean towns temperature” service was used
to prove the ability of FRWSC to choose alternative services
and to measure the time taken to recover the failure. A ser-
vice including software bugs was invoked, and its result and
execution time were calculated using SOAP-UI. The failed
service returned a temperature that equals 188 for the capital
of France. The invocation duration took 29 msec. Figure 10a
shows the failed service and its execution time. Then, after
applying FRWSC the same service was invoked again. The
results show that FRWSC was able to detect the error and
then replace the failed service with another service. The cor-

@ Springer

432

SOCA (2016) 10:413-435

a
i Request 1 i
pEOEO00Ee |http://loca|host:49703/WebServicel.asmx vjm)
g (3 <soapenv:Envelope xmins:soapeny="p:/ische (4] ; g (2 <soap Envelope xmins:soap="tp:/ischemas xmisoap.org/soaplenvelopel” xmins:xsi="http:/www.w3,0rg/2001/XMLS chema-nstance” xming:xsd="htp:www.w3.0rgr2001/X] 4]
% | <soapenvHeader/s %2 <soapBody>
/g [<soapenvBody> : [<tempreturcResponse xmins="http/empuriorg/>
2 [<emtemprefures i <tempretureResut-B8<tempretureResut:
<-Qptional-—> <ftempretureResponse:
<temcountrycode>FR<Aem:countrycode: </s0ap:Body>
<femtempretures <[soapEnvelope>
<IsoapenvBody>
</soapenv.Envelope:
b
it Request1
PEAEODE N ’http://localhost:49457/WebService1.asmx q’% L
g E <soapEnvelope xmins:soap="hity:www.w3.0rg 2003108/s0ap-envg A : g E]Fsoasznvek)pexm\ns:soap=’http:f/w\'/w.w3.0rgf2003/0E/soap-envelope xmingxsi= i ww. w3,orgr2001 XHLSchema-nstance” xming:xsd="hitp j
%) <soapHeader’ % (2 <«soapBody
/=|E <soapBody /=B <tempretureResponse xmins="htty Rempuriorg»
g , 3 .
2 B demtempretures 2 <tempretureResut-¢rror in provider resub:/tempretureResut:
<-Optiongl—-> <ftemprefureResponse:
<temdobelcountrycode:FR<Aemdobelcountrycode: </soapBody:
<flemtempreture: </soapEnvelopes
</30apBody
</soapEnvelope>

Fig. 8 a Snapshot for SOAP request and respond including illegal result without error, b Snapshot for SOAP request with same parameters after

applying FRWSC

rect results were sent back to the user. The time to detect the
error and replace the failed service with another was calcu-
lated. Figure 10b shows that it took 316 msec to detect and
recover the failed service. The recovery time took 287 msec.
This proves that FRWSC is able to choose an alternative
service.

7.7 Limitation of FRWSC

The ability of the presented solution to recover service fail-
ures due to wrong parameters is limited to the values that
are stored in the I/O parameter range. Network failures can
be detected at the application layers; hence, FRWSC cannot
distinguish between different network layers failures. Also
the capability of FRWSC to detect and recover errors is lim-
ited to the hardware on which FRWSC is running and the
reliability of its different services. For instance, “BPEL and
SOAP monitoring” service, “checking parameter” service,
and “service replacement” service.

@ Springer

7.8 Comparing FRWSC with industrial solutions

This section comprise between FRWSC and ESB (Enter-
prise service Bus). ESB is an industrial method concerns
with composite service reliability that supports service inter-
action monitoring. ESB focuses on routing clients’ requests
to the appropriate services while this work is concerned with
composite service failure protection. ESB defines a model for
a standard set of messages that allow ESB to communicate
with different services [50]. A software adaptor is used to
fulfill the transformation of service messaging to ESB mes-
sages. This results in communications overhead. In addition,
ESB requires providers to integrate ESB into their services to
be published in ESB registries [50]. Such mechanism means
that ESB is not for general and open use. ESB cannot detect
wrong input parameters of the client requests or the provider
results. It cannot provide a solution if no service is found
to fulfill the client request. FRWSC can be used in general
services registries without adding new message format to
service communication. FRWSC can detect and avoid fail-

SOCA (2016) 10:413-435

Gt s | | 58 o (WD)

S |44 servers 53 - O < Ws.INVOcationmoni... Z® WS_INVOcationmoni. < wsinvocation.bpel { deployxml @ Error 500 Server Err... 33 < O
G, ¢ % Apache OdelxRuntime3 atlocalhost [Storted, Synchronized) HTTP ERROR: 500 o
& s 3
& wse/ P g5 jsp. Reason:
Server Error
Powered by Jetty://
1 en Tosks | B Console 52 B
ALache Ode 1 X Runnme 3 at Iocalhost lGenenc Senver] c \PMram FIIes\Jav \ers.o s‘ i exe (p 1:eT: \'\ T10/+ A/r‘\)
INFO: sessionLis(ener contextInitialued() =
L)ieYIEY Yede Y3 ol org.apache.coyote.httpll.HttpllBascProtocol start
INFO: Starting Coyotc HTTP/1.1 on http-8080
LV:eYi6Y Yede Y3 Ll org.apache.jk.common.ChannelSocket init
INFO: IK: ajpl3 listening on /0.0.0.0:8009
WVI0YIEY Yede Y3 sl org.apache.jk.server.JkMain start
INFO: Jk running ID=0 time=0/26 config=null
WYIYIEY Yede Y3 ol org.apache.catalina.storeconfig.StoreLoader load
INFO: Find registry scrver-registry.xml at classpath resource H
L)eYI€) Yede Y3 il org.apache.catalina.startup.Catalina start
INFO: Server startup in 3454 ms
< 1 » [m 1 » N
Fig. 9 Error in WSDL execution due to type mismatching between partner services
a
\ Requestd A B
=R 00 8. |hp //Io:alhost:49703/WebServuce1 asmx % + €
= |E) <soap:Envelope xmins:soap="http://www.w3.or ; = B xmins:soap="http://www.w3.0rg/2003/05/soap-envelope” xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance” xmins:xsd="http://{ 4
<soap:Header/> E 5 <soap:Body>
& <soap:Body> V=|2 <tempretureResponse xmins="http://tempuri.org/™>
é [<temtempreture> é
<-Optional:—-> o </tempretureResponse>
tem: Y FR: y </soap:Body>
</tem:tempreture> </soap:Envelope>
</soap:Body>

</soap:Envelope>

A.. Heade.. Attachme.. W.. WS.. JMSHe. IMSProp.
response time: 29ms (352 bytes)

b
RASTNY .

Headers (8) Attachments (0) SSLInfo WSS (0) IMS(0)

[C—f1:2

» *= @ 0 Q i @ |http/localhost:52812/WebServicel .asmx v|% +
= |E <soap:Envelope xmins:soap="http://www.w3.0rg/2003/05/soap-e{ 4 , 2|2 I:soap Envelope xmins:soap="http://www.w3.0rg/2003/05/soap-envelope” xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance” xmins:xsd="http://ww
; <soap:Header/> E 5 <soap:Body>
& <soap:Body> [<tempretureResponse xmins="http://tempuri.org/™>

3 [<tem:tempreture> é 8

<\—-Optional—> </tempretureResponse>

<tem:countrycode>FR</tem:countrycode> </soap:Body>

</tem:tempreture> </soap:Envelope>
</soap:Body>
</soap:Envelope>
A.. Head.. Attachm.. W.. WS.. JMSH.. JMSPop. Headers (8) Attachments (0) S50 Info WSS (0) JMS(0)

response time: 316ms (351 bytes)

Fig. 10 a Time taken to execute a wrong service invocation, b time taken to replace the failed service with a correct one

@ Springer

434

SOCA (2016) 10:413-435

ures due to wrong parameters in client request and provider
results. FRWSC contains a solution provider that can roll
back to Al planner to divide an individual task into smaller
tasks if there is no service that can fulfill the required task.

8 Conclusion and future work

This work addressed a crucial problem in service composi-
tion concerning the limitation of SOAP error detection and
reporting capability. By tracing the execution of compos-
ite services, we concluded that SOAP error messages cannot
provide the Web service client with the sufficient information
about service failure. We presented a framework to address
the problem of failure in composite services as a result of fail-
ure or change in atomic services. The presented work deals
with failures resulting from incorrect user parameters, bad
network connections, and provider-side errors. The proposed
framework identifies the failure reason and returns a clear
message describing it to the client to take the correct decision
during the execution of the composite service. We evaluated
the work against failure protection approaches. The results
proved that using FRWSC, it is possible to avoid different
kinds of composite service failures that cannot be avoided
by traditional methods. We believe that the presented work
will enhance the reliability of Web service composition and
consequently increase its usage. Our future work includes
enhancing SOAP performance and building exception han-
dlers for Web service invocation.

References

1. Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana
Sanjiva (2006) Unraveling the web services : An introduction to
SOAP, WSDL, and UDDI. IEEE Internet Comput 6(2):86-93

2. Nama W, Kilb H, Leecthe D (2008) On the computational com-
plexity of behavioral description-based web service composition.
In: 20th IEEE international conference on tools with artificial intel-
ligence (ICTAI), 2008

3. Sung-Shik T, Jongmans Q, Santini F, Sargolzaei M, Arbab F, Afsar-
manesh H (2014) Orchestrating web services using Reo: from
circuits and behaviors to automatically generated code. Serv Ori-
ented Comput Appl 8(4):277-297

4. Xu Bin, Luo Sen, Yan Yixin, Sun Kewu (2009) Towards efficiency
of QoS-driven semantic web service composition for large-scale
service-oriented systems: In Service Oriented Computing and
Applications journal Volume 6, Issue 1, pp 1-13, Springer

5. Canfora G, Di Penta M, Esposito R, Villani ML (2008) A frame-
work for QoS-aware binding and re-binding of composite web
services. J Syst Softw 81(10):1754—-1769

6. Bushehrian Omid, Zare Salman (2012) Navid Keihani Rad. A
Workflow-Based Failure Recovery in Web Services Composition:
Journal of Software Engineering and Applications 5:89-95

7. Web Services Description Language, WSDL (2014) Web site at:
http://www.w3.org/TR/wsdl, 2014

8. The SOAP specification(2014) by the World Wide Web Consor-
tium, available on-line at http://www.w3.org/TR/SOAP/, 2014

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Sun Chang-ai, Rossing Rowan, Sinnema Marco, Bulanov Pavel,

Aiello Marco (2010) Modeling and managing the variability of
Web service-based systems. J Syst Softw 83:502-516

Koning M, Sun C, Sinnema M, Avgeriou P (2009) VxBPEL: sup-
porting variability for Web services in BPEL. J Inf Softw Technol
51:258-269

Liu A, Li Q, Huang L, Xiao M (2010) FACTS: a framework
for fault-tolerant composition of transactional web services. IEEE
Trans Services Comput 3:46-59

Zheng Z, Zhang Y, Lyu MR (2010) Distributed QoS evaluation for
real-world web services. In: IEEE international conference on Web
services, 2010

Salas J, Perez-Sorrosal F, Patifio-Martinez M, Jimenez-Peris R
(2006) WS replication :a framework for highly available web
services. In: World wide web conference committee (IW3C2) Edin-
burgh, Scotland ACM 1-59593-323-9/06/0005

Zheng Z, Lyu MR (2008) A distributed replication strategy evalu-
ation and selection framework for fault tolerant web services. In:
Proc. 6th international conference of web services(ICWS’08), p
145-152

Yu T, Zhang Y, Lin K-J (2007) Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Trans Web 1(1):1—
26

Curbera F, Duftler M, Khalaf R, Nagy W, Mukhi N, Weerawarana
Sanjiva (2006) Unraveling the Web Services Web: An Introduction
to SOAP, WSDL, and UDDI. IEEE Internet Comput 6(2):86-93
Senagi KM, Okeyo G, Cheruiyot W, Kimwele M (2015) An
aggregated technique for optimization of SOAP performance in
communication in Web services. Serv Oriented Comput Appl 9,
doi:10.1007/s11761-015-0186-x, Springer

. Le’cue’ F, Mehandjiev N (2011) Seeking quality of web service

composition in a semantic dimension. IEEE Trans Knowl Data
Eng 23(6):942-959

Batra U, Mukherjee S (2011) Enterprise application integration
(Middleware): Integrating stovepipe applications of varied enter-
prises in distributed middleware with service oriented architecture.
In: IEEE international conference on electronics computer tech-
nology, 2011

Fu X, Bultan T, Su J (2005) Synchronizability of conversations
among web services. IEEE Trans Softw Eng 31(12):1042-1055
Baresi L, Guinea S (2005) Towards dynamic monitoring of
WS-BPEL processes. In: Benatallah B, Casati F, Traverso P
(eds) Service-oriented computing—ICSOC 2005. Lecture Notes
in Computer Science, Vol. 3826, Springer, Berlin, pp 269-282.
doi:10.1007/11596141_21. ISBN:978-3-540-30817-1

Uddin MS, Ripon S, Das NC, Hossain O (2014) A comparative
study of web service composition via BPEL and petri nets. Int J
Comput Elect Eng 6(2):110

Hatzi O, Vrakas D, Nikolaidou M, Bassiliades N, Anagnostopoulos
D, Vlahavas I (2010) An integrated approach to automated seman-
tic web service composition through planning. IEEE Trans Serv
Comput TSC-2010-06-0088.R2

Bruneo D, Distefano S, Longo F, Scarpa M (2013) Stochastic evalu-
ation of QoS in service-based systems. IEEE Trans Parallel Distrib
Syst 24(10):2090-2099

Scanniello G, Gravino C, Genero M, Cruz-Lemus J, Tortora G
(2014) On the impact of uml analysis models on source-code com-
prehensibility and modifiability. ACM Trans Softw Eng Methodol
23(2) Article 13, Pub. date: March 2014

Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D (2010) Inter-
acting with the SOA-Based Internet of Things: Discovery, query,
selection, and on-Demand Provisioning of Web Services. In Serv
Comput IEEE Trans 3(3):223-235

Rosario S, Benveniste A, Haar S, Jard C (2006) Foundations
for web services orchestrations: functional and QoS aspects. In:
ISOLA ’06: Proceedings of the 2nd international symposium on

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP/
http://dx.doi.org/10.1007/s11761-015-0186-x
http://dx.doi.org/10.1007/11596141_21

SOCA (2016) 10:413-435

435

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

leveraging applications of formal methods, verification and val-
idation, Washington, DC, USA: IEEE Computer Society, 2006,
pp-309-316

Arenas M, Daenen J, Neven F, Van den Bussche J, Ugarte M, Van-
summeren S (2014) Discovering XSD keys from XML data. ACM
Trans Database Syst 39(4) Article 28, Publication date: December
2014

Lo W, Yin J, Deng S, Li Y, Wu Z, Collaborative (2012) Web Ser-
vice QoS prediction with location-based regularization. In: Web
Services (ICWS), IEEE 19th international conference on, pp 464—
471. IEEE, 2012

D’Ambrogio A, Bocciarelli P (2007) A model-driven approach
to describe and predict the performance of composite services.
In: WOSP *07 Proceedings of the 6th international workshop on
Software and performance. New York, NY, USA: ACM, 2007, pp.
78-89

Jiang J, Syst T (2005) UML-based modeling and validity checking
of web service descriptions. In: Proceeding of IEEE international
conference on web services, pp. 453-460, 2005

He J, Zhang Y, Huang G, Cao J (2012) A smart Web service based
on the context of things. ACM Trans Internet Technol (TOIT)
11(3):13:1-13:23

Perepletchikov M, Ryan C (2011) The impact of service cohesion
on the analyzability of service-oriented software. IEEE Trans Softw
Eng 37(4):449-465

Nagamouttou D, Egambaram I, Krishnan M, Narasingam P
(2015) A verification strategy for web services composition using
enhanced stacked automata model. SpringerPlus. doi:10.1186/
s40064-015-08051

Zhang W, Sun H, Liu X, Guo X (2014) Temporal QoS-aware web
service recommendation via non-negative tensor factorization. In:
World wide web conference committee (IW3C2), Seoul, Korea,
ACM 978-1-4503-2744-2/14/04 April 7-11, 2014

Erradi A, Maheshwari P, Tosic V (2006) Recovery policies for
enhancing web services reliability. In: IEEE international confer-
ence on web services (ICWS’06) 0-7695-2669-1/06

Sun J-T, Zeng H-J, Liu H, Lu Y, Chen Z (2005) Cubesvd: a novel
approach to personalized web search. In: Proceedings of the 14th
international conference on World Wide Web, pp 382-39, ACM,
2005

Erradi A, Maheshwari P (2005) QoS-aware middleware for reliable
web services interactions. In: IEEE international conference on
e-technology, e-commerce and e-service (EEE’05), Hong Kong,
2005

Fu X, Bultan T, Su J (2004) Analysis of interacting BPEL web
services. In: Proc. of the 13th International World Wide Web Con-
ference (WWW 2004), New York, NY, USA, pp. 621-630, May
2004

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Borger E, Fleischmann A (2015) Abstract state machine nets:
closing the gap between business process models and their imple-
mentation. In: Proceeding of the 7 international conference on
subject-oriented business management ACM New York, NY, USA
Anfeng L, Zhigang C, Hui H, Weihua G (2007) Treenet: a web ser-
vices composition model based on spanning tree. In: Proceedings
of the 2nd international conference on pervasive computing and
applications, (ICPCA 2007), IEEE

Karunamurthy R, Khendek F, Glitho RH (2006) A novel business
model for web service composition. In: Proceedings of the IEEE
international conference on services computing (SCC’06), IEEE
Vukovi’c M, Kotsovinos E, Robinson P (2007) An architecture for
rapid, on-demand service composition. J Serv Oriented Comput
Appl-SOCA 1:197-212

Looker N, Xu J (2004) Assessing the dependability of SOAP RPC-
based web services by fault injection. In: Proceedings of the 9th
IEEE international workshop on object-oriented real-time depend-
able systems (WORDS’03) 0-7695-2054-5

Bushehrian Omid, Zare Salman, Keihani Navid (2012) A
Workflow-Based Failure Recovery in Web Services Composition.
Journal of Software Engineering and Applications 5:89-95
Borovskiy V, Zeier A, Karstens J, Ulrich H (2013) Resolving
incompatibility during the evolution of web services with message
conversion. In: Proceedings of the 3rd international conference
on software and data technologies—SE/GSDCA/MUSE, pp 152-
158. doi:10.5220/0001880101520158

Lindvall Mikael, Tvedt Roseanne Tesoriero, Costa Patricia (2003)
An empirically-based process for software architecture evaluation.
Empir Softw Eng 8:83-108

Behl J, Distler T, Heisig F, Kapitza R, Braunschweig TU, Schunter
M (2012) Providing Fault-tolerant execution of web-service—based
workflows within clouds. In: Cloud CP 2012: 2nd International
Workshop on Cloud Computing Platforms, Bern, Switzerland,
ACM 978-1-4503-1161-8

Hu J, Guo C, Wang H, Zou P (2005) Web services peer-to-peer dis-
covery service for automated web service composition. The book
networking and mobile computing, Vol. 3619 of the series Lecture
Notes in Computer Science pp 509-518

Schmidt M-T, Hutchison B, Lambros P, Phippen R (2005): The
enterprise service bus: making service-oriented architecture real.
IBM Syst J 44(4):509

@ Springer

http://dx.doi.org/10.1186/s40064-015-08051
http://dx.doi.org/10.1186/s40064-015-08051
http://dx.doi.org/10.5220/0001880101520158

	FRWSC: a framework for robust Web service composition
	Abstract
	1 Introduction
	2 Related work
	2.1 First approach: software variability
	2.2 Second approach: fault tolerance
	2.3 The third approach: service replication

	3 Problem statement and solution requirements
	3.1 Problem statement
	3.2 Solution requirement
	3.3 Motivation example

	4 Failure reasons
	4.1 Client request
	4.2 Communication between service client and service provider
	4.3 Provider-side error

	5 Service replacement
	5.1 Types of dependencies between services
	5.1.1 Data dependency
	5.1.2 Precondition dependency

	5.2 Extracting UML diagrams from WSDL files

	6 Structure of FRWSC
	6.1 Failure detector
	6.2 Solution provider
	6.2.1 Solution types
	6.2.2 Structure of the solution provider

	7 Empirical evaluation of the proposed framework
	7.1 Evaluation perspective
	7.2 Evaluation process
	7.3 Evaluation metrics
	7.4 Evaluation results
	7.5 Runtime evaluation
	7.5.1 Detecting atomic service failure
	7.5.2 Composite service failure due to mismatching between successive services

	7.6 Average recovery time
	7.7 Limitation of FRWSC
	7.8 Comparing FRWSC with industrial solutions

	8 Conclusion and future work
	References

