
SOCA (2017) 11:33–45
DOI 10.1007/s11761-016-0191-8

ORIGINAL RESEARCH PAPER

CluCF: a clustering CF algorithm to address data sparsity
problem

Chengyuan Yu1 · Linpeng Huang1

Received: 14 November 2014 / Revised: 16 November 2015 / Accepted: 8 February 2016 / Published online: 23 February 2016
© Springer-Verlag London 2016

Abstract In QoS-basedWeb service recommendation, pre-
dicting Quality of Service (QoS) for users will greatly aid
service selection and discovery. Collaborative filtering (CF)
is an effective method for Web service selection and recom-
mendation. Data sparsity is an important challenges for CF
algorithms. Although model-based algorithms can address
the data sparsity problem, those models are often time-
consuming to build and update. Thus, these CF algorithms
aren’t fit for highly dynamic and large-scale environments,
such as Web service recommendation systems. In order
to overcome this drawback, this paper proposes a novel
approach CluCF, which employs user clusters and service
clusters to address the data sparsity problem and classifies the
newuser (the new service) by location factor to lower the time
complexity of updating clusters. Additionally, in order to
improve the prediction accuracy, CluCF employs time factor.
Time-aware user-service matrix Mu;s(tk, d) is introduced,
and the time-aware similarity measurement and time-aware
QoS prediction are employed in this paper. Since the QoS
performance of Web services is highly related to invoca-
tion time due to some time-varying factors (e.g., service
status, network condition), time-aware similarity measure-
ment and time-aware QoS prediction are more trustworthy
than traditional similarity measurement and QoS prediction,
respectively. Since similarity measurement and QoS predic-
tion are two key steps of neighborhood-based CF, time-aware
CF will be more accurate than traditional CF. Moreover,
our approach systematically combines user-based and item-

B Chengyuan Yu
ycy8525@sjtu.edu.cn

Linpeng Huang
huang-lp@cs.sjtu.edu.cn

1 The Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

based methods and employs influence weights to balance
these two predicted values, automatically. To validate our
algorithm, this paper conducts a series of large-scale exper-
iments based on a real-world Web service QoS dataset.
Experimental results show that our approach is capable of
alleviating the data sparsity problem.

Keywords Web service · QoS prediction · Time-aware ·
Collaborative filtering algorithm

1 Introduction

With the exponential growth of Web services, there aremany
Web services with identical or similar functionalities, but dif-
ferent QoS [1]. Thus, Web services with identical or similar
functionalitieswould be identified byQoSwhich has become
a critical issue in services computing [2].

The QoS performance of Web services observed from
the users’ perspective is usually quite different from what
is declared by the service providers in SLA, mainly due to
the following reasons: (1) QoS performance of Web services
is highly related to invocation time, since the service status
(e.g., workload, number of clients) and the network environ-
ment (e.g., congestion) change over time. For example, in
throughput dataset 3,1 which was published in reference [3]
when user 141 invokes service 4499 at time interval 20, the
throughput is 39.953053. But when the same user invokes
the same service at different time interval 45, the throughput
becomes 6.022647. The first throughput is six times larger
than the second. (2) the QoS values are often different from
the QoS values it declared, sinceWeb services are in essence
loosely coupled, hosted by different providers and located in

1 http://www.wsdream.net/wsdream/dataset.html.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-016-0191-8&domain=pdf
http://orcid.org/0000-0001-9315-2561
http://www.wsdream.net/wsdream/dataset.html

34 SOCA (2017) 11:33–45

different location and may subject to different development,
verification, or testing processes.

Thus, predicting the QoS value is becoming more and
more essential for service-oriented application designers to
make service selection and service composition.

CF [4–7] is an effective method for Web service selec-
tion and recommendation. And CF has been widely used in
commercial recommendation systems [8]. CF would auto-
matically predict the QoS values of a target Web service for
an active service user by employing historical QoS infor-
mation from other similar service users, who have similar
historical QoS values on the service set, in which every ser-
vice is similar to the target service.

Collaborative filtering algorithms could be divided into
two main categories: memory-based and model-based algo-
rithms [9]. Memory-based CF algorithms use the entire or
a sample of the user-service database to generate a predic-
tion. By identifying neighbors of an active user, a prediction
of QoS values on a target service for the active user can be
produced. Model-based CF algorithms make prediction by
models.

Memory-based CF algorithms are easy to implement and
highly effective, but they suffer from two fundamental prob-
lems: sparsity and scalability. Sparsity refers to the fact that
most users do not invoke most services and hence a very
sparse user-service rating matrix is generated. As a result,
the accuracy of the method will be poor. For example, Titan
[10] has about 16,000 Web services. In this case, even if the
average number of Web services which had been invoked
by each user, up to 1,000, the data density of user-service
matrix is merely 6.3%. In this case, the accuracy of the state
of the art memory-based CF algorithms will be poor, since
memory-based CF algorithms don’t have enough informa-
tion to find enough similar users or similar services. Even
sometimes, the memory-based CF algorithm will fail in this
case. In scalability aspect, it suffers from serious scalabil-
ity problems in failing to scale up its computation with the
growth of both the number of users and the number of items.
For example, Amazon.com has more than 29 million cus-
tomers and several million products. The time complexity
of general memory-based collaborative filtering algorithms
is O(M × N), where N is the number of users and M is
the number of product catalog items, since it examines N
customers and up to M items for each customer. Thus, the
memory-based CF algorithms encounter severe performance
and scaling issues. Some model-based CF algorithms would
address the sparsity and scalability problem, but those mod-
els are often time-consuming to build and update. Please refer
to the “Related work” for detail.

This paper proposes a clustering CF algorithm to address
the data sparsity and scalability problems.

Clustering CF algorithms address the scalability prob-
lem by seeking users for recommendation within smaller

and highly similar clusters instead of the entire database,
but there are trade-offs between scalability and prediction
performance [9]. Our approach is a clustering CF approach.
In order to improve the prediction accuracy, our approach
employs time factor, since QoS performance of Web ser-
vices is highly related to invocation time (QoS performance
of Web services is highly related to invocation time, since
the service status (e.g., workload, number of clients) and the
network environment (e.g., congestion) change over time).
Moreover, our approach systematically combines user-based
and item-based methods to predict the missing QoS values
and employs influence weights, inf u and inf s , to balance
these two predicted values, automatically.

To alleviate the data sparsity problem, our approach
improves matrix density by converting the user-service-time
tensor into a user-service matrix and then converting the
user-service matrix into userCluster-service matrix and user-
serviceCluster matrix. For example, we suppose the number
of users is 100 and the number of services is also 100, the
data density of user-service matrix is 6.3%. In this case, if
the number of service clusters is about 20, then the average
data density of user-serviceCluster matrix is about 27.8%.
Similarly, if the number of user clusters is about 20, then
the average data density of userCluster-service matrix is also
about 27.8%. This example shows that our approach would
improve the data density effectively. Generally, if the data
density is larger than 20%, the prediction accuracy of CF
algorithm would be fairly higher and this forms a solid basis
for our approach. According to the analysis in Sect. 3.9, the
time complexity of our approach is about O(5*20) which
is far smaller than the complexity of traditional memory-
based CF which is O(100*100). According to the analysis in
Sect. 3.2.1, the average time complexity of updating is just
about O(5).

According to the analysis in Sect. 3.9, this complexity
analysis shows that our approach is very efficient and can be
applied to large-scale systems.

Experimental results show that our approach is capable of
alleviating the data sparsity problem.

The rest of this paper is organized as follows: Sect. 2 intro-
duces related work. Section 3 describes the novel clustering
CF algorithm. Section 4 presents experiments and results.
Section 5 concludes this paper.

2 Related work

In this section, we briefly present some of the research litera-
tures related to collaborative filtering, recommender systems,
and QoS prediction. Researchers have devised a number of
collaborative filtering algorithmswhich could be divided into
two main categories: memory-based and model-based algo-
rithms [11].

123

SOCA (2017) 11:33–45 35

Memory-based CF algorithms are easy to implement and
highly effective, but they suffer from two fundamental prob-
lems: sparsity and scalability. Model-based CF algorithms
can address the scalability and sparsity problems. However,
those models are often time-consuming to build and update.
They can be built off-line over a matter of hours or days.

To alleviate the data sparsity problem, many approaches
have been proposed. Dimensionality reduction techniques,
such as singular value decomposition (SVD) [12], remove
unrepresentative or insignificant users or items to reduce
the dimensionality of the user-item matrix directly, but have
to undergo expensive matrix factorization steps. The time
complexity of SVD is O(N 3 + M3) [13], where N is the
number of users and M is the number of services. The time
complexity of SVD-updating is O(f 2M + f 2N), where f
is the number of factors [14]. Thus, these CF algorithms
aren’t fit for highly dynamic and large-scale environments,
such as Web service recommendation systems. The patented
latent semantic indexing (LSI) techniques, such as Sarwar
et al. [15], are based on SVD. LSI captures the similar-
ity among users and items in a reduced dimensional space.
LSI also has to undergo expensive matrix factorization steps.
Contend-based filter techniques, such as GroupLens [16] and
content-based collaborative recommendation [17], are found
helpful to address the sparsity problem, in which external
content information can be used to produce predictions for
new users or new items. They recommend items based solely
on a profile built up by analyzing the content of items that
a user has rated. But content-based CF have difficulty in
distinguishing between high-quality and low-quality infor-
mation that is on the same topic. And as the number of
items grows, the number of items in the same content-based
category increases, further decreasing the effectiveness of
content-based approaches [18]. Therefore, those approaches
aren’t fit for the environments with a large amount of users
and services.

In order to overcome the drawbacks described above, our
approach CluCF improvesmatrix density to alleviate the data
sparsity problem. According to the analysis in Sect. 3.9 and
the experiment results in Sect. 4.3, the advantages of our
approach are that themodelswould be updated quicklywhich
assure that our approach are fit for highly dynamic environ-
ments with massive users and services, and the prediction
accuracy is fairly high when the user-service-time rating ten-
sor is very sparse.

Clustering CF algorithms would address the scalability
problem, but there are trade-offs between scalability and
prediction performance. Much research effort focuses on
improving the prediction accuracy. For example, Zheng et
al. propose a hybrid method, which is a user-based and
item-based collaborative filtering algorithm to make QoS
prediction [19]. In order to further improve the prediction
accuracy, different kinds of factors are taken into account

when the missing QoS values are predicted by collabora-
tive filtering algorithm. Jiang et al. [20] take into account
the influence of personalization of Web service items when
computing degree of similarity between users. Zhang et al.
[21] take the environment factor and user input factor into
account, where environment factor refers to those environ-
mental features which have an effect on the QoS of Web
service, e.g., bandwidth, and input factor refers to those input
features which have an effect on QoS of Web service, e.g.,
input data size. Chen et al. [22] and Tang et al. [23] take loca-
tion factor into account. All above works focus on improving
the prediction accuracy of CF algorithms, but none of them
focus on sparsity.

Our approach employs time factor to improve the pre-
diction accuracy. Time factor is a very important factor to
predict QoS, since QoS performance of Web services is
highly related to invocation time. The reason why QoS per-
formance ofWeb services is highly related to invocation time
is that the service status (e.g., workload, number of clients)
and the network environment (e.g., congestion) change over
time. Moreover, our approach systematically combines user-
based and item-based methods to predict the missing QoS
values and employs influence weights, inf u and inf s , to bal-
ance these two predicted values, automatically.

3 The QoS prediction algorithm

3.1 Notations and definitions

The following are important notations used in the rest of this
paper:

U = {u1, u2, . . . , un} is a set of service users, where n
refers to the total number of service users registered in the
recommendation system.

S = {s1, s2, . . . , sm} is a set of Web services, where m
refers to the total number of Web services collected by the
recommendation system.

Uc = {uc1, uc2, . . . , uck′ } is a set of user clusters. In other
words, Uc is a partition of users set U. uci is a user cluster.

Sc = {sc1, sc2, . . . , sck′′ } is a set of service clusters. In
other words, Sc is a partition of services set S. sci is a service
cluster;

T = {t1, t2, . . . , tr } is a set of time interval, where r refers
to the total number of time intervals. For example, 1day has
24h with a time interval lasting for 15min, then r = 96.

Mu,s,t = {qui ,s j ,tk |1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r} is
the user-service-time tensor, where qui ,s j ,tk is a vector ofQoS
attribute values acquired from ui invoking s j at tk . If ui has
no experiences on s j at tk , qui ,s j ,tk = ∅.

Active user is a user for whom CF algorithm is employed
to automatically predict the QoS values of the target Web
service.

123

36 SOCA (2017) 11:33–45

Fig. 1 Reclassifying process of the enhanced K-means algorithm

3.2 User clusters and service clusters

K-means is a fast in-memory clustering algorithm, and K-
means has a time complexity of O(k2x), where k is the
number of clusters and x is the dataset size [24]. K-means
begins its clustering by selecting k initial seeds as the tem-
porary cluster centers and then assigning users to the cluster
that they are closest to. The centroid of each cluster (which is
called representative object) is then taken as the new tempo-
rary center and users are reassigned. These steps are repeated
until the change in centroid positions fall below a threshold.

In this paper, the similarities between users (services) are
used tomeasure the distances between users (services). Pear-
son correlation coefficient (PCC) [25] would be employed
to calculate the similarities between users (services). The
distances between users (services) are increased with the
decrease of the similar values between users (services).

Small clusterswhich contain a few users or serviceswould
be build by the K-means algorithm. When clustering CF
algorithms are used to predict the QoS values located in the
small clusters, the prediction accuracy of clustering CF algo-
rithms would decrease. To address this problem, this paper
will delete the small clusters and reclassify the members
located in the small clusters. Figure 1 shows the reclassifying
process.

We classify the new user into the user cluster which con-
tains most of the users who are located in the same country
as the new user, mainly due to the following reasons:

1. According to the experiment results in Tang’s paper [23],
we can see that every average internal QoS similarity2 is
significantly greater than its corresponding average exter-
nal QoS similarity.3

2. QoS values ofWeb services are mainly comprised of per-
formance factors such as response time and throughput.
Thus, these QoS values are usually highly dependent on
the network distance between services and users, i.e., the
locations of services and users.

2 For each country, they compute averageQoS similarity between every
pair of users or services within it, and compute an average value across
all countries. This value is called as average internal QoS similarity.
3 For each country, they also first compute an average QoS similarity
between users or serviceswithin it and the other users or services outside
of the country, and then compute an average value across all countries,
which is called as average external QoS similarity.

Users’ IP would be used to identify the country in which
the user is located. Similar to the new user, the new service
would be classified into the service cluster which contains
most of the services which are located in the same country
as the new service.

In order to lower the time complexity of updating clusters,
a record will be attached to each user cluster. The record will
be used to indicate from which country those users located
in this user cluster come and how many users located in this
user cluster each country has. In this case, when a new user
arrives, the new user can be classified based on the record.
Thus, the time complexity of this updating is O(|Uc|), where
|Uc| denotes the cardinality of the set Uc. Similar to user
cluster, a similar record will also be attached to each service
cluster, and the time complexity of new service updating will
be O(|Sc|), where |Sc| denotes the cardinality of the set Sc.

3.2.1 Updating clusters

When new users (new services) which will be added to the
system arrive or the QoS values for services observed by
users have been altered, the users clusters (services clusters)
should be updated correspondingly. In order to assure that
our approach can be applied to highly dynamic and large-
scale environments, the users clusters and services clusters
must be updated quickly.

When new user (new service) arrives, the new user (new
service) will be assigned to a user cluster (service cluster).
Since the user (service) is a new user (service), NULL will
be assigned to all items which will be added to the user-
service-time tensor. According to the above analysis, the time
complexity of new user or new service updating is O(|Uc|)
or O(|Sc|).

When the QoS values for services observed by users have
been altered, two different kinds of updating approaches
would be employed.

If the user (service) isn’t representative user (representa-
tive service), this user (service) will be reclassified to the
cluster that they are closest to. Thus, the distances between
this user (service) and the representative user (representative
service) of each cluster will be calculated. Thus, the time
complexity of this updating is also O(k).

If the user (service) is representative user (representative
service), the new representative user (representative service)
should be sought from the user cluster (service cluster) where
the old representative user (representative service) located
in. the time complexity of seeking new representative user
(representative service) is O(|clui |2), where clui is the clus-
ter where the old representative user (representative service)
located, and |clui | denotes the number of elements that the
cluster clui has. Then the similarity between the old rep-
resentative user (representative service) and representative
users (representative services) are calculated, respectively,

123

SOCA (2017) 11:33–45 37

and then assigning the old representative user (representa-
tive service) to the user (service) cluster that it is closest to.
After that, the old representative user (representative service)
becomes the ordinary user (service). And the time complex-
ity of this process is also O(k). Thus, the time complexity of
updating in this case is O(k + |clui |2).

If the probabilities of altering the QoS values for every
services (users) are equal, the average time complexity is

O(
(z−k)×k

z + ∑k
i=1

(k+|clui |2)
z), where z denotes the total

number of users (services). In general, k � z and k � |clui |,
thus O(

(z−k)×k
z +∑k

i=1
(k+|clui |2)

z)= O(
∑k

i=1
|clui |2

z). Since
the small clusters have been deleted by our clustering
approach, the average time complexity is approximately
equal to O(|clu|), where |clu| denotes the average number
of elements that a cluster has.

The online updating approach employed by this paper
makes sure that the clusters would be updated quickly. But
the quality of clusters would be decreased with the increase
of the times of execution of online updating process. Thus,
the users or services should be reclassified, when the quality
of clusters is decreased obviously. And it could be executed
off-line.

3.3 Addressing the cold-start problem

The cold-start problem concerns three aspects: (1) new user
and old service; (2) new service and old user; (3) new user
and new service.

According to the analysis in the fourth paragraph of page
6, CluCF would employ userCluster-service matrix, user-
serviceClustermatrix, and userCluster-serviceClustermatrix
to address the cold-start problem. Both userCluster-service
matrix and user-serviceCluster matrix will be described in
Sect. 3.5.3.

3.3.1 New user and old service

Our approach CluCF uses quci ,s j to predict qui ,s j , where user
ui is a new user and service s j isn’t a new service, and
the entry quci ,s j in userCluster-service matrix Muc,s(tk, d)

denotes the average QoS values of user cluster uci on ser-
vice s j . uci denotes a user cluster, ui ∈ uci , and uci ∈ Uc.

3.3.2 New service and old user

Our approach CluCF uses qui ,sc j to predict qui ,s j , where ser-
vice s j is a new service and user ui isn’t a new user and
the entry qui ,sc j in user-serviceCluster matrix Mu,sc (tk, d)

denotes the average QoS values of user ui on service cluster
sc j . sc j denotes a service cluster, s j ∈ sc j , and sc j ∈ Sc

3.3.3 New user and new service

When service s j is a new service and user ui is also
a new user, our approach CluCF uses quci ,sc j to predict
qui ,s j . quci ,sc j belongs to userCluster-serviceCluster matrix
Muc,sc (tk, d). Both userCluster-service matrix Muc,s(tk, d)

and user-serviceCluster matrix Mu,sc (tk, d) can be converted
into userCluster-serviceCluster matrix Muc,sc (tk, d). In this
section, we convert userCluster-service matrix Muc,s(tk, d)

into userCluster-serviceCluster matrix Muc,sc (tk, d). And
the formula which is used to get userCluster-serviceCluster
matrix Muc,sc (tk, d) is defined as follows:

quci ,sc j =

⎧
⎪⎨

⎪⎩

∅, if nonZerouci ,sc j = ∅
∑

s∈sc j
quci ,s

∣
∣
∣nonZerouci ,sc j

∣
∣
∣
, else

(1)

where the entry quci ,sc j in userCluster-serviceCluster matrix
Muc,sc (tk, d) denotes the average QoS values of user cluster
uci on service cluster sc j . And quci ,s ∈ Muc,s(tk, d). The
entries set nonZerouci ,sc j is defined as follows:

nonZerouci,sc j
= {quci ,s | s ∈ sc j , quci ,s ∈ Muc,s(tk, d), quci ,s �= ∅}

Thus, when service s j is a new service and user ui is also a
new user, our approach CluCF uses quci ,sc j to predict qui ,s j .

3.4 Overview of the algorithm

In this section, an abstract description of CluCF has been
given. TheCluCF algorithm comprises the following six sub-
procedures.

1. Convert the user-service-time tensor Mu,s,t into a user-
service matrix Mu,s(tk, d). This converting would be
done off-line.

2. The user-service matrix Mu,s(tk, d) is used to classify
users (services). The users clusters (services clusters)will
be build in this procedure. And it would be done off-line.

3. Convert the user-service matrix Mu,s(tk, d) into
userCluster-service matrix Muc,s(tk, d) and user-
serviceCluster matrix Mu,sc (tk, d), respectively. These
converting would be done off-line.

4. Calculate the similarity between target service and all
other services located in the same cluster with target ser-
vice, respectively. And then select the topK services with
highest similarity to the target service.

5. Calculate the user similarity between active user and all
other users located in the same cluster with active user,
respectively. And then select the top K users with highest
similarity to the active user.

123

38 SOCA (2017) 11:33–45

6. Combine user-based and item-based methods to predict
the missing values (QoS values) for the active user.

3.5 Matrix converting

In this section, we present the process of converting the
user-service-time tensor Mu,s,t into a user-service matrix
Mu,s(tk, d) and then convert the user-service matrix
Mu,s(tk, d) into userCluster-service matrix Muc,s(tk, d) and
user-serviceCluster matrix Mu,sc (tk, d), respectively.

3.5.1 Converting user-service-time tensor into user-service
matrix

In a typical CF scenario, a general Web services recom-
mender system consists of N users and M services, and the
relationship between users and services is denoted by an
N × M matrix, called the user-service matrix. Every entry
qn,m in this matrix represents a vector of QoS values (e.g.,
response time, failure rate), which is observed by the user n
on the service m.

But we found that the QoS values which are observed by
the same user on the same service at different time would be
different. Thus, in this paper, in order to improve theQoS pre-
diction accuracy, user-service-time tensorMu,s,t is employed
to record the historical QoS values, which is observed by the
user on the service at a certain time.

In fact, the number of services far exceeds what any user
can hope to absorb, and thus, user-service-time tensor Mu,s,t

is very sparse. In order to increase the density of data of
matrix, we convert user-service-time tensor Mu,s,t into a
user-service matrix Mu,s(tk, d). And the formula which is
used to get user-service matrix Mu,s(tk, d) is defined as fol-
lows:

qui ,s j (tk, d) =

⎧
⎪⎨

⎪⎩

0, if nonZeroui ,s j (tk, d) = ∅
∑

t∈Ttk ,d

qui ,s j ,t

∣
∣
∣nonZeroui ,s j (tk ,d)

∣
∣
∣
, else

(2)

where the entry qui ,s j (tk, d) in user-service matrix
Mu,s(tk, d) denotes the average QoS values. Both tk and d
are parameters for user-servicematrixMu,s(tk, d). tk is deter-
mined by the missing QoS values which will be predicted by
our approach. For example, if the entry which will be pre-
dicted is qu1,s1,tx , tk equals to tx .

A tunable parameter d is used to adjust the prediction
accuracy. On the one hand, the density of matrix Mu,s(tk, d)

tends to increase with the increase of parameter d. It tends
to improve the prediction accuracy. On the other hand, the
absolute value of qui ,s j ,tk −qui ,s j (tk, d) tends to increasewith
the increase of parameter d. It tends to decrease the prediction
accuracy. Thus, a proper parameter value for d is important

for our approach. The entry qui ,s j ,t in user-service-time ten-
sor Mu,s,t denotes the real QoS value, which is observed by
the user ui on the service s j at time t . Time interval set Ttk ,d
is defined as follows:

Ttk ,d =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{tk′ |k − d ≤ k′ ≤ k + d, 1 ≤ k − d, k + d ≤ r}
{tk′ |k − d ≤ k′ ≤ r, 1 ≤ k − d, k + d > r}
{tk′ |1 ≤ k′ ≤ k + d, 1 > k − d, k + d ≤ r}
{tk′ |1 ≤ k′ ≤ r, 1 > k − d, k + d > r}

(3)

Time interval set Ttk ,d is determined by parameter tk
and d. For example, when d = 2 and tk = t2, we can get
Tt2,2 = {t1, t2, t3, t4}, according to formula 3. The entries set
nonZeroui ,s j (tk, d) is defined as follows:

nonZeroui,s j (tk,d)

= {qui,s j ,t
|qui,s j ,t

∈ Mu,s,t , t ∈ Ttk ,d , qui,s j ,t
�= 0} (4)

In order to increase the density of data of matrix, the
user-service-time tensor Mu,s,t can be converted into a user-
service matrix Mu,s(tk, d) by formulas 2, 3, and 4.

3.5.2 Updating user-service matrix

When new users (new services) which will be added to the
systemarrive or theQoSvalues for services observedbyusers
at time intervals have been altered, the user-service matrix
should be updated correspondingly.

When a new user arrives, there are 1×m × r items which
will be added to the user-service-time tensor. m refers to the
total number of Web services collected by the recommenda-
tion system, and r refers to the total number of time intervals.
Since the user is a new user, zero will be assigned to all items
whichwill be added to the user-service-time tensor. Thus, for
the new user, zero will also be assigned to all items which
will be added to the user-service matrix. Thus, in this case,
the time complexity of updating user-service matrix is O(1).

When a new service arrives, the process of updating user-
service matrix is similar to the process of updating for new
user. Thus, the time complexity of updating user-service
matrix for new service is also O(1).

Thus, when a new user or service arrives, the time com-
plexity of updating user-service matrix is O(1).

When the QoS value for a service observed by a user at a
time interval has been altered, only one item will be updated
in user-servicematrix. According to formula 2, the time com-
plexity of updating is O(d) in this case. d is a parameter for
user-service matrix Mu,s(tk, d).

123

SOCA (2017) 11:33–45 39

3.5.3 Converting user-service matrix into
userCluster-service matrix and user-serviceCluster
matrix, respectively

Sometimes the density of data of matrix isn’t enough just
by converting user-service-time tensor Mu,s,t into user-
service matrix Mu,s(tk, d). Thus, in order to increase the
density further, we need to convert user-service matrix
Mu,s(tk, d) into userCluster-service matrix Muc,s(tk, d) and
user-serviceCluster matrix Mu,sc (tk, d), respectively. And
Fig. 2 shows the process of converting user-service matrix
into userCluster-service matrix and user-serviceCluster
matrix.

The formula which is used to get userCluster-service
matrix Muc,s(tk, d) is defined as follows:

quci ,s j (tk, d) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if nonZerouci ,s j (tk, d) = ∅
∑

u∈uci
qu,s j (tk ,d)

∣
∣
∣nonZerouci ,s j (tk ,d)

∣
∣
∣
, else

(5)

where the entry quci ,s j (tk, d) in userCluster-service matrix
Muc,s(tk, d) denotes the average QoS values of user clus-
ter uci on service s j . uci denotes a user cluster and
uci ∈ Uc. And qu,s j (tk, d) ∈ Mu,s(tk, d). The entries set
nonZerouci ,s j (tk, d) is defined as follows:

nonZerouci,s j (tk,d) = {qu,s j (tk, d)|
qu,s j (tk, d) ∈ Mu,s(tk, d), u ∈ uci , qu,s j (tk, d) �= 0}

(6)

The formula which is used to get user-serviceCluster
matrix Mu,sc (tk, d) is defined as follows:

qui ,sc j (tk, d) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if nonZeroui ,sc j (tk, d) = ∅
∑

s∈sc j
qui ,s (tk ,d)

∣
∣
∣nonZeroui ,sc j (tk ,d)

∣
∣
∣
, else

(7)

where the entry qui ,sc j (tk, d) in user-serviceCluster matrix
Mu,sc (tk, d) denotes the average QoS values of user ui
on service cluster sc j . sc j denotes a service cluster and
sc j ∈ Sc. And qui ,s(tk, d) ∈ Mu,s(tk, d). The entries set
nonZeroui ,sc j (tk, d) is defined as follows:

nonZeroui,sc j (tk,d) = {qui ,s(tk, d)|
qui ,s(tk, d) ∈ Mu,s(tk, d), s ∈ sc j , qui ,s(tk, d) �= 0}

(8)

The user-service matrix Mu,s(tk, d) can be converted
into the userCluster-service matrix Muc,s(tk, d) and user-
serviceCluster matrix Mu,sc (tk, d) to increase the density
further by formulas 5, 6, 7, and 8.

3.5.4 Updating userCluster-service matrix and
user-serviceCluster matrix

When new users (new services) which will be added to the
systemarrive or theQoSvalues for services observedbyusers
at time intervals have been altered, the userCluster-service
matrix and user-serviceClustermatrix should be updated cor-
respondingly.

When a new user ui1 arrives, userCluster-service matrix
and user-serviceCluster matrix would be updated corre-
spondingly. According to the analysis in Sects. 3.2.1 and

Fig. 2 Process of converting
user-service matrix into
userCluster-service matrix and
user-serviceCluster matrix

123

40 SOCA (2017) 11:33–45

3.5.2, for the new user, zero will be assigned to all items
which will be added to the user-service-time tensor and
user-service matrix, and the new user will be classified
into the user cluster which contains most of the users who
are located in the same country as the new user. Thus,
all items in userCluster-service matrix will not be altered.
And zero will be assigned to all items which will be
added to the user-serviceCluster matrix. Thus, the time com-
plexity of updating userCluster-service matrix is O(0) and
the time complexity of updating user-serviceCluster matrix
is O(1).

When a new service arrives, the process of updating user-
service matrix is similar to the process of updating for new
user. Thus, the time complexity of updating userCluster-
service matrix is O(1) and the time complexity of updating
user-serviceCluster matrix is O(0).

When the QoS value for a service observed by a user
at a time interval has been altered, an item in userCluster-
service matrix and an item in user-serviceCluster matrix
should be updated correspondingly. According to Sect. 3.5.3,
the time complexity of updating userCluster-service matrix

is O(
∑k′

i=1
|uci |2
n), where k′ is the number of users clusters

that users have been classified, n refers to the total number of
service users registered in the recommendation system, and
|uci | denotes the number of users that user cluster uci has.
And time complexity of updating user-serviceCluster matrix

is O(
∑k′′

j=1
|sc j |2
m), where k′′ is the number of services clus-

ters that services have been classified, m refers to the total
number of services registered in the recommendation system,
and |sc j | denotes the number of services that service cluster
sc j has.

Since the small clusters have been deleted by our clus-
tering approach, the average time complexity of updat-
ing userCluster-service matrix is approximately equal to
O(|uc|), where |uc| denotes the average number of elements
that a user cluster has. And the average time complexity of
updating user-serviceCluster matrix is approximately equal
to O(|sc|), where |sc| denotes the average number of ele-
ments that a service cluster has.

3.6 Similarity measure

Similarity computation between services or users is a criti-
cal step in memory-based collaborative filtering algorithms.
There are a number of different methods to compute the sim-
ilarity between services or users. For example, cosine-based
similarity [25], Pearson correlation coefficient (PCC) [25],
and adjusted-cosine similarity [25].

The Pearson correlation coefficient-based CF algorithm
is a representative CF algorithm and is widely used in the
CF research community [9]. Although many variations of
Pearson correlation coefficient have been proposed, such as

constrained Pearson correlation [9], Spearman rank correla-
tion [9], and Kendall’s τ correlation [9], Pearson correlation
coefficient is constantly employed by a large number of CF
algorithms until now, such as [23,26]. Thus, in this paper,
Pearson correlation coefficient was employed to calculate
the similarity between services or users.

PCC often overestimates the similarities of services which
are actually not similar but happen to have similar QoS on a
few common users [27]. To address this problem, this paper
employs a similarity weight to reduce the influence of the
small number of similar common users. An enhanced PCC
for sim(s j1, s j2) is defined as follows:

sim(s j1, s j2) =
∣
∣
∣U

s j1
,s j2

c

∣
∣
∣

|Uc|

×

∑

uc∈U
s j1

,s j2
c

(quc,s j1
−qs j1

)(quc,s j2
−qs j2

)

√ ∑

uc∈U
s j1

,s j2
c

(quc,s j1
−qs j1

)2
√ ∑

uc∈U
s j1

,s j2
c

(quc,s j2
−qs j2

)2

(9)

The entry in userCluster-service matrix Muc,s(tk, d) will
be used to calculate the similarity between services, where
U

sj1 ,s j2
c is the subset of user clusters Uc. And U

sj1 ,s j2
c =

{uc|uc ∈ Uc, quc,s j1 �= 0, quc,s j2 �= 0}. And
∣
∣
∣U

s j1
,s j2

c

∣
∣
∣

|Uc| is

a similarity weight. When U
sj1 ,s j2
c is small, the similarity

weight will devalue the similarity estimation between the
services. Both quc,s j1 and quc,s j2 are the entry in userCluster-
service matrix Muc,s(tk, d). qs j1 represents the vector of
average QoS values of the Web service s j1 in userCluster-
servicematrixMuc,s(tk, d). sim(s j1, s j2) ranges from [−1,1]
with a larger value indicating that services s j1 and s j2 aremore
similar.

Similar to calculating the similarity between services, an
enhanced PCC is also employed to compute the similarity
between users. The similarity computation of two users ui1
and ui2 can be described as:

sim(ui1 , ui2) =
∣
∣
∣S

ui1
,ui2

c

∣
∣
∣

|Sc|

×

∑

sc∈S
ui1

,ui2
c

(qui1 ,sc−qui1
)(qui2 ,sc−qui2

)

√ ∑

sc∈S
ui1

,ui2
c

(qui1 ,sc−qui1
)2

√ ∑

sc∈S
ui1

,ui2
c

(qui2 ,sc−qui2
)2

(10)

The entry in user-serviceCluster matrix Mu,sc (tk, d) will
be used to calculate the similarity between users, where
S
ui1 ,ui2
c is the subset of service clusters Sc. And S

ui1 ,ui2
c =

{sc|sc ∈ Sc, qui1 ,sc �= 0, qui2 ,sc �= 0}. And
∣
∣
∣S

ui1
,ui2

c

∣
∣
∣

|Sc| is a
similarity weight. Both qui1 ,sc and qui2 ,sc are the entry in
user-serviceCluster matrix Mu,sc (tk, d). qui1 represents the
vector of averageQoS values observed by the user ui1 in user-
serviceCluster matrix Mu,sc (tk, d). sim(ui1 , ui2) also ranges

123

SOCA (2017) 11:33–45 41

from [−1,1] with a larger value indicating that users ui1 and
ui2 are more similar.

3.7 Similar neighbors selection

After computing the similarities between active user and all
other users who are located in the same user cluster as active
user, a user similarity vector has been obtained. Likewise, a
service similarity vector has also been obtained.

Thus, the TopK similar users (services) would be selected
from the user (service) similarity vector to construct a set of
the TopK similar users (services) to active user (target ser-
vice) by traditional Top-K algorithm. N (u) is used to denote
the set of the TopK similar users to active user u. N (s) is
used to denote the set of the TopK similar services to target
service s.

Similar to [19], the similar neighbors whose similarity is
equal to or smaller than 0 will be removed. Thus, a new set
of the TopK similar users N ′(u)to active user u would be
obtained by removing those similar neighbors whose simi-
larity is equal to or smaller than 0 from the set of the TopK
similar users N (u). And a new set of the TopK similar ser-
vices N ′(s) to target service s would also be obtained by
similar method.

3.8 Missing value prediction

The following formula is employed to predict the missing
QoS values for the active user by user-based CF algorithms:

pu(u, s, t) = qu +

∑

ui∈N ′(u)

sim(u, ui)(qui ,s − qui)

∑

ui∈N ′(u)

sim(u, ui)
(11)

The entry in user-service matrix Mu,s(t, d) will be used
to calculate the missing QoS values pu(u, s, t) by formula
11, where qu represents the vector of average QoS values
observed by the user u in user-service matrix Mu,s(t, d).
And qui ,s represents the vector of QoS values observed by
the user ui on service s in user-service matrix Mu,s(t, d).

The following formula is employed to predict the missing
QoS values by item-based CF algorithms:

ps(u, s, t) = qs +

∑

s j∈N ′(s)
sim(s, s j)(qu,s j − qs j)

∑

s j∈N ′(s)
sim(s, s j)

(12)

The entry in user-service matrix Mu,s(t, d) will be used
to calculate the missing QoS values ps(u, s, t) by formula
12, where qs represents the vector of average QoS values of
Web service s in user-service matrix Mu,s(t, d). And qu,s j

represents the vector of QoS values observed by the user u
on service s j in user-service matrix Mu,s(t, d).

In order to improve the prediction accuracy, a hybrid CF
algorithm is employed, which systematically combines user-
based and item-based methods to predict the missing QoS
values. Since these two predicted values may have differ-
ent prediction performance, two influence weights, inf u and
inf s , are employed to balance these two predicted values.We
combine the two methods by using formula 13:

p(u, s, t) = inf
u

× pu(u, s, t) + inf
s

× ps(u, s, t) (13)

where inf u + inf s = 1.
inf u is defined as follows:

inf u =

∑

ui∈N ′(u)

sim(u, ui)

∑

ui∈N ′(u)

sim(u, ui) + ∑

s j∈N ′(s)
sim(s, s j)

(14)

A higher value indicates a higher prediction accuracy of
pu(u, s, t).

inf s is defined as follows:

inf s =

∑

s j∈N ′(s)
sim(s, s j)

∑

ui∈N ′(u)

sim(u, ui) + ∑

s j∈N ′(s)
sim(s, s j)

(15)

A higher value indicates a higher prediction accuracy of
ps(u, s, t).

Influence weights, inf u and inf s , determine howmuch the
hybrid method relies on the user-based prediction and the
item-based prediction automatically. Our approach are the
first one to employ influence weights to balance pu(u, s, t)
and ps(u, s, t), automatically. And the experimental results
in Sect. 4 show that they would significantly improve the
QoS value prediction accuracy.

3.9 Complexity analysis

The main off-line computation of our approach is convert-
ing user-service-time tensor into user-service matrix and
user-service matrix into userCluster-service matrix and user-
serviceCluster matrix. And the main on-line computation of
our approach is constructing the set of the TopK similar users
N ′(u) and the set of the TopK similar services N ′(s).

Based on the formula 2, the time complexity of converting
user-service-time tensor into user-service matrix is O(n ×
m × r) and the time complexity of updating the user-service
matrix is O(r), where n refers to the total number of users
registered in the recommendation system, m refers to the
total number of services registered in the recommendation
system, and r refers to the total number of time interval.

123

42 SOCA (2017) 11:33–45

Based on the formula 5, the time complexity of con-
verting user-service matrix into userCluster-service matrix
is O(n × m). Based on the formula 7, the time complex-
ity of converting user-service matrix into user-serviceCluster
matrix is O(n × m).

Thus, the time complexity of convertingmatrices is O(n×
m × r + n ×m + n ×m) = O(n ×m × r). And these works
would be done off-line.

Based on the formula 9 and traditional Top-K algorithm,
the average time complexity of constructing the set of the
TopK similar services N ′(s) is O(|Uc| × |sc|). Based on
the formula 10 and traditional Top-K algorithm, the average
time complexity of constructing the set of the TopK similar
users N ′(u) is also O(|uc| × |Sc|). Thus, the average time
complexity of predicting QoS values is O((|Uc| × |sc|) +
(|uc| × |Sc|)), where |uc| � n, |Uc| � n, |sc| � m and
|Sc| � m.

The above complexity analysis shows that our approach
is very efficient and can be applied to large-scale systems.

According to the analysis in Sects. 3.2.1, 3.5.2, and 3.5.4,
when new user (new service) arrives, the time complex-
ity of updating models is O(|Uc|) or O(|Sc|). And when
the QoS value for a service observed by a user at a time
interval has been altered, the time complexity of updating
models is O(d + |uc| + |sc|). |uc| denotes the average num-
ber of elements that a user cluster has. |sc| denotes the
average number of elements that a service cluster has. d is
a parameter for user-service matrix Mu,s(tk, d). Generally,
d � |uc| and d � |sc|, thus, when the QoS value for a
service observed by a user at a time interval has been altered,
the time complexity of updating models is O(|uc| + |sc|).

Thus, the major disadvantage of model-based CF algo-
rithms, namely time-consuming to update, could be avoided
by employing our approach, according to the above analy-
sis. This property assures that our approach can be applied
to those environments which are highly dynamic and large-
scaled, such as Web service recommendation systems.

In short, our approach can be applied to highly dynamic
and large-scale environments.

4 Experiments

All experiments were implemented and deployed with
JDK6.0 and Eclipse Helios Service Release 2.

All experiments were run on a win7-based PC with Intel
Core i3-3220 CPU having a speed of 3.3GHz and 4GB of
RAM.

Two experiments have been implemented. The purpose of
the first experiment is to analyze the effect of our approach
to alleviate the data sparsity problem. The purpose of the
second experiment is to analyze the impact of parameter d
on prediction accuracy.

4.1 Dataset

To evaluate our approach in the real world, this paper adopts a
real-world Web service dataset WSDream-dataset 3,4 which
was published in references [3].

The original dataset 3 contains QoS records of service
invocations on 4532 Web services from 142 users at 64 time
interval, which are transformed into a user-service-time ten-
sor. Every time interval lasts for 15min. Then the dataset is
a 142 × 4532 × 64 user-service-time tensor, and each item
is a pair values (RT, TP). RT denotes response time, and
TP denotes throughput. The original user-service-time ten-
sor will be decomposed into two simpler matrices: 142 ×
4532× 64 user-service-time RT tensor and 142× 4532× 64
user-service-time TP tensor.

In the following experiment, the 142 users are divided into
two groups: 118 service users randomly selected as train-
ing service users and the rest as test service users. The RT
matrix is divided into two parts: the RT-training matrix and
the RT-test matrix, and so is the TP matrix. Each experiment
is performed 100 times, and their average values are taken as
results.

4.2 Evaluation metrics

Statistical accuracy metrics evaluate the accuracy of a sys-
tem by comparing the numerical prediction QoS values with
the actual QoS values acquired by invoking actual service.
Mean absolute error (MAE) [28] between actuality and pre-
dictions is a widely used metric. MAE is a measure of the
deviation of predictions from their actual QoS values. For
each actuality-prediction pair < Aqui ,s j ,tk , Pqui ,s j ,tk >, this
metric treats the absolute error between them equally. The
MAE is computed by first summing these absolute errors
of the N corresponding actuality-prediction pairs and then
computing the average. Formally,

MAE =
∑

ui ,s j ,tk

∣
∣Aqui ,s j ,tk − Pqui ,s j ,tk

∣
∣

N

where Aqui ,s j ,tk denotes actual QoS values of Web service s j
observed by user ui at time interval tk and Pqui ,s j ,tk denotes
the predicted QoS values of Web service s j observed by user
ui at time interval tk , and N denotes the number of predicted
values. The lower the MAE, the higher the recommendation
system accuracy.

Since different QoS properties of Web services have
distinct value ranges, the normalized mean absolute error
(NMAE) [28] metric is also used to measure the prediction
accuracy. NMAE is defined as:

4 http://www.wsdream.net/wsdream/dataset.html.

123

http://www.wsdream.net/wsdream/dataset.html

SOCA (2017) 11:33–45 43

NMAE = MAE

(
∑

ui ,s j ,tk Aqui ,s j ,tk)/N

LowerNMAEvalue represents higher prediction accuracy
about recommendation system.

In these papers, NMAE is employed to measure the pre-
diction quality, since it is most commonly used and easiest
to interpret directly.

4.3 Impact of tensor (matrix) density

In order to show the effectiveness of our method to allevi-
ate the data sparsity problem and justify the usage of the
proposed CluCF algorithm, we compare the prediction accu-
racy of our method with some other famous methods under
different tensor density. Those methods are user-based CF
[29], item-based CF [30], WSRec [19], and WSPred [3].

User-based CF and item-based CF are famous memory-
based CF algorithms. Since user-based CF and item-based
CF have been widely accepted and adopted, they have
been picked up for comparison in a number of CF-based
approaches. Thus, they are also picked up for comparison in
this paper.WSRec is awell-knownhybrid algorithmcombing
user-based CF and item-based CF, and the prediction accu-
racy ofWSRec is quite high. Similar toWSRec, our approach
is also a hybrid algorithm combing user-based CF and item-
based CF. Thus, WSRec is picked up for comparison in this
paper. In order to show the improvement of addressing the
data sparsity problem, our approach should be comparedwith
a famous model-based CF algorithm which has relatively
high performance to address the data sparsity problem. Since
WSPred is such an algorithm, it is picked up for comparison
in this paper.

We change the tensor density from 5 to 40% with a step
value of 5%. The tensors with missing values are in different
densities. For example, 5%means that we randomly remove
95% entries from the original tensor and use the remaining
5% entries to predict.

The parameters to our approach CluCF are topK = 30,
d = 9, k′ = 3, k′′ = 300. thresholdUser = 20 and
thresholdServie = 80. thresholdUser and thresholdService
are the variable threshold which is used in Fig. 1.

The parameters to WSPred are l = 15 and λ1 = λ2 =
λ3 = η = 0.001.

Since user-based CF, item-based CF, and WSRec predict
QoS values by employing user-service matrix, the original
user-service-time tensor must be converted into user-service
matrix. In order to simulate the real-world situation, a entry
qui1 ,s j1

of user-service matrix, equals the entry qui1 ,s j1 ,tk1
of

user-service-time tensor, where tk1 will be randomly selected
from set {1, 2, . . . , 64}. And the parameter to them are
topK = 30. We change the matrix density from 5 to 40%
with a step value of 5%. The matrices with missing values

Fig. 3 Impact of tensor density

Fig. 4 Impact of tensor density

are in different densities. For example, 5% means that we
randomly remove 95% entries from the original matrix and
use the remaining 5% entries to predict. And the parameter
to WSRec is λ = 0.7.

Figures 3 and 4 show the experimental results of response
time and throughput, respectively. The experimental results
show that our approach CluCF achieves higher prediction
accuracy (lower NMAE value) than other competing meth-
ods under different tensor (matrix) density.

In the experimental results, we observe that the perfor-
mance of user-basedCF, item-basedCF, andWSRec isworse
than that of other methods. The reason is that if the matrix
density is sparse, similar users may have too few ratings in
common or may even show a negative correlation due to a
small number of ratings in common.

Our approach CluCF improves matrix density by con-
verting the user-service-time tensor into a user-service
matrix and then converting the user-service matrix into
userCluster-service matrix and user-serviceCluster matrix.

123

44 SOCA (2017) 11:33–45

Fig. 5 Impact of parameter d

Then our approach CluCF predicts QoS values by employing
userCluster-service matrix and user-serviceCluster matrix.
The densities of userCluster-service matrix and user-service
Cluster matrix are much higher than user-service-time ten-
sor. Moreover, our approach CluCF systematically combines
user-based and item-based methods to predict the missing
QoS values and employs influence weights, inf u and inf s , to
balance these two predicted values, automatically. Thus, our
approach CluCF achieves higher prediction accuracy (lower
NMAE value) than other approaches under different tensor
(matrix) density.

4.4 Impact of parameter d

To study the impact of parameter d, two experiments have
been implemented. The parameters are topK = 30, k′ = 3,
k′′ = 300. thresholdUser = 20, and thresholdUser =
80. And the tensor density is 30%. Figure 5 shows the exper-
imental results. We observe that in Fig. 5, as d increases, the
NMAE decreases, but when d surpasses a certain threshold,
the NMAE increases with further increase of d. The reason
is that, on the one hand, the matrix density tends to increase
with the increase of parameter d. It tends to improve the pre-
diction accuracy. On the other hand, the absolute value of
qui ,s j ,tk − qui ,s j (tk, d) tends to increase with the increase
of parameter d. It tends to decrease the prediction accu-
racy. When the value of d is at a high level, the increase
of matrix density tends to slow down even if the value of
the d is still raising, while the increase of absolute value of
qui ,s j ,tk − qui ,s j (tk, d) may remain at the same level or tend
to be augmented. Thus, a proper parameter value for d is
important.

5 Conclusions

Collaborative filtering is an effective method forWeb service
selection and recommendation. But they suffer from two fun-
damental problems: sparsity and scalability.

Model-based CF algorithms could address the data spar-
sity problem. But those approaches have a severe drawback.
The time complexity of updating for those approaches are
much higher. For example, the time complexity of SVD-
updating is O(f 2M + f 2N). Thus, those approaches aren’t
fit for highly dynamic and large-scale environments, such
as Web service recommendation systems. In order to over-
come this drawback, the CluCF has been proposed in
this paper. CluCF improves matrix density by converting
the user-service-time tensor into a user-service matrix and
then converting the user-service matrix into userCluster-
service matrix and userserviceCluster matrix to alleviate
the data sparsity problem. According to the analysis in
Sect. 3.9, the time complexity of updating for CluCF is
O(|uc| + |sc|) at most. It assures that our approach CluCF
can be applied to those environments which are highly
dynamic and large-scaled, such as Web service recommen-
dation systems. The experiment results in Sect. 4.3 show that
CluCF is an effective approach to alleviate the data sparsity
problem.

Our approach CluCF is a clustering CF algorithm. Clus-
tering CF algorithms would address the scalability problem,
but there are trade-offs between scalability and prediction
performance. In order to improve the prediction accuracy,
our approach employs time factor. Moreover, our approach
systematically combines user-based and item-basedmethods
and employs influenceweights to balance these twopredicted
values, automatically.

In this paper, K-means is employed to classify users and
Web services; meanwhile, PCC is employed to measure the
distance between users orWeb services. Although other clus-
tering algorithms would be combined with the approach
proposed by this paper in order to alleviate the data sparsity
problem, the actual effect still needs further testing. Thus,
more experiments should be done. However, it is beyond
the scope of this paper. And it will be discussed in future
work. In this paper, we focus on the effect of K-means algo-
rithm composed with the approach to improve the matrix
density.

In future work, our approach will be improved to alleviate
gray sheep and shilling attack problem.

Acknowledgements The work described in this paper was supported
by the National Natural Science Foundation of China under Grant Nos.
91118004, 61232007 and the Innovation Program of Shanghai Munic-
ipal Education Commission (No. 13ZZ023).

123

SOCA (2017) 11:33–45 45

References

1. YuT, ZhangY, LinK-J (2007) Efficient algorithms forweb services
selectionwith end-to-end qos constraints. ACMTransWeb. doi:10.
1145/1232722.1232728

2. Zhang LJ, Zhang J, Cai H (2007) Services computing. Springer
and Tsinghua University Press, New York

3. Zhang Yilei, Zheng Zibin, Lyu Michael R (2011) WSPred: a time-
aware personalized QoS prediction framework for web services.
In: Proceedings of IEEE symposium on software reliability engi-
neering. doi:10.1109/ISSRE.2011.17

4. Shardanand U, Maes P (1995) Social information filtering: algo-
rithms for automating ’Word of Mouth’. CHI ’95 Proceedings of
the SIGCHI conference on human factors in computing systems.
doi:10.1145/223904.223931

5. Hill W, Stead L, Rosenstein M, Furnas G (1995) Recommending
and evaluating choices in a virtual community of use. CHI ’95 Pro-
ceedings of the SIGCHI conference on human factors in computing
systems. doi:10.1145/223904.223929

6. Konstan J,Miller B,MaltzD,Herlocker J,GordonL,Riedl J (1997)
GroupLens: applying collaborative filtering to usenet news. Com-
mun ACM 40:77–87. doi:10.1145/245108.245126

7. Rich E (1979) User modeling via stereotypes. Cogn Sci 3:329–354
8. LindenG, Smith B, York J (2003) Amazon.com recommendations:

item-to-item collaborative filtering. IEEE Internet Comput. doi:10.
1109/MIC.2003.1167344

9. Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering
techniques. Adv Artif Intell. doi:10.1155/2009/421425

10. Wu J, Chen L, Xie Y et al. Titan: a system for effective web service
discovery[C]. In: Proceedings of the 21st international conference
companion on World Wide Web. ACM, 2012, pp 441–444

11. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of
predictive algorithms for collaborative filtering. In: UAI

12. Billsus D, Pazzani M (1998) Learning collaborative information
filters. In: Proceedings of the 15th international conference on
machine learning (ICML98)

13. Sarwar et al. (2002) Incremental singular value decomposition
algorithms for highly scalable recommender systems. In: Fifth
international conference on computer and information science

14. BerryMet al (1995)Using linear algebra for intelligent information
retrieval. SIAM Rev 37(4):573–595

15. Sarwar BM, Karypis G, Konstan JA, Riedl J (2000) Application of
dimensionality reduction in recommender system—a case study.
In: ACM WebKDD workshop

16. Sarwar B M, Konstan J A, Borchers A et al (1998) Using filtering
agents to improve prediction quality in the grouplens research col-
laborative filtering system. In: Proceedings of the ACM conference
on computer supported cooperative work. ACM 1998:345–354

17. Balabanovic M, Shoham Y (1997) Fab: Content-based collabora-
tive recommendation. Commun ACM 40(3):66–72

18. Claypool M, Gokhale A, Miranda T, et al., (1999) Combining
content-based and collaborative filters in an online newspaper. In:
Proceedings of the SIGIR workshop on recommender systems:
algorithms and evaluation, Berkeley, CA, USA

19. Zheng Z, Ma H, Lyu MR, King I (2009) WSRec: a collaborative
filtering based web service recommendation system. In: Proceed-
ings of the IEEE international conference on web services (ICWS
09). doi:10.1109/ICWS.2009.30

20. Jiang Y, Liu J, Tang M, Liu XF (2011) An effective Web service
recommendationmethodbasedonpersonalized collaborativefilter-
ing. In: Proceedings IEEE international conference onweb services
(ICWS 11). doi:10.1109/ICWS.2011.38

21. Zhang L, Zhang B, Liu Y, Gao Y, Zhu Z (2010) A web service QoS
prediction approach based on collaborative filtering. In: Proceed-
ings IEEE Asia-Pacific services computing conference. doi:10.
1109/APSCC.2010.43

22. Chen X, Liu X, Huang Z, Sun H (2010) RegionKNN: a scal-
able hybrid collaborative filtering algorithm for personalized Web
service recommendation. In: Proceedings IEEE international con-
ference on web services (ICWS 10). doi:10.1109/ICWS.2010.27

23. Tang Mingdong, Jiang Yechun, Liu Jianxun, Liu Xiaoqing (2012)
Location-aware collaborative filtering for QoS-based service rec-
ommendation. IEEE international conference on web services
(ICWS). doi:10.1109/ICWS.2012.61

24. Chee SHS et al (2001) Rectree: an efficient collaborative filtering
method. In: Data warehousing and knowledge discovery, pp141–
151

25. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Itembased col-
laborative filtering recommendation algorithms. In WWW 2001.
doi:10.1145/371920.372071

26. Silic M, Delac G, Krka I et al. (2013) Scalable and accurate pre-
diction of availability of atomic web services. IEEE Trans Serv
Comput

27. McLaughlin MR, Herlocker JL (2004) A collaborative filtering
algorithm and evaluation metric that accurately model the user
experience. In SIGIR. doi:10.1145/1008992.1009050

28. Goldberg K, Roeder T, Gupta D, Perkins C (2001) Eigen-
taste: a constant time collaborative filtering algorithm. Inf Retr
4(2):133C151. doi:10.1023/A:1011419012209

29. Schafer JB et al (2007) Collaborative filtering recommender sys-
tems. The adaptive web, Springer, Berlin, Heidelberg, pp 291–324

30. Deshpande M, Karypis G (2004) Item-based top-n recommen-
dation. ACM Trans Inf Syst 22:143–177. doi:10.1145/963770.
963776

123

http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/10.1145/1232722.1232728
http://dx.doi.org/10.1109/ISSRE.2011.17
http://dx.doi.org/10.1145/223904.223931
http://dx.doi.org/10.1145/223904.223929
http://dx.doi.org/10.1145/245108.245126
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1155/2009/421425
http://dx.doi.org/10.1109/ICWS.2009.30
http://dx.doi.org/10.1109/ICWS.2011.38
http://dx.doi.org/10.1109/APSCC.2010.43
http://dx.doi.org/10.1109/APSCC.2010.43
http://dx.doi.org/10.1109/ICWS.2010.27
http://dx.doi.org/10.1109/ICWS.2012.61
http://dx.doi.org/10.1145/371920.372071
http://dx.doi.org/10.1145/1008992.1009050
http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1145/963770.963776
http://dx.doi.org/10.1145/963770.963776

	CluCF: a clustering CF algorithm to address data sparsity problem
	Abstract
	1 Introduction
	2 Related work
	3 The QoS prediction algorithm
	3.1 Notations and definitions
	3.2 User clusters and service clusters
	3.2.1 Updating clusters

	3.3 Addressing the cold-start problem
	3.3.1 New user and old service
	3.3.2 New service and old user
	3.3.3 New user and new service

	3.4 Overview of the algorithm
	3.5 Matrix converting
	3.5.1 Converting user-service-time tensor into user-service matrix
	3.5.2 Updating user-service matrix
	3.5.3 Converting user-service matrix into userCluster-service matrix and user-serviceCluster matrix, respectively
	3.5.4 Updating userCluster-service matrix and user-serviceCluster matrix

	3.6 Similarity measure
	3.7 Similar neighbors selection
	3.8 Missing value prediction
	3.9 Complexity analysis

	4 Experiments
	4.1 Dataset
	4.2 Evaluation metrics
	4.3 Impact of tensor (matrix) density
	4.4 Impact of parameter d

	5 Conclusions
	Acknowledgements
	References

