SOCA (2016) 10:1-17
DOI 10.1007/s11761-015-0184-z

@ CrossMark

ORIGINAL RESEARCH PAPER

A distributed architecture for efficient Web service discovery

Luciano Baresi! - Matteo Miraz! - Pierluigi Plebani’

Received: 18 November 2013 / Revised: 21 April 2015 / Accepted: 29 September 2015 / Published online: 14 October 2015

© Springer-Verlag London 2015

Abstract Although the definition of service-oriented archi-
tecture (SOA) included the presence of a service registry
from the beginning, the first implementations (e.g., UDDI)
did not really succeed mainly because of security and
governance issues. This article tackles the problem by intro-
ducing DREAM (Distributed Registry by ExAMple): a
publish/subscribe-based solution to integrate existing, differ-
ent registries, along with a match-making approach to ease
the publication and retrieval of services. DREAM fosters the
interoperability among registry technologies and supports
UDDI, ebXML Registry, and other registries. The publi-
sh/subscribe paradigm allows service providers to decide the
services they want to publish, and requestors to be informed
of the services that satisfy their interests. As for the match-
making, DREAM supports different ways to evaluate the
matching between published and required services. Besides
presenting the architecture of DREAM and the different
match-making opportunities, the article also describes the
experiments conducted to evaluate proposed solutions.

Keywords Distributed service registries - Service
discovery - Service match-making - Similarity measure

B Pierluigi Plebani
pierluigi.plebani @polimi.it

Luciano Baresi
luciano.baresi @polimi.it

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo da Vinci, 32,
20133 Milan, Italy

1 Introduction

The development of software systems more and more often
relies on the principles of service-oriented computing to
improve the flexibility and interoperability of resulting solu-
tions [1]. These systems open their boundaries by providing
accessible programmatic interfaces (services) that ease the
integration with other systems. In some cases, this openness
is limited to a well-defined set of possible users (usually in
business-to-business scenarios); in some other cases, these
services can be used by anyone. As a result of this process,
lots of services are available on the Internet: For instance,
Programmable Web! has more than 12,000 registered APIs,
and we have no figures about all those services that are not
publicly available.

This considerable amount of services imposes suitable
discovery and selection capabilities to allow for the iden-
tification of the services of interest. During the early days
of SOA (service-oriented architectures), UDDI (Universal
Description Discovery and Integration) was conceived to
support the discovery of services, and some public UDDI
repositories were created to host their descriptions [2]. These
public registries did not work. Besides some security issues,
the high amount of information required to register a service,
and the absence of control led to incomplete and buggy ser-
vice descriptions. The management of these registries was
not easy because of the number of involved parties and the
distributed ownership of services. The result was that nobody
checked the status of these services, and when these registries
were closed, they were full of non-working services and
incomplete information [3]. Public initiatives were substi-
tuted by private UDDI registries and domain-specificebXML
(e-business XML) registries [4], implemented in closed envi-

! http://www.programmableweb.com.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-015-0184-z&domain=pdf
http://www.programmableweb.com

SOCA (2016) 10:1-17

ronments where the number of involved actors is limited and
suitable governance can be applied.

As evidenced by the continuous effort done to offer pri-
vate registry implementations in commercial platforms (e.g.,
Oracle and BEA Aqualogic Service Registries) and to stan-
dardize the implementation and the access to such registries
(e.g., ebXML RegRep 4.0 specification has been approved as
OASIS standard?), more and more private service registries
are and will be made available soon.

The increasing number of available services, the evolution
toward more private, controlled solutions, and the advent
of cloud infrastructures let us foresee a service ecosystem
where service descriptions are hosted on a set of diverse
registries: some of them will be freely accessible, while
others will be more controlled. DREAM (Distributed Reg-
istry by ExAMple) is the contribution of this article to the
ecosystem. DREAM is a solution for interconnecting hetero-
geneous registries and for easing the discovery of services.
This solution originates from previous work by the authors:
DiRe (Dlstributed Registry, [5]) and Urbe (UDDI Registry
By Example [6]). The former contributes the communica-
tion framework among registries and the facet-based [7]
description of services; the latter provides the match-making
capabilities and semantic awareness. The integration of the
two proposals defines a semantically enabled replication
infrastructure that supports different registry technologies
(UDDI, ebXML, and others>).

A shared service description model provides the basis
for the homogenous distribution and retrieval of informa-
tion about services. A publish/subscribe middleware allows
DREAM to let different parties share services and, at the same
time, be informed about new, useful services. Each registry
can decide the services it wants to publish, that is, the ser-
vices it wants to share with others. Similarly, it can declare
its interests—the services it would like to be aware of—by
means of special-purpose subscriptions. The infrastructure
ensures that as soon as a registry publishes the information
about one of its services, this same information is propagated
to (and replicated on) all the registries that had declared their
interest. Subscriptions (and un-subscriptions) can be issued
dynamically and thus each party can accommodate and tailor
its interests (i.e., those of its users) while in operation. The
approach introduced in this paper improves and validates the
solution discussed in [8].

The discovery mechanisms implemented in DREAM sup-
port different granularities: service requestors can express
their interests by referring to any element from complete
facets to single attributes. In addition, the match maker
exploits reference ontologies to evaluate the similarity
between the terms used in the requests and in available ser-

2 https://lists.oasis-open.org/archives/regrep/201201/msg0001 1.html.
3 http://www.secse-project.eu/.

@ Springer

vice descriptions and return service that match requests at
different degrees of precision.

To summarize, the key and novel contribution of this
paper is a distributed framework enabling the interoper-
ability among different service registries and different ser-
vice description models. This allows the service requestor
to express his/her preferences using the preferred service
description model, as the interoperability among the dif-
ferent service registries is ensured by an abstract service
model composed of facets. As demonstrated by a series of
experiment, this integration, along with the possibility of
integrating semantic-enabled service discovery mechanisms,
increases the effectiveness of the service retrieval in terms of
precision and recall.

Moreover, the proposed approach contributes to make ser-
vice publication and retrieval easier and more flexible as
DREAM does not rely on a single standard for describing
provided services and for defining queries. Currently, from
the service provider perspective, DREAM is able to sup-
port any kind of service description, i.e., WSDL, SAWSDL,
and OWL-S, with the only limitation that the language has
to be XML-based. From the service requestor perspective,
the service retrieval supports queries expressed using XPath,
XPath with an additional operator (proposed in this work),
and WSDL documents used to specify the requestor needs.
Although DREAM is open to be extended with additional
query languages, developers of such extensions are in charge
of implementing the related match-making algorithms.

The rest of the paper is organized as follows. Section 2 dis-
cusses the motivations behind a distributed architecture for
service registries and how semantic analysis can improve the
precision and recall of service retrieval. Section 3 introduces
the proposed architecture and explains how it can be used
by both service providers and requestors. Section 4 presents
the different match-making capabilities offered by DREAM.
Section 5 describes the experiments conducted to evaluate
the performance of DREAM in terms of response time, pre-
cision, and recall. Section 6 surveys related approaches, and
Sect. 7 concludes the paper.

2 Motivations

As discussed in the introduction, the idea of having a
worldwide service registry failed after a while as the gover-
nance of this kind of solutions is hard to manage. To overcome
this problem, the SOA community developed alternative
approaches. On the one side, they proposed a more agile
publication process. For instance, Web sites like XMethods*
or ProgrammableWeb index services by only considering a
description and tags freely assigned by the developers. The

4 http://www.xmethods.net.

https://lists.oasis-open.org/archives/regrep/201201/msg00011.html
http://www.secse-project.eu/
http://www.xmethods.net

SOCA (2016) 10:1-17

>0

Service
provider

publish

—

|
i
I
I
|
|
i
i
I
I
|
I
i
I
I
I
|
|
i
I
I
1
!
Internal service |
registry '
|

i

1

I

I

|

|

i

I

I

I

I

i

i

I

I

I

|

i

i

I

I

I

|

i

I

i publish
if the 222:22 if the service
is declared

is declared

to be public to be public and

about books

)

Generic

Public service Thematic Public

service registry

registry (e.g., Book Store)

(e.g. programmableWeb)

Fig. 1 Example scenario

resulting tag-based retrieval, as usually occurs with keyword-
based information retrieval mechanisms, is not effective. On
the other side, the classical solutions, like UDDI and ebXML
Registry, are still used but either in a more controlled context,
for example, inside a company, or by focusing on a specific
type of services (e.g., geospatial services, health care).

Although these new approaches eased the publication,
they had a negative impact on the retrieval. Indeed, reducing
the information required when a new service is made avail-
able also means reducing the information that can be used to
retrieve it. The use of a private service registry implies that
all the indexed services can only be viewed by a limited set of
users. For this reason, companies maintain two registries: (i)
a public one, which is freely accessible and contains all the
services that can be invoked externally, and (ii) a private one,
with control policies that restrict the access to the services
that are only available internally.

Finally, despite the initial intention of having a standard
registry technology, that is, UDDI, interoperability is now
an issue. Different registries with different communication
protocols are available and can be required to exchange infor-
mation and cooperate.

The lack of a winning solution pushed us to concentrate on
the distributed publication of services as a means to improve
both exposition and retrieval. These are the resulting require-
ments for a service registry architecture:

— Distribution: services can be published on different reg-
istries managed by different subjects.

— Interoperability: service registries can be based on dif-
ferent technologies and communicate using different
protocols.

— Controlled publication: the service provider can decide
the visibility of the published services (e.g., private and

>0

Service
requester

express an interest on
a class of services by
using keywords or WSDL

—

Internal service
registry

notify if a new and
interesting service
has been published

notify if a new and
interesting book-related
service has been published

bl

Generic

Public service Thematic Public

service registry
(e.g., Book Store)

registry
(e.g. programmableWeb)

public) no matter the registry on which they are pub-
lished.

— Customized retrieval: the service request can be formal-
ized in different ways, and all the service registries must
be queried against such a request.

— Scalability: services are continuously published and
removed, and the number of services to be stored can
be significantly high and not foreseen at design time.

Figure 1 shows our vision with respect to the publication
of services (on the left) and their retrieval (on the right). When
aprovider develops a service, this is published on the internal
(proprietary) registry, and it can be declared as either a private
or public service. In the former case, the service description
is only stored in the internal registry and it is not accessi-
ble outside. In the latter case, the service is automatically
published on the external registries that manifested interest
on it. For instance, a repository that hosts services related
to books can be interested in services that provide informa-
tion on books, reviews, and stores. Any service about this
topic would be stored in the registry. The communication
infrastructure provided by DREAM ensures that a seamless
integration between the internal registry and the public ones
is provided even if they are based on different technologies.

As for service retrieval, we assume the presence of two
types of service requestors: the typical user, who browses a
service directory looking for a particular service, and the reg-
istry maintainer, who wants to be aware of as many services
as possible. These two types of users might have different
skills and thus require different methods to define their inter-
ests. For example, a non-tech-savvy requestor can express
an interest by means of keywords (e.g., “book price”), while
a more skilled user may submit a WSDL to specify the
interface that the requested service has to expose. The advan-

@ Springer

SOCA (2016) 10:1-17

tage of DREAM is that it supports both types of service
requestors. As DREAM enables the integration of differ-
ent service description models and different service retrieval
mechanisms, it is open to support different types of queries.
Service requestors can express their query according to their
skills, without adopting any new standard.

Finally, the communication between the service registries
and the service requestor is mainly based on a publi-
sh/subscribe middleware: a solution that can ensure good
performance even in case of a high number of published ser-
vices and service requests.

3 DREAM architecture

To satisfy the architectural requirements introduced in the
previous section, this paper proposes a distributed service
registry based on a common service description model and a
publish—subscribe middleware. Each node of the infrastruc-
ture can be used by both providers to publish their services
and by users who want to find the services able to match
their needs. As a consequence, the goal of the middleware is
twofold: It collects the requests and finds the services able to
satisfy them. When a new service is published, its description
must be sent to all the nodes interested in it.

From a technical standpoint, Fig. 2 shows that DREAM
provides a communication infrastructure (composed of deliv-
ery managers and dispatchers) and a similarity engine. Each
delivery manager collects the information about new requests
and new available services in a node, and the dispatcher dis-

Main Web service registries

tributes that information to the interested parties. Since such
information should only be exchanged if a party is interested
in that particular new service, the similarity engine is used
to match the published service description to the different
requests.

3.1 Service description model

A user can choose the implementation of the Registry that fits
best its requirements. These implementations mainly adhere
to two main specifications: UDDI [9] and ebXML [4], but
they could also be proprietary solutions. Sadly, they have
a different data model, and thus they are not compatible.
The heterogeneity of registries and the need for a flexible
approach that fits most of the user scenarios suggested us
to develop a new, lightweight model to describe services.
The goal of this service description model is to become a
neutral language that is easily mappable onto the different
registry models. To this end, the service description model
uses a faceted approach: each service is described by means
of facets, each addressing a different characteristic of the
service or point of view.

A Facet is the key constituent of the proposed model
(see Fig. 3). It describes a Web service from a particular
point of view. For example, a facet may characterize a service

Service SpecFacet

facetld: id
XMLSchemaDef: String
XMLDoc: String

serviceld: id
name: String
addinfo: boolean

1 described By . AddFacet

Fig. 3 Service model using facets

XMethods.net

Wsoogle.com

1 Al
] 1
Il 1
1 1
1 1
: :
! Web DI-RE DIIRE Web H
! service [<>| Delivery Delivery |<>| service i
! Registry Manager Manager Registry !
i i
' |
1

URBE

Similarity Communication bus DisDI;Eher
Engine P

! |
: :
! |
' |
| DIRE DIRE DIRE :
: ubDl [<=>| Delivery Delivery <> epxmL Delivery <> uypDI :
H Manager Manager Manager !
' |
! l
i Healtcare SW developer co Touristic co. Chess player community i

I
1

Web service requesters

Fig. 2 DREAM architecture

@ Springer

SOCA (2016) 10:1-17

WSDL facet: book_price_service.wsdl

OWL-S facet: book_price_service.owls

<wsdl:definitions ...>
<wsdl:types>

</wsdl:types>
<wsdl:message name="get PRICEResponse">
<wsdl:part name="_PRICE" type="tns:PriceType" />
</wsdl:message>
<wsdl:message name="get PRICERequest">
<wsdl:part name="_BOOK" type="tns:BookType" />
</wsdl:message>
<wsdl:portType name="BookPriceSoap">
<wsdl:operation name="get PRICE">
<wsdl:input message="tns:get_ PRICERequest" />
<wsdl:output message="tns:get PRICEResponse" />
</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

<?xml version="1.0" encoding="WINDOWS-1252"?>
<rdf ...>
<service:Service rdf:ID="BOOK_PRICE_SERVICE">...</service:Service>
<profile:Profile rdf:ID="BOOK_PRICE_PROFILE">
<service:isPresentedBy rdf:resource="#BOOK_PRICE_SERVICE"/>
<profile:serviceName xml:lang="en">BookPriceService</profile:serviceName>
<profile:hasInput rdf:resource="# BOOK"/>
<profile:hasOutput rdf:resource="#_PRICE"/>

</profile:Profile>

<process:Input rdf:ID="_BOOK">
<process:parameterType>books.owl#Book"</process:parameterType>

</process:Input>

<process:Output rdf:ID="_PRICE">
<process:parameterType>concept.owl#Price</process:parameterType>

</process:Output>

<grounding:WsdlGrounding rdf:ID="BOOK_PRICE_ GROUNDING">
<service:supportedBy rdf:resource="#BOOK PRICE_SERVICE"/>

</grounding:WsdlGrounding>

</rdf :RDF>

Fig. 4 Example of facets

from a functional point of view and describe the operations it
provides—by means of a WSDL document, or it can describe
the quality of services guaranteed by the service and detail
its availability, reputation, and response time. The model
only requires that facets are self-contained, and the infor-
mation they provide rendered in XML. The first requirement
ensures that once a subject retrieves a facet, there is no need
to retrieve additional documents to get the information it con-
tains. The latter eases document management and is justified
by the wide adoption of XML languages by the service com-
munity. As usual, XML schema documents characterize the
facets with the type of information they contain. For exam-
ple, WSDL facets describe the interface of services, RDF
facets add semantics, and XMI facets specify complex ser-
vice behaviors by means of UML diagrams. Additionally,
each Facet has a unique identifier, used to ease its manage-
ment. Hereafter, { f ;”" } identifies the facets of a Web service
w;j.

Each Service comprises a set of specification facets
(SpecFacet). The service provider is in charge of writing
these facets, and they contain properties that it guarantees for
its service. For example, a service can be described through
facets that specify its interface, the company that provides it,
and the guaranteed qualities of service. Users can reassemble
the complete specification of a service by collecting and ana-
lyzing all its specification facets. For example, Fig. 4 shows
the excerpts of two possible facets associated with the book
example. We assume that the service providers define for the
same service two different WSDL and OWL-S descriptions,
respectively.

The users of a service may also create some additional
facets (AddFacet) and describe the service from their
point of view. For example, users can describe a service
by specifying its rating, its level of customization, and
the measured quality of service. These facets do not spec-
ify the service, but they contain information that may be
useful in the service-selection phase to rank retrieved ser-
vices.

In addition, the user can also rely on existing standards and
frameworks like UDDI and ebXML and can use parts of that
specifications to properly identify the services in DREAM.
For example, possible usages could be to create additional
facets that are linked to a tModel or to a categoryBag,
in case of UDDI, or to a Collaborative Partner
Profile, in case of ebXML.

Atthis stage, DREAM implements facets linked to WSDL
descriptions, and in the rest of the paper we discuss how
DREAM can support different kinds of service requestors
expressing different kinds of queries. Future releases will
include other types of services description models, i.e.,
OWL-S or REST based, as well as facets expressing quality
of service capabilities.

3.2 Communication infrastructure

Differently from other approaches such as METEOR-S [10]
and PYRAMID-S [11], which create a single logical registry
spread among several physical nodes, we propose a really
distributed registry. DREAM exploits the inherent distribu-
tion of registries to provide the user with a finer control over
published information. DREAM assumes that each party
manages a private registry. This registry manages informa-
tion regarding the services being used. Being the registry
private to the corporation, it glues together the different parts
of its IT infrastructure by allowing a blackboard communica-
tion style between the various components. The registry may
be used from parts of system to retrieve, add, or modify infor-
mation on services. For example, a component may monitor
the execution of services, measure the average response time,
and store it in the registry as additional facets. Another com-
ponent, which retrieves services, may use that information to
select the fastest service for a given task.

The party that manages a registry has the full control on the
information published on the registry. This means that it can
perform a preliminary selection of the services in the registry
and ensure that it only contains services that are of interest.

@ Springer

SOCA (2016) 10:1-17

Each query performed on the registry works on preapproved
services. Accordingly, the results of these queries have a high
precision (i.e., almost only relevant services are found), at the
price of a lower recall (i.e., not all relevant services may be
found).

DREAM improves the recall by introducing a marketplace
mechanism to exchange service facets among registries. Like
“real” marketplaces, DREAM allows a loosely coupled coop-
eration among service providers and potential customers. On
the one side, service providers are allowed to share their
services and to broadcast their descriptions. On the other
side, DREAM provides clients with the ability to analyze
shared facets (i.e., service descriptions). The client can decide
whether a service meets its requirements and, if it is the case,
acquire the relevant facets and insert them in its registry.

To support this cooperation style, DREAM introduces a
global communication bus and a delivery manager to con-
nect each registry (see Fig. 2) to it. The communication bus
acts as a common reference to all the delivery managers and
allows them to efficiently exchange messages in a peer-to-
peer manner. The main element of the communication bus
is the dispatcher, which follows the publish/subscribe para-
digm. When a node wants to deliver a message, it contacts
the dispatcher and publishes the message. Conversely, sub-
scriptions allow nodes to declare what messages are relevant
for them. The dispatcher forwards messages being published
to nodes with a proper subscription.

The core of this communication system is based on
REDS [12], a distributed publish/subscribe system [13].
REDS splits the dispatcher among several nodes and guar-
antees logical integrity. Consequently, it is able to create a
scalable infrastructure that can manage very large networks.
Moreover, REDS is able to adjust its internal structure, react
to node failures, optimize its performance, and ensure a reli-
able and efficient communication system.

The delivery manager acts as facade for the registry. It
allows the party to both publicize and discover services, by
managing the information flow from the local registry to the
other registries and vice versa. For this purpose, the delivery
manager is able to perform the adequate conversions between
the faceted service model and the one used by the particular
registry.

When itis asked to publish the information about a service,
the delivery manager accesses the local registry, fetches the
information on the service, converts it into the proper facets,
and delivers them as a message to the bus. The dispatcher
forwards that message to all the interested parties by using a
best effort delivery. In fact, the bus operates on an unreliable
network: nodes can crash and have temporary failures, and
the whole network may have problems.

Additionally, parties may join the marketplace after the
information on a service has already been shared. To solve
these issues, DREAM uses the lease mechanism, which guar-

@ Springer

antees a global consistency even if some messages are lost.
The lease mechanism is typical of many distributed systems
(e.g., Jini [14]) and requires that each sent message (infor-
mation) has an expiration date. When a message expires,
the information is not considered valid anymore, and it can
be deleted, unless a renew request is sent. These renews
ensure that all customers receive the information, even if they
enter the system after the first distribution. Moreover, since
messages are retransmitted more often than they expire, the
infrastructure can tolerate a certain amount of lost messages.
The delivery manager automatically performs this operation
and renews the information about published services.

The delivery manager can also help who wants to discover
new services. The party must specify the inferest, that is, the
query to be used to find the new services. DREAM allows
interests to analyze the content of facets and supports differ-
ent match-making solutions: XPath, R-XPath, and WSDL
based (see Sect. 4). The delivery manager uses the interests
created by the party to perform subscriptions on the commu-
nication bus. The dispatcher will then forward the delivery
manager all the messages whose content matches the inter-
ests. As soon as these messages are received, the delivery
manager converts them into the local format and inserts them
in the limbo zone of the local registry.

If one wanted to extend the set of matchmakers, the key
element is interface Interest which declaration follows:

interface Interest {

public boolean matches (Deliverable msg) ;

To introduce a new matchmaker, one must implement such
an interface by implementing method matches. This method
receives a Deliverable object as input that contains the refer-
ences to the facets that must be exploited to answer the query.
DREAM comes with three implementations of this interface
for the matchmakers that are discussed in the next section.

4 Match-making

As previously discussed, one of the main goals of DREAM is
to provide a flexible way for retrieving services by allowing
users to submit their requests in different ways. Since all ser-
vices are described through facets, the request (a.k.a interest)
can be expressed in three different ways. They differ in the
way the query is formulated and in the accuracy provided by
the similarity engine. One can:

— Use an XPath expression:
mmX (xpath, {f;”i D.
This is to state that one or more keywords have to exactly
match a given element in the service description. Since

SOCA (2016) 10:1-17

Similarity Engine

(//portType[@name="buy"] && (
/loperation[@name="getBook]),
fwfi

wsdl

(//portType[@name = "buy"] &&

[

/loperation[@name = ’getBook’]),

N
XPath Matchmaker
(mmx)
J
Returned
N .
R-XPath Matchmaker :> Service

descriptions list

<operation name="getBook">

. (mmR)
W N J
wsdl
I need a service with this WSDL
<definition> - ~
WSDL Matchmaker
<portType name="buy"> (mmw)

</operation>

</portType>
</definition>

Service
Description

Reference
ontologies

Fig. 5 Query types in DREAM

users could be unable to write XPath expressions, we
assume they may use directories of preselected XPaths,
or tools for translating keywords into them.

— Adopt a relaxed XPath (R-XPath):
mmR (xpath, {f;”i D.
It is similar to the previous XPath-based approach, but
it also allows for a relaxed match between the terms
included in the expression and the service description.
It means that the match is satisfied when the terms, even
if they are not equal, are however connected in a reference
ontology.

— Exploit any facet of the service description and compare
its terms:
mmW (facet, f}”;cet).
For example, given a WSDL description of the desired
Web service, the match-making would compare the
operations, messages, and parameters as defined in the
published WSDL facet.

Given this flexibility, DREAM can deal with different sce-
narios. For instance, one can assume that a user looks for a
service to buy books online (see Fig. 5). The user’s inter-
ests can be defined by an XPath expression stating that buy
is the name of the portType and getBook is the name of
the operation, and these two names must be included in the
service description.” Other users can be less restrictive on
names and also be interested in services that use similar terms
like, for instance, purchase and getPaperback. Expe-

> For the sake of simplicity, in the example, we use only the WSDL
facets, even if it is possible to apply the XPath and R-XPath match-
making to any XML-based document.

rienced users, like programmers, may also provide a WSDL
to specify the interface of the service they would like. This
situation is also similar to when a service already used by an
application becomes unavailable and it must be replaced: the
closer the new service interface is, the lesser the work needed
to adjust the client is.

4.1 XPath-based match-making

The first approach leverages the XPath language to inspect
facets and determine whether they contain valuable infor-
mation. The use of XPath fits perfectly the service model
proposed in Sect. 3.1, where facets are defined as XML doc-
uments.

Queries expressed by using the XPath-based match-
making require the XML schema of the facet they target and
the XPath expression that states the properties of interest. As
for XPath expressions that concern name matching, function
mmX (xpath, {f }”"}) returns true if the XPath expression
is satisfied. For example, if one considers the example in
Fig. 5 and assumes the availability of a WSDL facet (whose
namespace is wsdl), the query corresponds to the following
XPath expression:

xpath = / /wds] :portType [@name="buy”]
&& //wdsl:operation[@name="getBook”]

mmX (xpath, f;fjdl) returns true only if the portType
attribute is equal to buy and the name of the operation is
getBook. Note that along with the name matching evalua-

@ Springer

SOCA (2016) 10:1-17

tion, the user can exploit the full power of XPath to specify
more complex conditions.

4.2 R-XPath-based match-making

The second approach extends the previous one by allow-
ing for a more flexible comparison: a service is considered
to be relevant even if its description does not exactly cor-
respond to the terms specified in the query. To do this, we
evaluate the similarities between words by means of func-
tion wSim(wy, wp) — [0, 1], where wi and w; are the two
words to be compared, and the higher the result is, the more
similar the two words are.

Before discussing how wSim works, we introduce the
bipartite graph assignment problem since it provides the basis
for our similarity function. Given a graph G = (V, E), where
V is the set of vertexes and E the set of edges, M C E is
a matching on G iff no two edges in M share a common
vertex. If M covers all the nodes of the graph, G is bipartite.
This also means that each node of the graph has an incident
edge in M. Let us suppose that the set of vertices are parti-
tioned in two sets Q and P and that the edges of the graph are
weighted according to function f : (Q, P) — [0..1]. The
function maxSim : (f, Q, P) — [0..1] returns the maxi-
mum weighted assignment, that is, an assignment such that
the average of the weights of the edges is maximum. Figure 6
shows a graphical representation of the problem, where the
bold lines constitute the matching M.

If we expressed the assignment in bipartite graphs accord-
ing to a linear programming model, we would have:

JjeJ
maxSim(f, Q, P) = max Zf(qz-, Pj) - Xij
iel
dxij<1 Viel
jeJ
Sxij<1 Vjel
iel
I'=[1.10]], J=[l1.[P]] ey
The similarity between two words w1 and w; is computed
in three steps: tokenization, stemming, and distance evalu-
ation. Tokenization decomposes w; and w; in two bags of
terms: wi = {#1;} and wo = {t2;}. Itconsiders case changes,
underscores, hyphenations, and numbers. The terms result-
ing from the tokenization are also stemmed (second step).
Thus, words like sending or exchanged are transformed into
their stemmed version: send and exchange. The stemming
process is a well-known process adopted by several informa-
tion retrieval approaches [15].% The third step is about the

6 For the sake of simplicity, we use the terms ¢ for both the original
and stemmed versions.

@ Springer

Fig. 6 Graphical representation of the assignment in bipartite graphs
problem

computation of the similarity wSim, obtained by exploiting
the assignment problem in bipartite graphs:

maxSim(termSim, t1;,t;)
|21,

@

wSim(wy, wy) =

The inputs are the two sets of tokens {¢;} and {t2;} that
compose the two words to be compared, and function

termSim : (term’, term”) — [0..1]

that returns the similarity of two tokens. This way, wSim
returns the word similarity as the sum of the similarities
between the pairs of tokens that maximize such a sum. On
this basis, termSim holds a central role in the computation
of the similarity.

The literature proposes several approaches to state the sim-
ilarity and relatedness between terms [16]. These algorithms
usually compute such a similarity by relying on the relation-
ships among terms defined in a reference ontology (e.g., is-a,
part-of, attribute-of). Our approach computes the similarity
between terms by adopting the solution proposed by Seco et
al. [17]: they rely on the assumption that concepts with many
hyponyms’ convey less information than concepts that have
less hyponyms or any at all (i.e., they are leaves in the ontol-
ogy).

Note that wSim returns the maximum sum divided by the
number of terms composing w1 . Indeed, in the application of

7 A hyponym is a word that conveys a more specific meaning than
a general term applicable to it. For example, spoon is a hyponym of
cutlery.

SOCA (2016) 10:1-17

the assignment problem in bipartite graphs to our context, set
11 represents a query, whereas t, is what we compare against
the query to evaluate the similarity. |t{| < |t>| means that the
number of elements required in the query #; is lower than the
number of elements made available in #,: for each element
in t1, we may find a corresponding element in ;. In contrast,
[t1| > |t2] means that we are asking for more elements than
those that are actually available. As a consequence, we con-
sider that the situation in which |#1| < |#2] is in general better
than the case |t{| > |t2|. For this reason, we divide the result
of the maximization by the cardinality of |#1]. So, if |#1| < |#2]
then wSim : (t1,tp) — [0..1], whereas if || < |t{] then
wSim : (wy, wp) — [0..%]. This way function wSim is
asymmetric, that is, wSim (w1, wy) # wSim(w,, wy). If all
the tokens composing w have a correspondence with one
token in w», then the similarity will be higher than in the
case in which some “requested” token is not associated with
any token on the other side.

We assume the presence of both domain-specific and gen-
eral purpose ontologies. The former include terms related
to a given application domain and can be built by a domain
expert, for example, by analyzing the terms included in the
Web services published in the registry. The latter include all
the possible terms—and we adopt WordNet. We decided to
rely on both types of ontologies since the domain-specific
ontology offers more accuracy in the relationships between
terms, while the general purpose one offers wider coverage.
This happens because in a general purpose ontology a word
may have different meanings, and thus different sets of syn-
onyms (synsets) in different contexts. In contrast, we assume
that in a domain-specific ontology, each word has a unique
meaning with respect to the domain itself. For instance, cur-
rency has two synsets in WordNet. The first is about the
financial domain, that is, the system of money used in a coun-
try; the second is about the fact of being generally accepted.
This means that if we compared the terms currency and
money,® we could realize that they are strictly related only if
we consider the financial domain. On the other hand, if we
considered the other synset, the relationship would be looser.
Therefore, in case of general purpose ontologies, it is hard to
identify the correct domain to consider: our solution is to use
the average similarity evaluated over the different synsets.

According to the definition of wSim, the match-making
function for the relaxed XPath mmR(xpath, { f;”i D —
[true; false] is defined by starting from the previously
defined mm X, where the similarity operator = can be used
in the XPath expression. In this case (A = B = true) <
w(A, B) > th,. Having the = operator, the user can enrich
the XPath expression with relaxed name matching, that is, the
names included in the service descriptor not necessarily need
to be equal to the names specified in the query. We assume

8 See http://marimba.d.umn.edu/cgi-bin/similarity.cgi.

that the threshold th € [0..1] is defined by the DREAM
administrator after a training session as its value is critical
for the reliability of the match-making function. Indeed, if the
value is too low, the number of false positive might increase.
The number of false negatives increases if the threshold has
a too high value.

4.3 WSDL-based match-making

The third match-making algorithm considers only the WSDL
facets, and it is based on the functionality provided by Urbe
(UDDI Registry By Example) [6] that evaluates the simi-
larity between two WSDLs. Urbe proposes a match-making
algorithm aimed to identify similar (substitute) services by
analyzing the WSDL descriptions of the different services.
Retrieved Web services must expose an interface that is equal
to or richer than the required one. In particular, Urbe com-
putes the similarity degree of two WDSL descriptions by
computing the effort—in terms of changes to the code—
requested to a client to use the service(s) retrieved by the
system.

The algorithm computes the relationships between the
main elements of the WSDL descriptions, that is, of their
portTypes, messages, operations, and parameters. If avail-
able, semantic annotations associated with the candidate
service as a SAWSDL (Semantic Annotated WSDL [18])
facet can be used to improve the retrieval process.

Since semantic annotations are rare, DREAM usually
computes the similarity function wsSim : (wsy, wsz) —
[0, 1] between two WSDL service descriptions and returns
their similarity degree, where ws; represents the user query,
whereas wy represents a service included in the registry that
needs to be compared to the query. Also in this case, the
higher the returned value is, the better the similarity between
the services is. Function wsSim considers the number of
operations and parameters and the similarity between the
names used for portTypes, operations, and parameters.

wsSim(wsy, wsy)
=wPTNameSim - wSim(wsi.name, wsy.name)

+ (1 —wPTNameSim)
1

——————— - maxSim(opSim, wsy .{opk1}, ws2.{opr2}),
|wsy.{opk1}|

3

where:

opSim(wsy.opk1, WS2.0pk2)
= wOpNameSim - wSim(wsj.opi|.name, wWsy.opi2.name)
+ (1 —wOpNameSim)

1
05—
[[wsi.{op1-{ini1}}|

@ Springer

http://marimba.d.umn.edu/cgi-bin/similarity.cgi

10

SOCA (2016) 10:1-17

Fig. 7 Structure of the service similarity function wsSim

-maxSim(inParSim, wsy.opi1{in;}, wsa.opra{inn})
1
[wsa {opka-{outin2}}|
-maxSim(out ParSim, ws.opg>.{outyn}, wsy.opgi.{out,1})]

“

+0.5

and

inParSim(wsy.opk1.inj1, Ws2.0pk2.ing2)
= wSim(ws|.opk1.inj1.name, Ws2.0pr2.in2.name) 5)
out Par Sim(wsy.opg1.out;, wsy.0pg2.0utp2)

= wSim(ws|.opg].out;.name, wsy.opg.outpp.name) (6)

The hierarchical structure of a WSDL description impacts
the structure of ws Sim. More in detail, as reported in Fig. 7,
the similarity between two Web service descriptions com-
puted by wsSim depends on the similarity among their
portTypes, as they represents the ki, kp operations made
available by the services. This similarity at portType level is
computed by function op Sim. In turn, the similarity between
two portTypes depends on the similarity between the /1, />
input and m1, my output parameters that characterize each
operation, which is computed by using functions in Par Sim
and out Par Sim, respectively.

Equations 3—6 detail the structure of these four functions
where the same pattern is adopted. On the one side, the name
similarity wSim is used to compare the names of analyzed
elements (i.e., the service names for wsSim, the portType
names for opSim, and the parameter names for in ParSim
and out Par Sim). On the other side, as a service is composed
of several portTypes that, in turn, are composed of several
parameters, function maxSim is used to identify the best
matching between elements of the comparing services that
maximizes the similarity value. Finally, the result of max Sim
is divided by the number of elements included in the ser-
vice representing query ws (i.e., the number of portTypes
in ws; for wsSim, the number of parameters defining a port-
Type belonging to wsy for op Sim). This aspect introduces an
asymmetry in the similarity function that is justified by the
need for distinguishing between a query ws asking for more
elements than service ws; offers, and a query ws; asking for

@ Springer

wsSim G

I~

parSim

less elements than wsy offers. In the first case, the similar-
ity will be lower as the query is not fully satisfied, whereas
in the second case, even if the service can offer more than
requested, the query is satisfied.

To balance the importance of these two aspects—while
computing the overall similarity—weights w PT NameSim,
wOpNameSim are introduced. More specifically, wPT
NameSim € [0..1] defines the importance of the name of
the portTypes with respect to the similarity between the oper-
ations these portTypes offer. Similarly, at operation level,
parameter wOpNameSim € [0..1] weights the importance
between the similarity of operation names and the similarity
of related parameters.

The following properties hold for the similarity function
wsSim:

— wsSim(oj, 0;) = 1: a Web service is totally similar to
itself;

— in general, wsSim(o;,0;) # wsSim(o;, 0;): the sim-
ilarity depends on the Web service description used as
query.

Based on this algorithm, function mmW (wsdl, { f ;‘” D —
[true; false] returns true if wsSim(wsdl, f;”;dl) > thy.
Similarly to the case of the relaxed XPath, the threshold needs
to be set by the administrator after a training session. In addi-
tion to that, for this similarity function, the administrator is
also in charge of tuning the values of wPT NameSim and

wOpNameSim.

S Validation

The efficiency and effectiveness of DREAM have been
assessed through a set of experiments. In particular, we
started from a set of queries issued at different nodes and
a set of registries distributed over the network to evaluate
(i) the efficiency by measuring the response time to return
the result of the comparison, and (ii) the effectiveness by
measuring the precision and recall of such a result.

SOCA (2016) 10:1-17

XPATH query based on book_price_service.wsdl

operation@name = getPrice

AND

message/part@name= Book OR _Book
AND

message/part@name= Price OR _Price

R-XPATH query based on book_price_service.wsdl

operation@name = getPrice [relaxed=0.7]
AND

message/part@name= Book OR _Book [relaxed=0.7]
AND

message/part@name= Price OR _Price [relaxed=0.7]

WSDL query: book_price_service.wsdl

ws.name = BookPriceSoap
WS .0p; = {ws.op;.name = getPrice,

ws.opl.in:l ={ ws.opl.inl.name = _Book,
ws.opl.inl.type = tns:BookType},
ws.opj.out; = { ws.op;.out;.name = _Price,

WS.Op;.out,.type = tns: PriceType}

Fig. 8 Example of queries used for the assessment

The benchmark adopted for both tuning and evaluat-
ing the performance of the similarity algorithm has been
obtained from the SAWSDL [18] service retrieval test collec-
tion (SAWSDL-TC]).9 SAWSDL semantically enriches the
WSDL-based service definition by annotations that contain
concepts organized in a reference ontology: the benchmark of
WSDL services used for evaluating our approach is obtained
by ignoring these annotations. More in detail, the benchmark
consists of 894 Web services that cover different application
domains: communication, economy, education, food, med-
ical care, travel, and weaponry. The benchmark also includes
26 test queries, represented as SAWSDL documents; the list
is reported as “Appendix.”

To have a fair comparison among the three approaches,
that is, XPath, R-XPath, and WSDL, we started from the
queries suitable for the WSDL case and we derived those for
the other two cases. Figure 8 shows how given a WSDL-based
query (included in the benchmark), the related XPath expres-
sion requires that the names of portTypes and (input/output)
messages be the same as those of the initial query. Yet, the
R-XPath expression also indicates the similarity threshold
that must be reached to obtain a positive match.

9 http://projects.semwebcentral.org/projects/sawsdl-tc/.

5.1 Effectiveness

To analyze the effectiveness of DREAM [19], we used pre-
cision and recall as performance indicators. Each test query
is associated with a set of services that the proponents of the
benchmark have defined as relevant. This means that given
a query, the precision provides the ratio between the number
of relevant Web services among those returned by DREAM,
where the lower the precision is, the lower the number of
false positives is. On the other side, the recall indicates the
ratio between the number of relevant Web services returned
by DREAM among those defined relevant. In this case, the
higher the recall is, the lower the number of false negatives is.
The total precision and recall have been computed as the aver-
age of the precision and recall of each of the 26 test queries.
Note that precision and recall also indicate how DREAM can
be beneficial to the user. Indeed, high precision indicates that
all the returned services are likely what the user is expecting
for. High recall indicates that DREAM returns a significant
amount of services that are potentially interesting for the user.

As expected, Fig. 919 shows that the wsSim similarity
algorithm provides the best trend, while the XPath-based sim-
ilarity has a questionable behavior. Indeed, wsSim deeply
analyses all the elements of the WSDL description since the
queries are richer than the XPath-based ones. Note that in
this last case, a service is considered to be relevant only if
the names match exactly.

Although the ws Sim algorithm provides the best precision—
recall among the three, in the literature [20] there are other
match-making algorithms that might perform better and, due
to the flexibility of DREAM, they can be included in the
architecture. Note that the precision and recall obtained by
DREAM come from a system that integrates different mod-
els for describing a service and that supports different types
of query mechanisms. For this reason, even if in the literature
there are better approaches, they are specifically studied to
support a particular service description model (e.g., WSDL,
SAWSDL, or tag based only). As a consequence, one should
consider how to improve the precision and recall without
affecting the flexibility of describing services and querying
a registry using the languages one prefers.

5.2 Efficiency

To measure the efficiency of the three match-making meth-
ods, we created a “simple,” distributed environment com-
posed of three nodes. Each node used a 550 Mhz Intel Xeon
E 5530 processor and 1.5 Gbyte of memory, running Linux.
We used the server profile of the Oracle Java virtual machine,
and the heap was limited to 1 Gbyte. The first node acted

10 precision and recall are calculated by using the SME2 Evaluation
tool (projects.semwebcentral.org/projects/sme2/).

@ Springer

http://projects.semwebcentral.org/projects/sawsdl-tc/
http://projects.semwebcentral.org/projects/sme2/

12

SOCA (2016) 10:1-17

Fig. 9 Precision—Recall chart 100 T T
for XPath-, R-XPath-, and
WSDL-based match-making 90|
80\
70k

60 =P

% Precision
[42]
o
T
»

40

30} \

10

T T T T T T T

wSim 4
— — — R-XPath
— — XPath

as service provider and periodically published all the ser-
vices in our benchmark. The second node acted as service
consumer: it used the queries defined in our benchmark as
subscriptions. The third node acted as broker and connected
the service provider and service consumer. The scalability of
DREAM mainly depends on the ability of brokers to route
service descriptions to interested nodes. For this reason, we
focused on the third node and measured the match-making
time.

In particular, we run each match-making algorithm ten
times, and we consider the average response time. Each run
consisted of publishing all the 894 services of our test bed
on the first node at the fastest possible rate. Before starting
the next experiment, we waited until the last node received
the last service published, so to be sure that any random
fluctuation of an experiment does not interfere also with the
following experiments. Each service was described by a sin-
gle WSDL facet, which matches at least one of the queries
performed on the second node.

Figure 10 summarizes measured performance. XPath is
the fastest match-making method, and it requires on aver-
age 5.55 ms. R-XPath is slightly slower, having an average
match-making time of 6.90 ms. The method based on WSDL
is much slower, requiring an average of 25.91 ms to perform
a comparison.

This preliminary analysis shows that both XPath- and
R-XPath-based match-making mechanisms allow one to cre-
ate a scalable dispatching network. Its brokers are able to
process 10,810 and 8696 service descriptions per minute,
respectively. Note that the whole UDDI Business Registry
contained around 50,000 service descriptions before being
shut down. Instead, the WSDL-based match-making mech-
anism only processes 2316 service descriptions per minute
and thus poses serious scalability issues.

@ Springer

30 40 50 60 70 80 90 100
% Recall

|

40
|

time(ms)

XPath R-XPath
Matchmaking method

Fig. 10 Performance indicators

For this reason, we enhanced DREAM by introducing
caching mechanisms to speed up the match-making process.
The caching mechanism allowed us to store the similarity val-
ues computed in the past, and the comparison of two terms,
which have been already compared, only requires an access
to the cache. At this stage the MRU (Most Recently Used)
policy is adopted for caching: i.e., descriptions that are used
more are kept longer. Other kind of policies will be imple-
mented in future versions. Based on this, we validated the
effects of the caching mechanism by considering two diverse
scenarios: a dynamic environment and a static one.

The dynamic environment is characterized by a high ratio
of new services and new queries. In this situation, the caching
mechanism has limited ability to improve its performance.

SOCA (2016) 10:1-17

o
™

25

20
I

time(ms)

'
—_

T T T
XPath R-XPath WSDL

Matchmaking method

Fig. 11 Performance with caching in the dynamic environment

To simulate this scenario, we subscribed to a query per time,
we sent all the services in the benchmark, and we reset the
cache before considering the next subscription. Results are
reported in Fig. 11: the performance of XPath and R-XPath
has a slight improvement and, respectively, requires 5.08 and
6.60 ms on average to perform a comparison. Interestingly,
the method based on WSDL only requires 11.15 ms (56.97 %
faster than the version without cache).

In the static environment, service providers publish the
same services, and consumers perform the same queries alto-
gether. This is the best-case scenario for caching: After a
short initial period in which the system processes the ser-
vices and the queries for the first time, all the requests can
leverage the cache. To measure the performance, we sub-
scribed to all the queries and sent all the services twice. The
first time served to fill the cache, and we did not measure the
matching time. Instead, we measured the performance when
the services were sent for the second time. Figure 12 reports
the results: the XPath-, R-XPath-, and WSDL-based meth-
ods require 2.74, 3.73, and 3.31 ms for each comparison,
respectively. These figures are in line with the requirement
of a scalable distributed dispatching network, since brokers
can process 21,897, 16,085, and 18,126 service descriptions
per minute, respectively.

Interestingly, the architecture of DREAM leverages a
lease mechanism and requires that services are periodically
sent through the dispatching network. For this reason, we
expect that the real usage scenario is always close to the
“static environment” and that the average throughput is thus
appropriate. Our experiments showed that DREAM can be
used as underlying infrastructure for a scalable dispatching
network.

time(ms)

T
R-XPath
Matchmaking method

Fig. 12 Performance with caching in the static environment

6 Related work

Over the last years, the service community has proposed sev-
eral approaches for publishing and retrieving Web services.
Given the goals of DREAM, we only address two wide
classes of approaches: those that concentrate on the archi-
tecture of service registries and those that deal with service
match-making.

6.1 Registry architectures

The need for a management of service registries in a fed-
erated fashion has been recently considered in [21]. In this
case, the authors based their approach on the existence of
communities that have similar preferences in term of service
functionalities. According to those preferences, the services
can be organized in different registries where similar services
belong to the same registry. According to this scenario, our
approach is complementary to what it is proposed in the arti-
cle as it can be helpful to support the discovery of the services
published in the already created registries with the possibility
to specify more than one type of query.

Focusing on the technology, current solutions support the
cooperation among registries, but they imply that all reg-
istries are of a single type and the cooperation needs a setup
phase to manually define the information contributed by each
registry. For example, UDDI v.3 [9] extends the replication
and distribution mechanisms offered by the previous versions
to support complex and hierarchical topologies of registries.
It also supports the identification of services by means of a
unique key over different registries. The standard only says
that different registries can interoperate, but the actual inter-

@ Springer

14

SOCA (2016) 10:1-17

action policies must be defined by the developers. In our
approach, the role of the registries and the way they cooper-
ate are clearly defined.

Similarly, ebXML [4] is a family of standards based on
XML to provide an infrastructure to ease the online exchange
of commercial information. ebXML fosters the cooperation
through the idea that groups of registries share the same com-
mercial interests or are located in the same domain. One of
such groups can then be seen as a single logical entity where
all the elements are replicated on the different registries.
Service retrieval with ebXML registries results ineffective
since users must browse predefined taxonomies or submit
keywords to find desired services.

METEOR-S [10] and PYRAMID-S [11] fall in the fam-
ily of semantic-aware approaches for the creation of scalable
peer-to-peer infrastructures for the publication and discov-
ery of services. These works create a federation of registries
using different concrete nodes, where the single node is sim-
ply a gateway to the logical, global registry. The usage of
a semantic infrastructure allows for the implementation of
different algorithms for the publication and discovery of
services, but it also forbids the complete control over the reg-
istries, as the semantic layer imposes too heavy constraints
on publication policies and also on the way federations can
evolve dynamically.

These approaches adopt ontology-based meta-information
to allow a set of registries to be federated with each registry
“specialized” according to one or more categories it is asso-
ciated with. This means that the publication of a new service
requires the meta-information needed to categorize the ser-
vice within the ontology. Services are discovered by means of
semantic templates that give an abstract characterization of
the service and are used to query the ontology and identify the
registries that contain significant information. In addition to
these approaches, [22] adopts semantic-based techniques for
implementing an infrastructure able to manage a distributed
registry. In the proposed architecture, communication among
the actors relies on shared spaces, to provide a flexible and
scalable solution.

VISR (View-based Integration of heterogeneous web
Service Registries) [23] allows the communication among
registries by means of ATOM feeds. Service providers pub-
lish information and updates regarding their services by
means of ATOM feeds. Customers can subscribe to these
feeds and get new service descriptions as soon as they are
available. Simple match-making algorithms are provided,
allowing customers to select services by considering pro-
vided operations and parameters or XPath expressions.

Besides the “classical” approaches, Sellami et al. [24]
leverage information on the customer (e.g., interests, pre-
vious invocation history) to enrich service descriptions. This
allows them to reduce the query space. When a query is per-
formed, the approach selects the registry that is closest to the

@ Springer

customer’s preferences: the query is then processed by this
system. At a more general level, [25] discusses the idea of
an open repository environment and addresses some of the
key features of DREAM.

6.2 Service match-making

The approach proposed in this paper is a mix of syntacti-
cal and semantic match-making algorithms that provides the
users a great flexibility in their querying. The different pos-
sible queries that can be adopted are well summarized by
Klein and Bernstein [26] that identify four main retrieval
approaches: keyword based, concept based, table based,
and deductive. The match-making algorithm implemented
in DREAM is both table based (because of the use of name—
attribute pairs in the facets) and concept based (because of
the use of semantics).

In the area of table-based solutions, also other approaches
in the literature rely on the syntax of the Web service descrip-
tion and compare the signature of the requested service
against the signatures of existing ones. This type of approach
is closely related to the work on retrieving reusable compo-
nents [27]. In this field, as stated by Zaremski and Wing, there
are two types of methods to address this problem: signature
matching [28] and specification matching [29]. In particu-
lar, signature matching considers two levels of similarity and
introduces the exact and relaxed signature matching. In our
work, signature matching represents the core of the solution.
In addition, our similarity algorithm also quantifies how sim-
ilar a Web service is with respect to another one, instead of
simply dividing retrieved Web services in exact matching and
relaxed matching ones. Furthermore, as in the case of [30,31],
and [32], our approach takes into account the structure of the
service description for the match-making process. However,
our approach considers the role of each description element
with respect to the resulting compatibility between service
descriptions. [33] adopts the same approach where the sim-
ilarity of WSDL descriptions also considers the composite
elements as a whole and not separately.

A further class of similarity algorithms [34-39] retrieves
Web services through a reasoning process on a semantic
specification; [40] complements it with a structural analy-
sis. Description Logic is the usual formalization adopted and
results in languages such as OWL-S [41] and WSMO [42].
Even if these approaches are more effective than the ones
based on WSDL, building a logic-based Web service descrip-
tion requires more effort for developers. A recent survey
of semantic-based retrieval algorithms is published in [43].
This paper is also interesting for the discussion on the open
issues in this field. In particular, the authors claim the need
for match-making mechanisms that cope with “geographi-
cally dispersed and non-interrelated service registries.” With
DREAM we aim to deal with this situation by providing a

SOCA (2016) 10:1-17

15

flexible retrieval approach that does not stick on a single Web
service description language and does not impose a specific
structure or centralized management.

Our work focuses also on the structure of the Web service,
for substitution purposes. In the above-mentioned algo-
rithms, the result of the retrieval activity is a set of Web
services that achieve the same goal. Nothing can be said
about how the goal is achieved. In addition, these approaches
are usually able to group Web services in similarity classes,
i.e., exact match, partial match, and relaxed match. In con-
trast, our approach offers a finer grained Web service ranking
based on a similarity value. The Semantic Web community
also adopts SPARQL [44] (Simple Protocol and RDF Query
Language), a query language for RDF (Resource Descrip-
tion Framework) documents [45], as a way to express the
characteristics of the required Web service [46]. According
to a query-by-example approach, our work imposes that the
requested Web service is defined by using the same language
adopted to describe published Web services, that is, WSDL
or SAWSDL.

7 Conclusions

This article introduces DREAM: an innovative infrastructure
for the distributed publication of Web services and for their
easy retrieval. The proposal, based on previous experiences
of the authors, provides a holistic solution for governing the
replication of service information by means of user requests
and preferences. It provides users with partial, but accept-
able, solutions whose fitness is defined through different
match-making techniques. The experiments conducted and
discussed in this paper demonstrate the capabilities of the
proposed solutions in terms of precision and recall. They also
assess the impact the complexity of queries has on response
time.

The flexibility of both service publication and retrieval
makes DREAM suitable for situations with different reg-
istries distributed over a network and with a high number
of services. The use of facets fosters the interoperability of
heterogeneous service registries. The publish/subscribe mid-
dleware allows DREAM to continuously inform the parties
about new interesting services. The different types of queries
provide results with different quality attributes and thus per-
mit different uses of the infrastructure.

The current implementation of DREAM integrates ser-
vices described using WSDL.. As the nature of the services is
actually more diversified, we plan to implement the required
modules to have facets for OWL-S- or REST-based service
descriptions and to test how these kinds of service description
models affect the precision and recall.

In addition, future extensions of DREAM will also pro-
vide mechanisms to better manage the non-functional aspects

of services. Since in the current implementation, most of the
work has been focused on describing the operational aspects,
service requestors are also interested in performance and
security aspects. Suitable mechanisms for considering these
aspects and for validating the feasibility of the solution are
then required.

Finally, even if the research on technologies related to
service registries has been abandoned over the last years,
we think DREAM can provide a significant contribution to
enabling scenarios where different technologies coexist and
“relevant” service information is distributed (to interested
users) in a smart and efficient way. This is one of the key
enables of the forthcoming Internet of Services/Things [47],
where information about multitudes of heterogenous services
must be communicated to possible users properly and timely.

Appendix: Validation queries

These are the queries in benchmark SAWSDL-TC1 that have
been used to validate the approach presented in this paper. As
discussed in Sect. 5, since these queries are meaningful for
the WSDL similarity algorithm, to ensure a fair comparison,
queries for XPath and R-XPath have been adapted from them.

- hospital_investigating_service

- shoppingmall_cameraprice_service

- surfing_destination_service

- surfinghiking destination_service

- surfingorganization_destination_service

- title_comedyfilm_service

- title_videomedia_service

- university_lecturer-in-academia_service

- userscience-fiction-novel_price_service

- novel_author_service

- preparedfood_price_service

- recommendedprice_coffeewhiskey service

- researcher-in-academia_address_service

- country_skilledoccupation_service

- dvdplayermp3player_price_service

- geographical-regiongeographical-region_map_service
- geopolitical-entity weatherprocess_service
- governmentdegree_scholarship_service

- governmentmissile_funding_service

- grocerystore_food_service

- maxprice_cola_service

- book_price_service

- bookpersoncreditcardaccount__service

- bookpersoncreditcardaccount_price_service
- car_price_service

- citycountry_hotel_service

To ensure an independent evaluation of our approach, we
used the queries adopted by the creators of the benchmark.
For each query, they also define the relevance sets, useful for
computing precision and recall.

@ Springer

16

SOCA (2016) 10:1-17

References

10.

11.

12.

13.

14.
15.

16.

17.

20.

21.

Papazoglou MP, Georgakopolous G (2003) Service oriented com-
puting: introduction. Commun ACM 46(10):1-5

The UDDI Web site, http://uddi.xml.org

Clark M (2001) http://www.webservicesarchitect.com/content/
articles/clark04.asp

ebXML: Electronic business using eXtensible markup language,
http://www.ebxml.org/

Baresi L, Miraz M (2006) A distributed approach for the federa-
tion of heterogeneous registries. In: Dan A, Lamersdorf W (eds.)
Service-oriented computing - ICSOC 2006, vol 4294 of Lecture
Notes in Computer Science, Springer Berlin/Heidelberg, pp 240-
251, doi:10.1007/11948148_20

Plebani P, Pernici B (2009) URBE: Web service retrieval based on
similarity evaluation. IEEE Trans Knowl Data Eng 21(11):1629—
1642. doi:10.1109/TKDE.2009.35

Sawyer P (2006) Specification language definition. Technical
Report, A1.D2.3, EC SeCSE Project

Baresi L, Miraz M, Plebani P (2008) A flexible and semantic-aware
publication infrastructure for web services. In: Advanced informa-
tion systems engineering, 20th International Conference, CAiSE
2008, Montpellier, France, June 16-20, 2008, Proceedings, vol
5074 of Lecture Notes in Computer Science, pp 435-449. doi:10.
1007/978-3-540-69534-9_33

Clement L, Hately A, von Riegen C TR (eds.) (2004) Universal
description, discovery and integration version 3.0.2. http://uddi.
org/pubs/uddi_v3.htm

Verma K, Sivashanmugam K, Sheth A, Patil A, Oundhakar S,
Miller J (2005) METEOR-S WSDI: a scalable p2p infrastructure of
registries for semantic publication and discovery of web services.
Inf Technol Manag 6:17-39

Pilioura T, Kapos G, Tsalgatidou A (2004) PYRAMID-S: A
scalable infrastructure for semantic web services publication and
discovery, In: RIDE-DGS 2004 14th Int’l Workshop on Research
Issues on Data Engineering, In: conjunction with the IEEE Conf.
on Data Engineering (ICDE 2004), (March 2004)

Cugola G, Picco GP (2006) REDS: a reconfigurable dispatching
system. In: SEM, pp 9-16

Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and evalua-
tion of a wide-area event notification service. ACM Trans Comput
Syst 19(3):332-383

Jini. http://www.jini.org/

Lennon M, Pierce D, Tarry B, Willett P (1988) An evaluation
of some conflation algorithms for information retrieval. J Inf Sci
8(3):99-105

Pedersen T, Patwardhan S, Michelizzi J (2004)
WordNet::Similarity—measuring the relatedness of concepts. In:
Proceedings of National Conference on Artificial Intelligence,
July 25-29, San Jose, CA, USA, pp 1024-1025

Seco N, Veale T, Hayes J (2004) An intrinsic information con-
tent metric for semantic similarity in Wordnet. In: Proceedings of
European Conference on Artificial Intelligence (ECAI’04), Valen-
cia, Spain, August 22-27, 1OS Press, pp 1089-1090

. Farrel J, Lausen H (2007) Semantic annotations for WSDL and

XML schema. http://www.w3.org/TR/sawsdl/

Baeza-Yates R, Ribeiro-Neto B (1999) Modern information
retrieval. ACM Press/Addison-Wesley, New York

Klusch M et al (2013) Performance evaluation of semantic ser-
vice matchmakers. In: 5th International semantic service selection
contest

Sellami M, Bouchaala O, Gaaloul W, Tata S (2013) Communities
of web service registries: construction and management. J Syst
Softw 86(3):835-853. doi:10.1016/j.jss.2012.11.019. http://www.
sciencedirect.com/science/article/pii/S0164121212003123

@ Springer

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Sapkota B, Roman D, Kruk SR, Fensel D (2006) Distributed web
service discovery architecture. In: Proceedings of AICT-ICIW ’°06.
International Conference on Internet and Web Applications and
Services/Advanced International Conference on Telecommunica-
tions, pp.36-136. doi:10.1109/AICT-ICIW.2006.85

Dustdar S, Treiber M (2006) View based integration of heteroge-
neous web service registries—the case of VISR. World Wide Web
9(4):457-483

Sellami M, Gaaloul W, Tata S (2010) Functionality-driven cluster-
ing of web service registries. In: IEEE SCC, pp 631-634. doi:10.
1109/SCC.2010.70

Aschenbrenner A, Blanke T, Kiister MW, Pempe W (2010) Towards
an open repository environment. J Digit Inf 11(1)

Bernstein A, Klein M (2002) Towards high-precision service
retrieval. In: Proceedings of International Semantic Web Confer-
ence, ISWC’02

Damiani E, Fugini MG, Bellettini C (1999) A hierarchy-aware
approach to faceted classification of objected-oriented compo-
nents. ACM Trans Softw Eng Methodol 8(3):215-262. doi:10.
1145/310663.310665

Zaremski A, Wing J (1995) Signature matching: a tool for using
software libraries. ACM Trans Softw Eng Methodol 4(2):146-170.
doi:10.1145/210134.210179

Zaremski A, Wing J (1997) Specification matching of software
components. ACM Trans Softw Eng Methodol 6(4):333-369.
doi:10.1145/261640.261641

Zisman A, Spanoudakis G, Dooley J (2008) A framework for
dynamic service discovery. In: 23rd IEEE/ACM International
Conference on Automated Software Engineering, LAquila, pp
158-167. doi:10.1109/ASE.2008.26

Stroulia E, Wang Y (2005) Structural and semantic matching for
assessing Web-service similarity. Int J Coop Inf Syst 14(4):407-
438. doi:10.1142/50218843005001213

Sellami S, Boucelma O (2011) Web services discovery and com-
position: a schema matching approach. In: Web Services (ICWS),
2011 IEEE International Conference on, pp 706 —-707. doi:10.1109/
ICWS.2011.105

LiuF, ShiY, YuJ, Wang T, WuJ (2010) Measuring similarity of web
services based on wsdl. In: Web Services (ICWS), 2010 IEEE Inter-
national Conference on, pp 155 -162. doi:10.1109/ICWS.2010.67
Agarwal S, Studer R (2006) Automatic matchmaking of web ser-
vices. In: International Conference on Web Services (ICWS’06),
pp 45-54. doi:10.1109/ICWS.2006.35

Bianchini D, De Antonellis V, Melchiori M (2006) Hybrid
ontology-based matchmaking for service discovery. In: Proceed-
ings of the ACM symposium on Applied computing (SAC’06),
ACM Press, Dijon, France, pp 1707-1708. doi:10.1145/1141277.
1141681

Benatallah B, Hacid M, Leger A, Rey C, Toumani F (2005) On
automating Web services discovery. VLDB J 14(1):84-96. doi: 10.
1007/s00778-003-0117-x

Klusch M, Fries B, Sycara K (2006) Automated semantic web
service discovery with OWLS-MX. In: Proceedings of Interna-
tional Conference on Autonomous agents and multiagent systems
(AAMAS’06), ACM Press, New York, NY, USA, pp 915-922.
doi:10.1145/1160633.1160796

Sycara K, Widoff S, Klusch M, Lu J (2002) Larks: dynamic match-
making among heterogeneous software agents in cyberspace. In:
Autonomous agents and multi-agent systems, vol 5, Kluwer Aca-
demic Publishers, Hingham, MA, USA, pp 173-203. doi: 10.1023/
A:1014897210525

Paolucci M, Kawamura T, Payne T, Sycara K (2002) Seman-
tic matching of Web services capabilities, In: Proceedings of
International Semantic Web Conference on The Semantic Web
(ISWC’02), Springer, London, UK, pp 333-347

http://uddi.xml.org
http://www.webservicesarchitect.com/content/articles/clark04.asp
http://www.webservicesarchitect.com/content/articles/clark04.asp
http://www.ebxml.org/
http://dx.doi.org/10.1007/11948148_20
http://dx.doi.org/10.1109/TKDE.2009.35
http://dx.doi.org/10.1007/978-3-540-69534-9_33
http://dx.doi.org/10.1007/978-3-540-69534-9_33
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.jini.org/
http://www.w3.org/TR/sawsdl/
http://dx.doi.org/10.1016/j.jss.2012.11.019
http://www.sciencedirect.com/science/article/pii/S0164121212003123
http://www.sciencedirect.com/science/article/pii/S0164121212003123
http://dx.doi.org/10.1109/AICT-ICIW.2006.85
http://dx.doi.org/10.1109/SCC.2010.70
http://dx.doi.org/10.1109/SCC.2010.70
http://dx.doi.org/10.1145/310663.310665
http://dx.doi.org/10.1145/310663.310665
http://dx.doi.org/10.1145/210134.210179
http://dx.doi.org/10.1145/261640.261641
http://dx.doi.org/10.1109/ASE.2008.26
http://dx.doi.org/10.1142/S0218843005001213
http://dx.doi.org/10.1109/ICWS.2011.105
http://dx.doi.org/10.1109/ICWS.2011.105
http://dx.doi.org/10.1109/ICWS.2010.67
http://dx.doi.org/10.1109/ICWS.2006.35
http://dx.doi.org/10.1145/1141277.1141681
http://dx.doi.org/10.1145/1141277.1141681
http://dx.doi.org/10.1007/s00778-003-0117-x
http://dx.doi.org/10.1007/s00778-003-0117-x
http://dx.doi.org/10.1145/1160633.1160796
http://dx.doi.org/10.1023/A:1014897210525
http://dx.doi.org/10.1023/A:1014897210525

SOCA (2016) 10:1-17

17

40.

41.

42.

43.

Amorim R, Claro D, Lopes D, Albers P, Andrade A (2011) Improv-
ing web service discovery by a functional and structural approach.
In: Web Services (ICWS), 2011 IEEE International Conference on,
pp 411 —418. doi:10.1109/ICWS.2011.14

Martin D (ed.) (2004) OWL-S: semantic markup for web ser-
vices. W3C Submission. http://www.w3.org/Submission/2004/
SUBM-OWL-S-20041122/

WSMO Working Group. Web service modeling ontology. http://
WWW.WSMO.0rg

Dong H, Hussain FK, Chang E (2013) Semantic web service match-
makers: state of the art and challenges. Concurr Comput Pract Exp
25(7):961-988. doi:10.1002/cpe.2886

44.

45.

46.

47.

Prud’hommeaux E, Seaborne A (2007) SPARQL query language
for RDF. http://www.w3.org/TR/rdf-sparql-query/ (W3C Candi-
date Recommendation)

Beckett D (ed.) (2004) RDF/XML Syntax Specification
(Revised). W3C Recommendation. http://www.w3.org/TR/
rdf-syntax-grammar/

Lamparter S, Ankolekar A (2007) Automated selection of config-
urable Web services. In: 8. International Tagung Wirtschaftsinfor-
matik, Universittsverlag Karlsruhe, Germany

Uckelmann D, Harrison M, Michahelles F (eds) (2011) Architect-
ing the internet of things. Springer, Berlin

@ Springer

http://dx.doi.org/10.1109/ICWS.2011.14
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.wsmo.org
http://www.wsmo.org
http://dx.doi.org/10.1002/cpe.2886
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

	A distributed architecture for efficient Web service discovery
	Abstract
	1 Introduction
	2 Motivations
	3 DREAM architecture
	3.1 Service description model
	3.2 Communication infrastructure

	4 Match-making
	4.1 XPath-based match-making
	4.2 R-XPath-based match-making
	4.3 WSDL-based match-making

	5 Validation
	5.1 Effectiveness
	5.2 Efficiency

	6 Related work
	6.1 Registry architectures
	6.2 Service match-making

	7 Conclusions
	Appendix: Validation queries
	References

