
SOCA (2015) 9:249–268
DOI 10.1007/s11761-014-0171-9

SPECIAL ISSUE PAPER

Self-adaptive multiparty sessions

Mario Coppo · Mariangiola Dezani-Ciancaglini ·
Betti Venneri

Received: 13 March 2014 / Revised: 24 October 2014 / Accepted: 29 October 2014 / Published online: 6 December 2014
© Springer-Verlag London 2014

Abstract Tomodel the notion of self-adaptiveness formul-
tiparty sessions, we propose a formal framework, where par-
ticipants can access and modify the global state, in such a
way that the whole system can react promptly to unfore-
seen events by reconfiguring itself. The adaptation strategy is
triggered by the overall communication choreography, repre-
sented by a global type. When the global type is dynamically
updated, its projections define new monitors, which set-up
novel communication protocols for the participants. The key
result of this paper is that self-adaptations are performed in
a type-safe way, while providing a high degree of flexibility.
Subject Reduction and Progress properties are proven: any
session executes all required communications in a type-safe
way and never gets stuck.

Keywords Communication centred programming ·
Self-adaptative systems · Session types

1 Introduction

The topic of self-adaptiveness emerged as a key research
subject within various application domains, as a response
to the growing complexity of software systems operating

M. Coppo · M. Dezani-Ciancaglini (B)
Dipartimento di Informatica, Università di Torino, Corso Svizzera
185, 10149 Turin, Italy
e-mail: dezani@di.unito.it

M. Coppo
e-mail: coppo@di.unito.it

B. Venneri
Dipartimento di Statistica, Informatica, Applicazioni, Università di
Firenze Viale Morgagni 65, 50134 Florence, Italy
e-mail: betti.venneri@unifi.it

in many different scenarios and in highly dynamic envi-
ronments. To manage this complexity at a reasonable cost,
novel approaches are needed in which a system can promptly
react to crucial changes by reconfiguring its behaviour
autonomously and dynamically, in accordance with evolv-
ing policies and objectives.

As for a precise definition of self-adaptivity, this is still a
debated question, due to the wide spectrum of the involved
features. In our opinion, a simple, but rather deep, character-
isation is the one presented in [7]: we define adaptation as
the run-time modification of the control data …and a com-
ponent is self-adaptive if it is able to modify its own control
data at run-time. We follow [7] in claiming that we need to
distinguish between standard data and control data: a change
in the system behaviour is part of the application logic if it
is based on standard data, it is an adaptation if it is based on
control data.

This paper injects the above notion of self-adaptivity into
the formal framework ofmultiparty sessions [28],where each
participant can access and modify the global state represent-
ing those (control) data whose values are critical for planning
the adaptation steps, in such a way that the whole system can
react to changes in the global data by reconfiguring itself. A
system comprises four active parties: global types,monitors,
processes and adaptation functions.

Aglobal type represents the overall communication chore-
ography [9]; its projections onto participants generate the
monitors, which are essentially local types and set-up the
communication protocols of the participants. The associa-
tion of amonitorwith a compliant process, dubbedmonitored
process, incarnates a participant where the process provides
the implementation of the monitoring protocol. Notably, we
exploit intersection types, union types and subtyping tomake
this compliance relation flexible. Processes are able to follow
different incompatible computational paths. For instance, a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-014-0171-9&domain=pdf

250 SOCA (2015) 9:249–268

process could contain both the code needed to buy a book
and the one needed to arrange a friend meeting, the choice
between the two being determined by themonitor controlling
it.

The adaptation strategy is defined by global types and
adaptation functions. The choreography decides when the
adaptation takes place, since its monitors prescribe when
some participants have to check global data, and then send a
request of adaptation to the other participants together with
an adaptation function. The adaptation functions contain the
dynamic evolution policy, since they prescribe how the sys-
tem needs to reconfigure itself based on the changes of the
critical data.

When an adaptation flag is thrown, new monitors are gen-
erated, according to a new choreography: indeed, the com-
munity involved in the session modifies both its set of partic-
ipants and the internal communication patterns. Therefore,
dynamic adaptations are essentially triggered by control data
and monitors.

Most of the approaches to self-adaptive systems in the lit-
erature do not face the main challenge of including formal
tools to ensure correctness of dynamic adaptations. Some
approaches address this issue by providing verification tech-
niques for testing properties of the performed adaptation (e.g.
model checking in [25] and web services testbed in [36]).
Differently, the focus of the present paper is on the for-
mal properties of the proposed framework, which ensure that
adaptation steps are performed in a correct way, being con-
trolled by global types, monitors and process types. The key
results are the proofs of Subject Reduction and Progress the-
orems: in any session, all outputs will eventually be con-
sumed and all processes waiting for an input will eventually
receive it.

Typical scenarios that can benefit from our self-adaptation
framework are those characterised by the following
features:

• a community, established for a common task or mission,
has many distributed entities which interact with each
other according to a given operational plan,

• the complex dynamic environment can present crucial
events which require the community to modify its plan
dynamically,

• those critical events are observed in any separate compo-
nent of the system: this component can be checked by the
session participants, so that the whole system can react
promptly by updating itself,

• the dynamic changes need to be rather flexible: in each
new phase, other participants can be introduced or some
of the old participants are no longer involved (temporarily
or permanently),

• these dynamic changes need to be safe: interactions must
proceed correctly to pursue the common task.

1.1 Example

As an example of such a scenario, let us consider a company
which has various productive units and sale organisations
scattered around the world. Each factory has a number of
machines and produces several products for nearby markets
or for export. The state of the plants is checked periodically.
Communications among factories and sellers exchange sev-
eral data about products and prices, according to a given com-
bination factory-seller for each product. The company chief
supervises thewhole organisation. In particular, she equipped
the company with an adaptation policy, which gives poten-
tial alternative plans for moving productions and/or sales of
a product to different entities. All the interactions among
these participants run under the control of the monitors that
are originated from a global type. Finally, a global state con-
tains crucial data, for instance, the performance of machiner-
ies, plants and sale organisations. Unforeseen circumstances,
such as the catastrophic event of a fire incapacitating an entire
plant, can require the company organisation to update itself:
new production and sale plans have to be adopted tomaintain
uninterrupted supply to customers.
We simplify the above scenario in the case of a Company
which has two factories, iF (Italian factory) and aF (Ameri-
can factory), and two sellers, iS (Italian seller) andaS (Amer-
ican seller). In order to give a preliminary intuition of our
system, we use a simplified and incomplete syntax (w.r.t. the
formal presentation of next section). In Sect. 5, wewill enrich
and formalise this example.

To show how self-adaptation works, we consider the case
when a fire incapacitates a factory. The global state contains
eitherOK orKO for each of the two plants.When both plants
areOK the interaction takes place according to the following
global type:

G1 =

⎧
⎪⎨

⎪⎩

iS → iF:(String, Int).
aS → aF:(String, Int).
Ada → {iS, iF,aS,aF}:check

Each seller requires to the corresponding factory a certain
amount (of type Int) of an item (of type String), then the
chief Ada sends a checking flag to all, as an alert for a pos-
sible adaptation. When the Italian factory is OK, while the
American factory is KO, the global type is:

G2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ada → Bob:String.
iS → iF:(String, Int).
aS → iF:(String, Int).
Ada → {iS, iF,aS,Bob}:check

where Ada sends to Bob a contract (type String) for rebuild-
ing the plant and both sellers send their requests to the Italian
factory. In the symmetric case, the global typeG3 prescribes

123

SOCA (2015) 9:249–268 251

Table 1 Processes for the Company example

Seller = μX.y!(item, amount).y?check.X + y?bye

Factory = μX.y?(x, w).if . . . then y?check.X + y?(x, w).y?check.X

else write KO.(y?check + y?(x, w).y?check)

Ada = μX.y!check(F).X + y!contract.y!check(F).X + y!bye
Bob = μX.y?(z).if . . . then write OK.y?check else y?check.X

that both sellers send their requests to the American factory.
Finally, when both factories are KO, Ada just closes down
the business by sending the label bye to both sellers:

G4 = Ada → {iS,aS}:bye.end
The processes in Table 1 are implementations of themonitors
generated by projection from all the above global types. For
instance, the monitor of aS from G1 and G3 is

aF!(String, Int).Ada?check,
where ! represents output and ? represents input. Themonitor
of the American seller from G2 is similar:

iF!(String, Int).Ada?check.
Its monitor from G4 is simpler: Ada?bye.end. The process
code for the seller has only two alternative behaviours, since
processes do not mention senders and receivers. The seller
can send on channel y item and amount, receive the check
and then restart. Otherwise, he can receive bye and stop.

The control data can be modified by the factory, writing
KO when it is incapacitated, and by Bob, writing OK when
he accomplished the rebuilding task. The adaptation function
F in Ada’s process gives the new global type when applied
to the pair (state iF, state aF), i.e.

F(OK,OK) = G1 F(OK,KO) = G2

F(KO,OK) = G3 F(KO,KO) = G4

A process can implement several different monitors also
thanks to the external choice constructor. For instance, the
process Seller can fill all the monitors that are generated by
projecting the above global types onto the participants iS and
aS.

Let us consider the system choreographed byG1 with the
global data (OK,OK). The American factory changes its
state to KO and then, when the chief checks the global data,
the function F generates the adaptation step which produces
the global typeG2. After this adaptation, Bob is a new partic-
ipant, while the American factory is out. Then, the American
seller, as prescribed by his monitor, sends his requests to the
Italian factory. When process Bob writes OK for the Amer-
ican factory and the Italian factory is still OK, the global
type produced by the adaptation step is again G1. Then, the
American factory comes back into the scene.

The present paper is a revised and extended version of
Coppo et al. [12]. Key additions with respect to Coppo et
al. [12] are a full formalisation of the safety properties and
more examples which illustrate characterising features of our
framework.

1.2 Structure of the paper

Sections 2 and 3 present the syntax of our calculus and its
type system, respectively. The formal semantics is given in
Sect. 4. Examples in Sect. 5 enlighten key technical points
of our approach. Formal properties are the content of Sect. 6.
Related works are discussed in Sect. 7. Section 8 concludes.

2 Syntax

2.1 Global types

Following a widely common approach, the set-up of proto-
cols starts from global types. Global types establish overall
communication schemes. In our setting, they also control the
reconfiguration phase, in which a system adapts itself to new
environmental conditions.

Let L be a set of labels, ranged over by �, which mark the
exchanged values as in [19] and � be a set of flags, ranged
over by λ, which transmit the adaptation information. We
assume to have some basic sorts, ranged over by S, i.e.

S ::= Bool || Int || . . .

Definition 1 Global types are defined by:

G ::= p → Π : {�i (Si).Gi }i∈I || p → Π :{λi }i∈I || end

In writing {�i (Si).Gi }i∈I and {λi }i∈I , we implicitly assume
that �i �= � j and λi �= λ j for all i �= j . There are only two
kinds of communications: value exchange and adaptationflag
exchange. Each value exchange is characterised by a label
which allows to represent choices. The sender is p, while
Π is the set of the receivers, which does not contain p and
cannot be the empty set. The participants of a global type
G are all the senders and the receivers in G, ranged over by
p,q, We denote by pa(G) the set of all participants in
G.

Global types can terminate in two ways: either with the
usual end or with the exchange of adaptation flags. In the
latter case, the adaptation flags are sent by a participant to all
the other ones. Adaptation flags can be seen as synchronisa-
tion points, interleaved in a conversation, at which different
interaction paths can be taken. In the global types syntax
there is no recursion operator, but recursive protocols can be
obtained by reconfiguring the system with the same global
type. Recursion can then be considered as a particular case

123

252 SOCA (2015) 9:249–268

of reconfiguration. A recursion operator is included instead
in the syntax of processes. For instance, all processes in the
company example of the Introduction are recursive and they
implement monitors which are projections of non-recursive
global types.

Notably, we do not allow parallel composition of global
types, which is quite common in the literature [3,9,10,28].
As a matter of fact, many papers [3,9,28] require that two
global types can be put in parallel only if their sets of partic-
ipants are disjoint, so parallel composition can be expressed
by interleaving. Without this condition, parallel composition
of global types requires some care [10]. This issue is orthog-
onal to the present framework, where each participant, in
all reconfiguration steps, follows one global type only (see
Tables 8 and 9).

2.2 Monitors

Monitors can be viewed as local types that are obtained as
projections of global types onto individual participants, as
in the standard approach of Honda et al. [28] and Bettini et
al. [2]. The only syntactic differences are the presence of the
adaptation flags and the absence of recursion and delegation.
In our calculus, however, monitors are more than types: they
have an active role in system dynamics, since they guide
communications and adaptations.

Definition 2 The set of monitors is defined by:

M ::= p?{�i (Si).Mi }i∈I || Π !{�i (Si).Mi }i∈I ||
p?{λi }i∈I || Π !{λi }i∈I ||
end

The constructs in the first line correspond to input and out-
put actions, respectively. An input monitor p?{�i (Si).Mi }i∈I
fits with a process that can receive, for each i ∈ I , a value
of sort Si , labelled by �i , having as continuation a process
which agrees with Mi . This corresponds to an external
choice. Dually, an output monitorΠ !{�i (Si).Mi }i∈I fits with
a process which can send (by an internal choice) a value of
sort Si , distinguished by the label �i for each i ∈ I , and then
continues as prescribed by Mi .

The projection of global types onto participants is given in
Table 2. A projection is undefined when two participants not

involved, as sender or receiver, in a choice have different pro-
jections in different branchings (condition Gi �q = G j �q
for all i, j ∈ I). Monitors are the results of such projections.

A global typeG iswell formed if its projections are defined
for all participants and all occurrences of

p → Π : {λi }i∈I
are such that Π ∪ {p} = pa(G): i.e. all participants are
involved in each flag exchange. In the following, we assume
that all global types are well formed.

2.3 Processes

Processes represent code that is associated to monitors in
order to implement participants.

Differently from session calculi [2,3,11,19,23,24,27,28,
33,34], processes do not specify the participants involved
in sending and receiving actions. The associated monitors
determine senders and receivers. Processes represent flexible
code that can be associated to different monitors to incarnate
different participants. Besides communicating, processes can
access the global state to read or change it.

The communication actions of processes are performed
through channels. Each process owns a unique channel. We
use y to denote this channel in the user code.Asusual, the user
channel y will be replaced at run-time by a session channel
s[p] (where s is the session name and p is the current partic-
ipant). Let c denote a user channel or a session channel. We
could avoid to write explicitly the channel in the user syntax,
but not in the run-time syntax. We have chosen to write all
channels to simplify the definition of processes.

Definition 3 Processes are defined by:

P : := 0 || op.P || X || μX.P ||
c?�(x).P || c!�(e).P ||
c?(λ,T).P || c!(λ(F),T).P ||
if e then P else P || P + P

The syntax of processes is rather standard, in particular
the operator + represents external choice. Notice that inter-
nal and external choices with many branches can easily be
encoded in our calculus, which gains in simplicity. In writing

Table 2 Projection of a global type onto a participant

(p → Π : {�i (Si).Gi }i∈I)�q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p?{�i (Si).Gi �q }i∈I if q ∈ Π

Π !{�i (Si).Gi �q }i∈I if q = p
Gi0 �q where i0 ∈ I if q �= p and q /∈ Π

and Gi �q = G j �q for all i, j ∈ I

(p → Π : {λi }i∈I)�q =

⎧
⎪⎨

⎪⎩

p?{λi }i∈I if q ∈ Π

Π !{λi }i∈I if q = p
end ifq �= p and q /∈ Π

end�p = end

123

SOCA (2015) 9:249–268 253

processes, we assume the precedence: prefix, external choice
and recursion. Note that in the sending and receiving actions,
the involved participants are missing. For instance, c!�(e).P
denotes a process which sends via the channel c the label �

and the value of the expression e and then has P as continu-
ation. Notably, a system has a global state (see Definition 5),
and the op operator represents an action on this global state,
for instance, a “read” or “write” operation. We leave unspec-
ified the kind of actions since we are only interested in the
dynamic changes of this state, which plays the role of the
control data for the self-reconfiguration of the whole system.

Types, which are statically assigned to processes, will
be formally introduced in Sect. 3 (Definition 7). Types are
mainly aimed at checking the matching between processes
and monitors. It is convenient to include a type annotation in
the syntax of the adaptation flag. The input flag c?(λ,T).P
represents a process that, after receiving the adaptation flag
λ, has a continuation of type T. Thus, the explicit annotation
T makes it easy to dynamically check if, after the adapta-
tion, the current process can continue with that type, inside
the newmonitor. The output flag c!(λ(F),T).P contains also
the adaptation function F . The application of F to the global
state will determine the new global type, which provides a
new choreography for the system.

2.4 Network

A process is always controlled by a monitor, which ensures
that all performed actions fit the protocol prescribed by the
global type. Each monitor controls a single process. So, par-
ticipants correspond to pairs of processes and monitors. We
writeM [P] to represent a process P controlled by amonitor
M , dubbed monitored process. In a reconfiguration phase,
the monitor controlling the process is changed according to
the newglobal type resulting from the applicationof the adap-
tation function to the global state. At this point, the processes
whose type does not fit the new monitor must leave the sys-
tem and new ones can enter it. The data exchange among
the participants is done by means of runtime queues (one
for each active session). We denote by s:h the named queue
associated with the session s, where h is a message queue.
The empty queue is denoted by ø. Messages in queues can be
either value messages (p,Π, �(v)), indicating that the label
� and the value v are sent by participant p to all participants
in Π , or adaptation messages (p,Π, λ(G)), indicating that
the flag λ and the global type G are sent by participant p to
all participants in Π . Queue concatenation, denoted by “·”,
has ø as neutral element. A queue is λ-free if it contains no
flag.

The sessions are initiated by the “new” constructor
applied to a global type (session initiator), denoted by
new(G), which generates the monitors and associates them
with adequate processes (see Definition 8).

The parallel composition of session initiators processes
with the corresponding monitors, and run-time queues form
a network. Networks can be restricted on session names.

Definition 4 Networks are defined by:

N ::= new(G) || M [P] || s:h || N | N || (νs)N

2.5 System

A system includes a network, a global state and assumes a
collection of processes together with their types (according
to the typing rules of Sect. 3). We use σ to range over global
states, and we denote byP the collection of pairs (P ,T). We
represent systems as the composition (via “||”) of a networks
and a global state, without mentioning the process collection,
which is considered an implicit parameter.

Definition 5 Systems are defined by:

S ::= N || σ

3 Process types

Process types (called simply types where not ambiguous)
describe process communication behaviours [27]. They have
prefixes corresponding to sending and receiving of labels and
flags. In particular, an input type is a type whose first prefix
corresponds to an input action, and an output type is a type
whose first prefix corresponds to an output action, while the
continuation of a type is the type following its first prefix.
A communication type is either an input or an output type.
The external choice is typed by an intersection type, since
an external choice offers both behaviours of the composing
processes. Dually, a conditional is an internal choice and so
it is typed by a union type. Notice that union and intersection
being binary constructor feet well with our binary internal
and external choices. To formally define types, we start with
the more liberal syntax of pre-types and then we define some
restrictions that characterise types of processes.

Definition 6 The set of pre-types is inductively defined by:

T ::= ?�(S).T || !�(S).T || ?λ || !λ || T ∧ T || T ∨ T || end
where ∧ and ∨ are considered modulo idempotence, com-
mutativity and associativity.

In pre-types and types, we assume that . has precedence over
∧ and ∨.

In order to define types for processes, we have to avoid
intersection between input types with the same first label,
which would represent ambiguous external choices: indeed,
the types following a same input prefix could be different
and this would lead to a communication mismatch, as illus-
trated in Example 1 of Sect. 5. For the same reason, process

123

254 SOCA (2015) 9:249–268

Table 3 The mappings lin and lout

lin(?�(S).T) = lout (!�(S).T) = {�}
lin(?λ) = lout (!λ) = {λ}
lin(!�(S).T) = lin(!λ) = lout (?�(S).T) = lout (?λ) = ∅
lin(T1 ∧ T2) = lin(T1 ∨ T2) = lin(T1) ∪ lin(T2)

lout (T1 ∧ T2) = lout (T1 ∨ T2) = lout (T1) ∪ lout (T2)

types cannot contain intersections between output types with
the same label. Since we have to match types with mon-
itors, where internal choices are always taken by partici-
pants sending a label or a flag, we force unions to take out-
put types (possibly combined by intersections or unions) as
arguments. Therefore, we formalise the above restrictions
by means of two mappings from pre-types to sets of labels
and flags (Table 3) and then we define types by using those
mappings.

Definition 7 A type is a pre-type satisfying the following
constraints modulo idempotence, commutativity and asso-
ciativity of unions and intersections:

– all occurrences of the shape T1 ∧ T2 are such that

lin(T1) ∩ lin(T2) = lout (T1) ∩ lout (T2) = ∅

– all occurrences of the shape T1 ∨ T2 are such that

lin(T1) = lin(T2) = lout (T1) ∩ lout (T2) = ∅.

We use T to range over types, and T to denote the set of
types. Note that, for example, (T ∧T)∨T is a type, whenever
T is a type, since types are considered modulo idempotence.

An environment � is a finite mapping from expression
variables to sorts and from process variables to types:

� ::= ∅ || �, x :S || �, X :T
where the notation �, x :S (�, X :T) means that x (X) does
not occur in �.

We assume that expressions are typed by sorts, as usual.
The typing judgments for expressions are of the shape

�
 e : S
and the typing rules for expressions are standard.

Only processes with at most one channel can be typed.
This choice is justified by the design of monitored processes
as session participants and by the absence of delegation.
Therefore, the typing judgments for processes have the form

�
 P � c:T.

Typing rules for processes are given in Table 4. Observe
that the type of a process after a reconfiguration is mem-
orised in the (input or output) action in which the adap-
tation flag is exchanged (see Definition 3). In rules if and
choice, we require that the applications of union and inter-
section on two types form a type (conditions T1 ∨ T2 ∈ T
and T1 ∧ T2 ∈ T). Adaptation allows us to avoid recursive
types. A recursion variable is always preceded by an adap-
tation action, i.e. c?(λ,T).X (rule rv1) and c!(λ(F),T).X
(rule rv2). In typing a recursive process μX. P , rule rec
ensures that the type of P is the same as the type associated
to X in the environment. Note that μX.P is equivalent to
P{μX.P/X}, and so, unfolding the process, P will always
be associated to all the reconfiguration flags which precede
the occurrences of X .

For example, writing the process Ada (considered in the
Introduction) using the formal syntax, but leaving out labels,

Table 4 Typing rules for processes

�
 0 � c:end end
�
 P � c:T

op
�
 op.P � c:T

�, X : T
 c?(λ,T).X � c:?λ rv1 �, X : T
 c!(λ(F),T).X � c:!λ rv2

�, X : T
 P � c:T
rec

�
 μX.P � c:T
�, x : S
 P � c:T

rcv
�
 c?�(x).P � c:?�(S).T

�
 P � c:T �
 e : S
send

�
 c!�(e).P � c:!�(S).T

�
 P � c:T
frcv

�
 c?(λ,T).P � c:?λ
�
 P � c:T

fsend
�
 c!(λ(F),T).P � c:!λ

�
 e : Bool �
 P1 � c:T1 �
 P2 � c:T2 T1 ∨ T2 ∈ T
if

�
 if e then P1 else P2 � c:T1 ∨ T2

�
 P1 � c:T1 �
 P2 � c:T2 T1 ∧ T2 ∈ T
choice

�
 P1 + P2 � c:T1 ∧ T2

123

SOCA (2015) 9:249–268 255

Table 5 Subtyping

T ≤ end T1 ∧ T2 ≤ Ti Ti ≤ T1 ∨ T2 (i = 1, 2)

T1 ≤ T2 implies !�(S).T1 ≤!�(S).T2

T1 ≤ T2 implies ?�(S).T1 ≤?�(S).T2

T ≤ T1 and T ≤ T2 imply T ≤ T1 ∧ T2

T1 ≤ T and T2 ≤ T imply T1 ∨ T2 ≤ T

(T1 ∨ T2) ∧ T3 ≤ T iff T1 ∧ T3 ≤ T and T2 ∧ T3 ≤ T

T ≤ (T1 ∧ T2) ∨ T3 iff T ≤ T1 ∨ T3 and T ≤ T2 ∨ T3

y!(check(F),TAda) replaces y!check(F), where the type of
the whole process Ada is:

TAda = !check∧!String.!check∧!bye.end
The matching between process types and monitors (ade-

quacy) is made rather flexible by using the subtyping defined
as the reflexive and transitive closure of the relation shown
in Table 5. Subtyping is monotone, for input/output prefixes,
with respect to continuations and it follows the usual set the-
oretical inclusion of intersection and union. Notice that we
use a weaker definition than standard subtyping on intersec-
tion and union types, since it is sufficient to define subtyping
on types.

The intuitive meaning of subtyping is that a process with
a smaller type has all the behaviours required by a bigger
type and possibly more. Therefore, end is the top type. An
input monitor naturally corresponds to an external choice,
while an output monitor naturally corresponds to an inter-
nal choice. So, intersections of input types are adequate for
input monitors, and unions of output types are adequate for
output monitors. Formally, we say that a type is adequate for
a monitor if the conditions of the following definition hold.

Definition 8 A typeT is adequate for amonitorM (notation
T ∝ M) if T ≤ |M |, where the mapping | | is defined by:

|p?{�i (Si).Mi }i∈I | = ∧
i∈I ?�i (Si).|Mi |

|Π !{�i (Si).Mi }i∈I | = ∨
i∈I !�i (Si).|Mi |

|p?{λi }i∈I |=∧
i∈I ?λi |Π !{λi }i∈I |=∨

i∈I !λi |end|=end

For instance, the type TAda defined above is adequate for the
monitor of Ada obtained by projecting the global type G2

discussed in the Introduction:

Bob!String.{iS, iF,aS,Bob}!check
Decidability of adequacy relies on decidability of subtyp-

ing. We show that subtyping is decidable. The proof exploits
standard distributivity properties on intersections and unions.

Lemma 1 Subtyping is decidable.

Proof A subtyping between two types is equivalent to a set
of subtypings, in which no union occurs in the left type and
no intersection occurs in the right type. In fact:

– T1 ∨ T2 ≤ T3 iff T1 ≤ T3 and T2 ≤ T3

– (T1 ∨T2) ∧T3 ≤ T4 iff T1 ∧T3 ≤ T4 and T2 ∧T3 ≤ T4.

Notice that if (T1 ∨ T2) ∧ T3 is a type, then both T1 ∧ T3

and T2 ∧ T3 are types. A similar argument can be used for
erasing the intersections in the right type. Then, we have to
decide only subtypings of the shape T ≤ T′, where T is an
intersection of communication types and possiblyend, while
T′ is either a union of output types or a single input type, both
possibly in union with end (by Definition 7). Since end is
the top type:

– If T′ contains end, then the subtyping holds.
– If T is end, then the subtyping fails, unless T′ contains
end.

Otherwise, the occurrences of end in T can be erased. Thus,
we are reduced to consider the cases in which T is an inter-
section of communication types and T′ is either a union of
output types or a single input type. In the first case, subtyping
T ≤ T′ holds if and only if at least one of the output prefixes
of types in T′ is equal to the output prefix of a type in T, and
the corresponding continuations are in the subtype relation.
In the second case, subtyping T ≤ T′ holds if and only if T
contains a type which has the same input prefix of T′ and the
corresponding continuations are in the subtype relation. ��

4 Semantics

The evolution of a system depends on the evolution of its
network and global state. The basic components of networks
are the openings of sessions (through the new operator on
global types) and the processes associated with monitors. So,
we start by describing how processes can evolve inside mon-
itors. Monitors guide the communications of processes by
choosing the senders/receivers and by allowing only some
actions among those offered by the processes. This is for-
malised by the following LTS for monitors:

p?{�i (Si).Mi }i∈I p?� j−−→ M j j ∈ I

Π !{�i (Si).Mi }i∈I Π !� j−−−→ M j j ∈ I

p?{λi }i∈I p?λ j−−→ Π !{λi }i∈I Π !λ j−−−→ j ∈ I

Processes can communicate labels and values, flags, adap-
tation functions and types, or can read/modify the global state
trough op operations. These behaviours are made explicit by
the LTS in Table 6, where the treatment of recursions and
conditionals is standard. In the rules for external choice, α

ranges over

s[p]?�(v), s[p]!�(v), s[p]?(λ,T), s[p]!(λ(F),T),

and δ ranges over {op, τ }. We omit the symmetric rules.

123

256 SOCA (2015) 9:249–268

Table 6 LTS of processes

op.P
op−→ P μX.P

τ−→ P{μX.P/X} s[p]?�(x).P s[p]?�(v)−−−−−→ P{v/x} s[p]!�(e).P
s[p]!�(v)−−−−−→ P e ↓ v

s[p]?(λ,T).P
s[p]?(λ,T)−−−−−−→ P s[p]!(λ(F),T).P

s[p]!(λ(F),T)−−−−−−−→ P

if e then P else Q
τ−→ P e ↓ true if e then P else Q

τ−→ Q e ↓ false

P
α−→ P ′

P + Q
α−→ P ′

P
δ−→ P ′

P + Q
δ−→ P ′ + Q

The choices are done by the communication actions, while
the operations on the global state are transparent. This is
needed since the operations on the memory are recorded nei-
ther in the process types nor in the monitors. An operation
on the state in an external choice can be performed also if a
branch, different from that containing the operation, is exe-
cuted. The rationale is the independence of the changes in
the control data from the communications among session
participants. For example,

op.s[p]?�1(x).P1 + s[p]?�2(x).P2 op−→
s[p]?�1(x).P1 + s[p]?�2(x).P2 s[p]?�2(v)−−−−−−→ P2{v/x}.
A recursion in an external choice can be unfolded indepen-
dently front the chosen branch, since unfolding is an internal
computation. Similarly, a conditional in an external choice
can be evaluated also if a different branch is then executed.
For example,

(μX.if true then s[p]?�1(x).P1 else X) + s[p]?�2(x).P2 τ−→
(if true then s[p]?�1(x).P1 else μX. · · ·) + s[p]?�2(x).P2 τ−→
s[p]?�1(x).P1 + s[p]?�2(x).P2 s[p]?�2(v)−−−−−−→ P2{v/x}.
We assume a standard structural equivalence on networks,

inwhich the parallel operator is commutative and associative,
and restrictions commute and enlarge their scopes without
name clashes. Moreover, any monitored process with end
monitor behaves as the neutral element for the parallel and
absorbs restrictions, that is:

end[P] | N ≡ N and (νs)end[P] ≡ end[P].
For message queues, we need an equivalence for commuting
independent messages and another one for splitting a mes-
sage to multiple receivers, see Table 7. The equivalence on
message queues induces an equivalence on labelled queues
in the obvious way:

h ≡ h′ implies s : h ≡ s : h′.

We can distinguish between the transitions which do or do
not involve the global state. For simplicity, Table 8 lists the
reduction rules of the networks and Table 9 lists the reduction
rules of the systems, in which all rules need the global state.

A session starts by reducing a network new G (rule Init).
For each p in the set pa(G) of the participants in the global

Table 7 Equivalence on message queues

h · (q,Π, ζ) · (q′,Π ′, ζ ′) · h′ ≡ h · (q′,Π ′, ζ ′) · (q,Π, ζ) · h′

ifΠ ∩ Π ′ = ∅ or q �= q′

h · (q,Π, ζ) · h′ ≡ h · (q,Π ′, ζ) · (q,Π ′′, ζ) · h′

ifΠ = Π ′ ∪ Π ′′ and Π ′ ∩ Π ′′ = ∅
where ζ ::=�(v) || λ(G).

type G, we need to find a process Pp in the collection P
associated to the current system. The process Pp must be
such that its type Tp is adequate for the monitor which is
the projection of G onto p. Then, the process (where the
channel y has been replaced by s[p]) is associated to the
corresponding monitor, and the empty queue s is created.
Lastly, the name s is restricted. In this way, we ensure the
privacy of the communications in a session (as standard in
session calculi [28]). We are interested here in modelling the
overall adaptation strategy, based on decoupling interfaces
(i.e. monitors) and implementations (i.e. processes), rather
than in the details related to the choice of processes associated
to monitors. So, we have left this choice arbitrary, the only
condition being type adequacy. Note, however, that a natural
way of controlling the processes associated to the monitors
is given by the choice of the labels and flags which relate
them.

The rules In and Out define the exchange of messages
through queues. The type assignment system ensures that
both the type of P is adequate for M and the type of P ′ is
adequate for M ′. Following [3,11], the agreement between
monitors and processes is required; a novelty is that only the
monitors define the senders and the receivers of messages.

The rules AdaInCont and AdaInNew of Table 8 deal
with adaptations, for the session participants which receive
the adaptation flag with the new global type. The new global
type is needed to compute the newmonitorM ′ by projection.
In the first rule, the continuation of the current process inside
the monitor has a type which is adequate for M ′, so this
process will fillM ′. In the second rule, instead, it is needed
to take from a different process with a type adequate forM ′
the collection P . In case such a process does not exists in
P , then the system gets stuck.

Evaluation contexts are defined by

E ::= [] || E | N || (νs)E

123

SOCA (2015) 9:249–268 257

Table 8 Network reduction

Π = pa(G) Mp = G�p ∀p ∈ Π. (Pp,Tp) ∈ P & Tp ∝ Mp
Init

new(G) −→ (ν s) (
∏

p∈Π

Mp[Pp{s[p]/y}] | s : ø)
P

τ−→ P ′
Tau

M [P] −→ M [P ′]

M
q?�−−→ M ′ P

s[p]?�(v)−−−−−→ P ′
In

M [P] | s : (q,p, �(v)) · h −→ M ′[P ′] | s : h
M

Π !�−−→ M ′ P
s[p]!�(v)−−−−−→ P ′

Out
M [P] | s : h −→ M ′[P ′] | s : h · (p,Π, �(v))

M
q?λ−−→ P

s[p]?(λ,T)−−−−−−→ P ′ G�p = M ′ T ∝ M ′
AdaInCont

M [P] | s : (q,p, λ(G)) · h −→ M ′[P ′] | s : h

M
q?λ−−→ P

s[p]?(λ,T)−−−−−−→ P ′ G�p = M ′ T �∝ M ′ (Q,T′) ∈ P T′ ∝ M ′
AdaInNew

M [P] | s : (q,p, λ(G)) · h −→ M ′[Q{s[p]/y}] | s : h
N1 ≡ N ′

1 N ′
1 −→ N ′

2 N2 ≡ N ′
2
Equiv

N1 −→ N2

Table 9 System reduction

P
op−→ P ′

OP
M [P] || σ −→ M [P ′] || op(σ)

M
Π !λ−−→ P

s[p]!(λ(F),T)−−−−−−−→ P ′ F(σ) = G Mp = G�p T ∝ Mp h λ-free

Π ′ = pa(G) ∀q ∈ Π ′.Mq = G�q ∀q ∈ Π ′ \ (Π ∪ {p}). (Pq,Tq) ∈ P & Tq ∝ Mq
AdaOutCont

M [P] | s : h || σ −→ Mp[P ′] |
∏

q∈Π ′\(Π∪{p})
Mq[Pq{s[q]/yq}] | s : h · (p,Π, λ(G)) || σ

M
Π !λ−−→ P

s[p]!(λ(F),T)−−−−−−−→ P ′ F(σ) = G Mp = G�p T �∝ Mp h λ-free

Π ′ = pa(G) ∀q ∈ Π ′.Mq = G�q ∀q ∈ Π ′ \ Π. (Pq,Tq) ∈ P & Tq ∝ Mq
AdaOutNew

M [P] | s:h || σ −→
∏

q∈Π ′\Π
Mq[Pq{s[q]/yq}] | s:h · (p,Π, λ(G)) || σ

N −→ N ′
SN

E [N] || σ −→ E [N ′] || σ

N || σ −→ N ′ || σ ′
CTX

E [N] || σ −→ E [N ′] || σ ′

The reduction rules for networks can be used for reducing
systems thanks to rule SN in Table 9. Rule Cxt is a standard
contextual rule. RuleOp allows processes to read/modify the
global state.

Themost interesting rules areAdaOutCont andAdaOut-
New. In both rules, participant p sends an adaptation flag and
an adaptation function, whose application to the global state
gives a new global type G. The global type G may involve
new participants (in Π ′ \ (Π ∪ {p})) which are added to the
network by taking processes inP as in rule Init. As regards
to participant p, the new monitor G � p will be associated
or not to the current process according to whether its type
is adequate or not for G � p , as in rules AdaInCont and
AdaInNew. In both rules AdaOutCon and AdaOutNew,
the message with the reconfiguration flag and the global type

G will be sent to all participants of the session before the
reconfiguration. This is ensured by the well formedness of
global types.

The restriction to λ-free queues deserves some comments.
It ensures no new adaptation flag can be thrown until all the
receivers of the previous adaptation flag have adapted them-
selves. A design choice of our framework is to allow a partic-
ipant to skip an adaptation phase (since it does not appear in
the new global type) and then to appear again in the following
adaptation. This models a common scenario in which a com-
ponent is temporarily unavailable and so a new choreography
is needed. In the introductory example, the American factory
becomes temporarily out of the current choreography. With-
out the given restriction, when the component becomes avail-
able again, we could have two monitored processes with the

123

258 SOCA (2015) 9:249–268

same session channel, so loosing channel linearity. Observe,
however, that by this restriction someparticipants are allowed
to finish their communications before performing an adapta-
tion, while other participants have already self-adapted and
then started the new communications.

Note that the λ-freeness of queues can be implemented in
several ways without breaking decentralisation, for example
by semaphores on queues.

We use −→∗ with the usual meaning and −→P , −→∗
P

whenwewant emphasise the use ofP in rules Init,AdaIn-
New, AdaOutNew.

5 Examples

In this section, we discuss examples. The first example moti-
vates the restrictions on the definition of process types (Defin-
ition 7). The second and the third examples extend the exam-
ple given in the Introduction, using the syntax of Sect. 2.
Example 2 shows a use of different adaptation flags. Exam-
ple 3 illustrates the possibility of exchanging the participant
who is in charge of sending the adaptation flag. For readabil-
ity, we omit {, } in writing global types and monitors.

Example 1 This example shows the necessity of the condi-
tions on types given in Definition 7.

Suppose that any pre-type is a type, by removing the con-
ditions from Definition 7. Then, P could contain (P1, T1)
and (P2,T2) such that:

P1 = y!�(3).y?�′(x).0 + y!�(true).0
P2 = y?�(x ′).y!�′(−x ′).0

T1 = !�(int).?�′(int).end∧!�(Bool).end
T2 =?�(int).!�′(int).end

In particular, we observe that T1 has an intersection between
output types with the same label. Take then the global type
G = 1 → 2 : �(int).2 → 1 : �′(int).end, whose projections
on participants 1 and 2 are

M1 = 2!�(int).2?�′(int).end,M2 = 1?�(int).1!�′(int).end,

respectively. According to our definition of adequacy, T1 and
T2 are adequate for M1 and M2, respectively. It is easy to
verify that the network new(G) can reduce to

(νs)(s[2]1!�′(−true).0 | s:ø),
which is stuck. On the other hand, taking

P ′
1 = y!�(3).y?�′(x).0 + y?�(x).0

with type T′
1 = !�(int).?�′(int).end∧?�(Bool).end, we still

have that T′
1 and T2 are adequate for M1 and M2, but the

networknew(G) smoothly terminates the computation. Note
that T′

1 satisfies the conditions of Definition 7, so there is no
possible ambiguity on which branch of the external choice
must be chosen.

Example 2 Ada wants to consider the possibility to keep the
business going, alsowhen both factories are out of use. In this
case, she can choose either to stop all activities or to start the
reconstruction of both factories. In the former case, she sends
a stop adaptation flag and in the latter case a go adaptation
flag. The global type G4 of the example in the Introduction
must then be replaced by:

G4 = Ada → {iS,aS}:{stop, go}
If Ada decides to go on with the business when both factories
are out, both sellers send their requests to Ada. So, we need
two new global types:

Gg =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ada → Bob:String.
iS → Ada:req(String, Int).
aS → Ada:req(String, Int).
Ada → {iS,aS}:{check}

Gs = end

where req is the label used to ask the amount of an item, and
two adaptation functions:

Fg(KO,KO) = Gg Fs(KO,KO) = Gs

A new process for implementing Ada can be:

Ada′ = μX.y!(check(F),TAda′).X+
y!help(contract).(y!(check(F),TAda′).X+

y?req(x, w).y?req(x ′, w′).y!(check(F),TAda′).X)+
if . . . then !(stop(Fs),end).0 else !(go(Fg),TAda′).X

where

TAda′ = !check∧
!String.(!check∧?(String, Int).?(String, Int).!check)
∧(!stop∨!go)

is the new type of Ada. No modification is required for the
processes representing the sellers and the factories.

Note that the process Ada of the Introduction could work
as well as Ada′ until both factories are out. In this case, Ada
would no longer agree with the monitor corresponding to
the projection of the aboveG4 and ruleAdaOutNewwould
replace Ada′ to Ada.

Example 3 Assume that Ada has to take a maternity leave.
She then decides to transfer the job of monitoring the facto-
ries to one of the two sellers, who will play the role of deputy
chief in the company. Then, Ada writes iS (Italian seller) or
aS (America seller) in the global data. The deputy chief is
only in charge to keep the business working, unless both fac-
tories are out, in which case he also closes down the business.
The deputy chief checks the state of the factories sending as
Ada the reconfiguration flag check. When Ada is back, the
standard management policy is restored.

In this example, we use the same global types and adap-
tation function of the Introduction, but we add eight global
types and another adaptation function.

123

SOCA (2015) 9:249–268 259

The first four global types consider the case in which the
American seller is the deputy chief. The global typeGa

1 is the
communication protocol when both factories are working:

Ga
1 =

⎧
⎪⎨

⎪⎩

iS → iF:req(String, Int).
aS → aF:req(String, Int).
aS → {iS, iF,aF}:check

If the Italian factory is OK, but the American one is KO the
communication protocol becomes:

Ga
2 =

⎧
⎪⎨

⎪⎩

iS → iF:req(String, Int).
aS → iF:req(String, Int).
aS → {iS, iF}:check

If the American factory is OK, but the Italian one is KO, the
global type Ga

3 is as expected. When both factories are KO
the deputy chief is forced to close the business:

Ga
4 = aS → {iS}:bye.end

The other four global types Gi
1-G

i
4 prescribe that the adap-

tation flag is sent by the Italian rather than by the American
seller.

The new adaptation function F ′, which has a third argu-
ment corresponding to the deputy chief in charge, is defined
as:

F ′(OK,OK,aS) = Ga
1 F ′(OK,KO,aS) = Ga

2
F ′(KO,OK,aS) = Ga

3 F ′(KO,KO,aS) = Ga
4

F ′(OK,OK, iS) = Gi
1 F ′(OK,KO, iS) = Gi

2
F ′(KO,OK, iS) = Gi

3 F ′(KO,KO, iS) = Gi
4

A process Ada′′ implementing Ada includes a conditional
to take into account the maternity leave:

Ada′′ = μX.P + y!help(contract).P+!y.bye.0
where help is the label for the contract with Bob and

P = if . . . then !(check(F),TAda′′).X
else write dep.!(check(F ′),end).0

with dep = aS or dep = iS and

TAda′′ = !check∧!help(String).!check∧!bye.end
A process implementing sellers uses the adaptation function
F ′ or F according to whether or not Ada is on leave:

Seller′ = μX.y!req(item, amount).(y?(check,TSeller′).X+
if . . . then y!(check(F),TSeller′).X

else y!(check(F ′),TSeller′).X)

+y?bye.0 + y!bye.0
where:

TSeller′ = !req(String, Int).(?check
∧!check)∧ ?bye.end∧ !bye.end

No modification is needed, instead, for the processes repre-
senting the other participants, i.e. the two factories and Bob.

Notice that TAda′′ differs from TAda (see page 6) only for
the label help (since in the Introduction we used a simplified
syntax). Instead, TSeller′ offers more choices that the type of
the process Seller in the Introduction. As a consequence, the
process Ada of the Introduction is an implementation of Ada
also in the present new scenario, which never uses the right
of thematernity leave. Instead, the process Seller is no longer
adequate since it does not implement the chief’s behaviour.

6 Safety

In this section, we show subject reduction and progress theo-
rems, following essentially the proof pattern of similar results
for multiparty sessions, see e.g. [13]. Indeed, the main inno-
vation of our calculus is that global types, with the corre-
sponding monitors, are reconfigured at each adaptation step.
Furthermore, participants of two different global types can
coexist inside the same session. This happens when some
participants have already performed the adaptation and then
they are following the new global type, while other partici-
pants are still completing the interactions prescribed by the
old global type. These are the crucial technical difficulties in
proving that monitored well-typed processes always behave
in a type-safe way. Therefore, we need to introduce typing
rules for systems, which associate types to session channels.

The type of channel s[p] is formed by taking into account
the monitor, which controls the process owning s[p], and
the messages in the queue of the session s. The type of a
monitored process is the association of the monitor to the
session channel owned by the process. For each value mes-
sage (p,Π, �(v)) in the queue of session s, we associate the
type Π !�(S) to s[p], where S is the sort of the value v, pre-
serving the order of messages of queue. So, lists of types of
this shape form the types of session channels.

A queue can also contain adaptation messages. Note that,
thanks to the condition of λ-freeness in rulesAdaOutConT
and AdaOutNew (Table 9), at most one adaptation mes-
sage can occur in a queue (modulo structural equivalence,
see Table 7). If the queue of session s contains the mes-
sage (p,Π, λ(G)), then Π !λ occurs in the type of s[p]. A
message type is then a list of types of the shape Π !�(S)

possibly containing a type of the shape Π !λ. After receiv-
ing the message (p,Π, λ(G)), each participant q ∈ Π of
session s will behave according to the monitor G � q .
Therefore, the type of s[q] can involve two monitors. One
(explicit) monitor (dubbed active monitor) is the monitor
of the monitored process owing s[p]. The other (implicit)
monitor (dubbed virtual monitor) is the projection onto q of
the global type contained in the adaptation message waiting
to be received by s[q] (and to become active). A missing
virtual monitor is denoted by “−”. In particular, the virtual
monitor of the sender of the adaptation message is always

123

260 SOCA (2015) 9:249–268

missing. So, typing rules for queues associate types of the
shape 〈message type, virtual monitor〉 (corresponding to the
sent messages and the virtual monitor) to session channels.

To sum up, a type of a session channel is either an active
monitor, or a pair consisting of a message type and a virtual
monitor, or a triple consisting of a message type, an active
monitor and a virtual monitor.

Definition 9 Message types, queue types, virtual monitors,
and generalised types are defined by:

Message Types m ::= ε || Π !�(S) || Π !λ || m ; m
Virtual Monitors V ::= M || −
Queue Types Q ::= 〈m,V 〉
Generalised Types χ ::= M || Q || 〈m,M ,V 〉

where “ ; ” is associative, ε is the type of the empty sequence
of messages, such that ε ; m = m ; ε = m, and “−” denotes
a missing monitor.

The typing judgements for systems are of the shape

� S � Δ

where � is a set of session names (the names of the queues
which occur free in the network) and Δ is a session typ-
ing. Session typings associate session channels to generalised
types:

Δ ::= ∅ || Δ, s[p]:χ
We apply to the session typings the same conventions used
for environments. In particular, a session typing Δ1,Δ2 is
defined only if the domains of Δ1 and Δ2 are disjoint.

To ensure type safety, it is essential that the communi-
cations are performed in a consistent way, i.e. that data are
exchanged in the right order and with the right type. Consis-
tency of session typings is defined using projection of gener-
alised types and duality, given in Tables 10 and 11, respec-
tively. The projection of a generalised type onto a participant
q represents the communications offered to q.

Table 11 Duality between projections of generalised types onto par-
ticipants

� �� � j & j ∈ I imply !� j (S j).� ��?{�i (Si).�i }i∈I
∀i ∈ I �i �� �′

i imply !{�i (Si).�i }i∈I ��?{�i (Si).�′
i }i∈I

j ∈ I implies !λ j ��?{λi }i∈I !{λi }i∈I ��?{λi }i∈I ε �� ε

�1 �� �2 and �3 �� �4 imply �1.�3 �� �2.�4

The projection of generalised types uses the projection of
message types and virtual monitors. We denote these projec-
tions by χ �q ,m�q and V �q , respectively. The conditions
on the equalities of projections correspond to the similar con-
ditions in Table 2. The projection of a generalised type of the
shape 〈m,M ,V 〉 is the concatenation of the projections of
m,M andV . This ismeaningful sincem represents themes-
sage already sent,M guides the behaviour of the participant
before its adaptation and V will guide its behaviour after the
adaptation. Projection of generalised types (ranged over by
�) is defined by the following syntax

�::=!�(S) || !λ || �.� || ?{�i }i∈I || !{�i }i∈I || ε

We assume ε.� = �.ε = �, since ε represents no commu-
nication.

We write � �� �′ when � and �′ are dual according to
the definition of Table 11. Note that duality is defined only
on � which are projections of generalised types.

We can now define consistency as duality of projections.

Definition 10 A session typing Δ is consistent for the ses-
sions, notationcon(Δ, s), ifs[p] : χ ∈ Δ ands[q] : χ ′ ∈ Δ

with p �= q imply χ �q �� χ ′ �p . A session typing is con-
sistent if it is consistent for all sessions which occur in it.

It is easy to check that projections of the same global type
are always dual.

Proposition 1 Let G be a global type and p �= q. Then,
(G�p)�q �� (G�q)�p .

Table 10 Projection of generalised types onto participants

(Π !�(S) ; m)�q =
{

!�(S).(m�q) if q ∈ Π

m�q otherwise
(Π !λ ; m)�q =

{
!λ.(m�q) if q ∈ Π

m�q otherwise
ε �q = ε

p?{�i (Si).Mi }i∈I �q =
{
?{�i (Si).(Mi �q)}i∈I if q = p
Mi0 �q where i0 ∈ I, if q �= p and Mi �q = M j �q∀i, j ∈ I

Π !{�i (Si).Mi }i∈I �q =
{

!{�i (Si).(Mi �q)}i∈I if q ∈ Π

Mi0 �q where i0 ∈ I, if q /∈ Π and Mi �q = M j �q∀i, j ∈ I

p?{λi }i∈I �q =
{
?{λi }i∈I if q = p
ε otherwise

Π !{λi }i∈I �q =
{

!{λi }i∈I if q ∈ Π

ε otherwise

end�q = ε −�q = ε

〈m,V 〉�q = m�q .V �q 〈m,M ,V 〉�q = m�q .M �q .V �q

123

SOCA (2015) 9:249–268 261

Table 12 Typing rules for networks and systems

New

∅ new(G) �∅

endP

∅ end[P] �∅

 P � s[p]:T M �= end T ∝ M
MP

∅ M [P] � {s[p]:M }

QInit

{s} s:ø �∅

{s} s:h �Δ
 v:S
QSendV

{s} s:h · (p,Π, �(v)) �Δ�{s[p]:〈Π !�(S),−〉}

{s} s:h �Δ

QSendG

{s} s:h · (p,Π, λ(G)) �Δ�({s[p]:〈Π !λ,−〉} ∪ {s[q]:〈ε,G�q 〉 | q ∈ Π})

�1 N1 �Δ1
�2 N2 �Δ2 �1 ∩ �2 = ∅
NPar

�1∪�2 N1 | N2 �Δ1 ∗ Δ2

� N �Δ Δ ≈ Δ′
Equiv

� N �Δ′

� N �Δ con(Δ, s)
Res

�\{s} (ν s)N �Δ \ s

� N �Δ

System

� N || σ �Δ

This proposition ensures that session typings obtained by
projecting global types are consistent.

Table 12 gives the typing rules for systems. A session
initiator is typedwith the empty set of session names andwith
the empty session typing (rule New). To type a monitored
process, we distinguish two cases. If the monitor is end, then
the session typing is empty for any process P (rule endP).
Otherwise, the channel owned by the process is associated to
the monitor, provided that the type of the process (Table 4)
is adequate for the monitor, according to Definition 8 (rule
MP).

The next three rules type named queues. In these rules, the
turn-style is decorated by the name of the queue. An empty
queue ø is typed with the empty session typing (QInt). Two
queue types can be composed only if at most one of them
contains a monitor, while the sequence of message types is a
message type. Then, we define the operator � by:

〈m,V 〉�〈m′,−〉 = 〈m,−〉�〈m′,V 〉 = 〈m ; m′,V 〉
RulesQSendV andQSendG use the extension of � to session
typings:

Δ�Δ′ = {s[p]:χ�χ ′ | s[p]:χ ∈ Δ & s[p]:χ ′ ∈ Δ′}∪
{s[p]:χ | s[p]:χ ∈ Δ ∪ Δ′ &

s[p] /∈ dom(Δ) ∩ dom(Δ′)}
Notice that in rules QSendV and QSendG the session typ-
ings only contain queue types. The queue type 〈Π !�(S),−〉
is pushed in the queue type of s[p] for a value message
(p,Π, �(v)), where S is the sort of v (rule QSendV). The
queue type 〈Π !λ,−〉 is pushed in the queue type of s[p] for
an adaptation message (p,Π, λ(G)), while the queue type of
s[q] has the projection of G on q as virtual monitor, for all
q ∈ Π (rule QSendG).

For typing the parallel composition of networks, rule
NPar prescribes that each named queue does not occur twice

(condition�1∩�2 = ∅) and composes session typings form-
ing a generalised type out of a queue type and a monitor. We
define the composition ∗ between queue types and monitors
as:

〈m,V 〉 ∗ M = M ∗ 〈m,V 〉 = 〈m,M ,V 〉
We extend ∗ to generalised types and to session typings as
expected:

Δ ∗ Δ′ = {s[p]:χ ∗ χ ′ | s[p]:χ ∈ Δ & s[p]:χ ′ ∈ Δ′}∪
{s[p]:χ | s[p]:χ ∈ Δ ∪ Δ′ &

s[p] /∈ dom(Δ) ∩ dom(Δ′)}
For example, if
� N � Δ, then
� end[P] | N � ∅ ∗ Δ

(by rules endP and NPar) and ∅∗Δ = Δ; this fits with the
structural equivalence end[P] | N ≡ N .

Notice that both � and ∗ are partial operators on session
typings, since they can be undefinedwhen applied to arbitrary
generalised types.

In order to take into account the structural congruence
between queues (see Table 7), we consider message types
modulo the equivalence relation ≈ induced by the following
rules (where Z stands for either �(S) or λ):

m;Π !Z;Π ′!Z ′;m′ ≈ m;Π ′!Z ′;Π !Z;m′
if Π ∩ Π ′ = ∅

m;Π !Z;m′ ≈ m;Π1!Z;Π2!Z;m′
if Π = Π1 ∪ Π2,Π1 ∩ Π2 = ∅

This equivalence relation on message types extends to gen-
eralised types by:

m ≈ m′ implies
〈m,V 〉 ≈ 〈m′,V 〉 and 〈m,M ,V 〉 ≈ 〈m′,M ,V 〉
We say that two session typings Δ and Δ′ are equivalent
(notation Δ ≈ Δ′) if s[p] : χ ∈ Δ implies s[p] : χ ′ ∈ Δ′

123

262 SOCA (2015) 9:249–268

with χ ≈ χ ′ and vice versa. Rule Equiv allows to use this
equivalence relation.

Rule Res requires the session typing to be consistent for
the session s in order to type the restriction on s.

A system can be typed if the network can be typed, while
the global state is arbitrary, see rule System.

A crucial observation is that virtual monitors occur in gen-
eralised types only if queues contain adaptation flags. In other
words, using the condition of being λ-free (that is a premise
of rules AdaOutCont and AdaOutNew), we get:

If
s s:h � Δ and h is λ − free, then no

virtual monitor occurs inΔ.

It is standard to prove an inversion lemma for networks
and systems by induction on derivations (Table 12).

Lemma 2 (Inversion Lemma)

1. If
� new(G) � Δ, then � = Δ = ∅.
2. If
� end[P] � Δ, then � = Δ = ∅.
3. If
� M [P] � Δ and M �= end, then � = ∅ and

Δ = {s[p]:M } and
 P � s[p]:T and T ∝ M .
4. If
� s:ø � Δ, then � = {s} and Δ = ∅.
5. If
� s:h · (p,Π, �(v)) � Δ, then � = {s} and

Δ ≈ Δ′�{s[p]:〈Π !�(S),−〉} and
{s} s:h � Δ′ and

 v:S.

6. If
� s:h · (p,Π, λ(G)) � Δ, then � = {s} and
Δ ≈ Δ′�({s[p]:〈Π !λ,−〉} ∪ {s[q]:〈ε,G �q 〉 | q ∈ Π})
and
{s} s:h � Δ′.

7. If
� N1 | N2 �Δ, then� = �1∪�2 andΔ = Δ1 ∗Δ2

and
�1 N1 � Δ1 and

�2 N2 � Δ2 and �1 ∩ �2 = ∅.

8. If
� (ν s)N � Δ, then � = �′ \ {s} and Δ = Δ′ \ s
and
�′ N � Δ′ and con(Δ, s).

9. If
� N || σ � Δ, then
� N � Δ.

We also need a lemma stating how the typing depends on
the first message on the queue. The proof follows immedi-
ately from the typing rules of queues.

Lemma 3 1. If
� s:(p,Π, �(v)) · h � Δ, then � = {s}
and Δ ≈ {s[p]:〈Π !�(S),−〉}�Δ′ and
{s} s:h � Δ′ and

 v:S.

2. If
� s:(p,Π, λ(G)) · h � Δ, then � = {s} and
Δ ≈ ({s[p]:〈Π !λ,−〉} ∪ {s[q]:〈ε,G �q 〉 | q ∈ Π})�Δ′
and
{s} s:h � Δ′.

Monitor LTS transactions reveal the monitor shapes, as
detailed in the next lemma, which can be proved by straight-
forward case analysis.

Lemma 4 1. IfM
p?�−−→ M ′, thenM = p?{�i (Si).Mi }i∈I

and � = � j and M ′ = M j for some j ∈ I .

2. If M
Π !�−−→ M ′, then M = Π !{�i (Si).Mi }i∈I and � =

� j and M ′ = M j for some j ∈ I .

3. If M
p?λ−−→, then M = p?{λi }i∈I and λ = λ j for some

j ∈ I .

4. If M
Π !λ−−→, then M = Π !{λi }i∈I and λ = λ j for some

j ∈ I .

The following lemma relates communications offered by
processes (as LTS transactions) with their types.

Lemma 5 1. If P
s[p]?�(v)−−−−−→ P ′ and
 P � s[p]:T, then

either P = s[p]?�(x).P0 and T = ?�(S).T′
or P = s[p]?�(x).P0 + P ′′ and T = ?�(S).T′ ∧ T′′, and
in both cases

 s[p]?�(x).P0 � s[p]:?�(S).T′ and P ′ = P0{v/x}.

2. If P
s[p]!�(v)−−−−−→ P ′ and
 P � s[p]:T, then either T =

!�(S).T′ or T = !�(S).T′ ∧ T′′, and
 P ′ � s[p]:T′ and

 v : S.

3. If P
s[p]?(λ,T′)−−−−−−→ P ′ and
 P�s[p]:T, then either T = ?λ

or T = ?λ ∧ T′′, and
 P ′ � s[p]:T′.
4. If P

s[p]!(λ(F),T′)−−−−−−−−→ P ′ and
 P � s[p]:T, then either
T = !λ or T = !λ ∧ T′′, and
 P ′ � s[p]:T′.

Proof The proof is by structural induction on P . We show
only Point (1), the proof for the other points being simpler.

If P
s[p]?�(v)−−−−−→ P ′, then either P = s[p]?�(x).P0 or P =

P1 + P2 and Pi
s[p]?�(v)−−−−−→ P ′ for i = 1 or i = 2. In the

first case P is typed by rule rcv and T = ?�(S).T′. In the
second case P is typed by rule choice. Then
 Pi � s[p]:Ti

and T = T1 ∧ T2 for i = 1, 2. By induction, either Pi =
s[p]?�(x).P0 and Ti = ?�(S).T′ or Pi = s[p]?�(x).P0 + P ′

i
and Ti = ?�(S).T′ ∧ T′′ for i = 1 or i = 2. In both cases

 s[p]?�(x).P0 � s[p]:?�(S).T′ and P ′ = P0{v/x}. ��

As usual, session types are not preserved under system
reduction: they evolve according to the actions performed
by the corresponding participants. This is formalised by the
reduction rules given in Table 13, where message types are
considered modulo the equivalence relation defined above.
The rules in thefirst line allowus to createmonitors andqueue
types. The rules in the second line get rid of types carrying no
information. The subsequent four rules deal with outputs and
inputs of labels with sorts and flags. In particular, the rule in
the second to last line shows how a virtual monitor becomes
the current monitor when a participant adapts itself.

Notice that not all the left-hand sides of the reduction rules
for networks and systems are typed by consistent session
typings. For example,

123

SOCA (2015) 9:249–268 263

Table 13 Reduction of session typings

∅ �⇒ {s[p]:M } ∅ �⇒ {s[p]:〈ε,V 〉}
{s[p]:〈m,end,−〉} �⇒ {s[p]:〈m,−〉} {s[p]:〈ε,−〉} �⇒ ∅

{s[p]:〈m,Π !{�i (Si).Mi }i∈I ,V 〉} �⇒ {s[p]:〈m ; Π !� j (S j),M j ,V 〉} j ∈ I

{s[p]:〈q!� j (S j) ; m,V 〉, s[q]:〈m′,p?{�i (Si).Mi }i∈I ,V ′〉} �⇒ {s[p]:〈m,V 〉, s[q]:〈m′,M j ,V
′〉} j ∈ I

{s[p]:〈m,Π !{λi }i∈I ,−〉} �⇒ {s[p]:〈m ; Π !λ j ,M ,−〉} j ∈ I

{s[p]:〈q!λ j ; m,−〉, s[q]:〈m′,p?{λi }i∈I ,V 〉} �⇒ {s[p]:〈m,−〉, s[q]:〈m′,V ,−〉} j ∈ I

Δ1�Δ �⇒ Δ2�Δ if Δ1 �⇒ Δ2 Δ1 ∗ Δ �⇒ Δ2 ∗ Δ if Δ1 �⇒ Δ2

{s} M [s[1]?�(x).s[1]?�′(y).0] | s:(2, 1, �(true)) � Δ

where M = 2?�(Bool).2?�′(Int).end,
Δ = {s[1]:M , s[2]:〈1!�(Bool),−〉}. Observe that
M [s[1]?�(x).s[1]?�′(y).0] | s:(2, 1, �(true))

matches the left-hand side of the reduction rule In, and Δ is
not consistent. The network obtained by putting this network
in parallel with 1!�′(Int).end[s[2]!�′(7).0] has a consistent
session typing. It is then crucial to show that if the left-hand
side of a reduction rule is typed by a session typing, which
is consistent when composed with some session typing, then
the same property holds for the right-hand side too. It is suf-
ficient to consider the reduction rules which do not contain
network and system reductions as premises, i.e. which are
the leafs in the reduction trees. This is formalised in the fol-
lowing lemma, which is the key step for proving the Subject
Reduction Theorem.

Lemma 6 (Key Lemma)

1. Let
� N �Δ, and N −→ N ′ be obtained by any reduc-
tion rule different from Equiv, and Δ ∗ Δ0 be consistent
for some Δ0. Then there is Δ′ such that
� N ′ �Δ′ and
Δ �⇒∗ Δ′ and Δ′ ∗ Δ0 is consistent.

2. Let
� S � Δ, and S −→ S ′ be obtained by any
reduction rule different from SN, CTX, and Δ ∗ Δ0

be consistent for some Δ0. Then there is Δ′ such that

� S ′ �Δ′ and Δ �⇒∗ Δ′ and Δ′ ∗Δ0 is consistent.

Proof (1). The proof is by cases on network reduction rules.
The cases of rule Init and Tau are trivial, since Δ = Δ′.

Rule In. By Lemma 2(7),

� M [P] | s:(q,p, �(v)) · h � Δ

implies � = �1 ∪ �2

Δ = Δ1 ∗ Δ2 (1)

�1 M [P] � Δ1 (2)

�2 s:(q,p, �(v)) · h � Δ2 (3)

By Lemma 4(1)M
p?�−−→M ′ impliesM =q?{�i (Si).Mi }i∈I

and � = � j andM ′ = M j for some j ∈ I . By Lemma 2(3),

the judgment (2) gives �1 = ∅ and

Δ1 = {s[p]:M } (4)

and
 P�s[p]:T andT ∝ M . ByLemma3(1), the judgment
(3) gives �2 = {s} and
Δ2 ≈ {s[q]:〈p!�(S),−〉}�Δ3 (5)

and

{s} s:h � Δ3 (6)

and
 v:S.
By Lemma 5(1) P

s[p]?�(v)−−−−−→ P ′ and
 P � s[p]:T
imply either P = s[p]?�(x).P0 and T = ?�(S′).T′ or P =
s[p]?�(x).P0 + P1 and T = ?�(S′).T′ ∧ T′′. In both cases

 s[p]?�(x).P0 � s[p]:?�(S′).T′ and P ′ = P0{v/x}. The
shapes of T,M and T ∝ M imply S′ = S j and T′ ∝ M ′.
The consistency ofΔ∗Δ0 implies S = S′. The we can derive

 P ′ � s[p]:T′ and

∅ M ′[P ′] � {s[p]:M ′} (7)

Applying Npar to (6) and (7) we derive

{s} M ′[P ′] | s : h � {s[p]:M ′} ∗ Δ3

Then Δ′ = {s[p]:M ′} ∗ Δ3. From (1), (4), and (5) we get

Δ ≈ {s[p]:〈m,q?{�i (Si).Mi }i∈I ,V 〉, s[q]:〈p!�(S);m′,V ′〉}
∪Δ′

3 where � = � j and S = S j and j ∈ I

for some m,V ,m′,V ′,Δ′
3 such that

Δ3 = {s[p]:〈m,V 〉, s[q]:〈m′,V ′〉} ∪ Δ′
3.

Since

{s[q]:〈p!�(S) ; m′,V ′〉, s[p]:〈m,q?{�i (Si).Mi }i∈I ,V 〉} �⇒
{s[q]:〈m′,V ′〉, s[p]:〈m,M ′,V 〉}
then we get Δ �⇒∗ Δ′. The only differences between Δ

and Δ′ are:

– the erasure of the message p!�(S) in the type of s[q];
– the replacement of the monitorM ′ to the monitor
q?{�i (Si).Mi }i∈I in the type of s[p].

It is then easy to check that the consistency ofΔ∗Δ0 implies
the consistency of Δ′ ∗ Δ0.

123

264 SOCA (2015) 9:249–268

Rule AdaInNew. By Lemma 2(7),

� M [P] | s:(q,p, λ(G)) · h � Δ

implies � = �1 ∪ �2

Δ = Δ1 ∗ Δ2 (8)

�1 M [P] � Δ1 (9)

�2 s:(q,p, λ(G)) · h � Δ2 (10)

By Lemma 4(3) M
q?λ−−→ implies

M = q?{λi }i∈I (11)

and λ = λ j for some j ∈ I . By Lemma 2(3), the judgment
(9) gives �1 = ∅ and

Δ1 = {s[p]:M } (12)

and
 P�s[p]:T andT ∝ M . ByLemma3(2), the judgment
(10) gives �2 = {s} and
Δ2 ≈ {s[q]:〈p!λ,−〉, s[p]:〈ε,M ′〉}�Δ3 (13)

(taking into account that G�q = M ′) and

{s} s:h � Δ3 (14)

We can obtain

∅ M ′[Q{s[p]/y}] � {s[p]:M ′} (15)

by using rule MP, since (Q,T′) ∈ P , T′ ∝ M ′ and M ′ �=
end (which is implied by the premise T �∝ M ′ of the rule
AdaInNew). Hence, we apply rule NPar to the judgments
(14) and (15) and we derive:

{s} M ′[Q{s[p]/y}] | s:h � {s[p]:M ′} ∗ Δ3

Then Δ′ = {s[p]:M ′} ∗ Δ3. Notice that (8), (12), (11) and
(13) imply

Δ ≈ {s[p]:〈m,q?{λi }i∈I ,M ′〉} ∪ ({s[q]:〈p!λ;m′,−〉}�Δ′
3)

for some m,m′,Δ′
3 such that

Δ3 ≈ {s[p]:〈m,−〉, s[q]:〈m′,−〉} ∪ Δ′
3.

Note that s[p] has M ′ as virtual monitor in Δ2 and then
no virtual monitor inΔ3. Instead, s[q] has no virtual monitor
being the sender of the adaptation. Since

{s[q]:〈p!λ ; m′,−〉, s[p]:〈m,q?{λi }i∈I ,M ′〉} �⇒
{s[q]:〈m′,−〉, s[p]:〈m,M ′,−〉}
we get Δ �⇒∗ Δ′. The only differences between Δ and Δ′
are:

– the erasure of the message p!λ in the type of s[q];
– the erasure of the monitor q?{λi }i∈I in the type of s[p];
– the monitor M ′ is virtual in the type of s[p] in Δ and it
is active in the type of s[p] in Δ′.

It is then easy to check that the consistency ofΔ∗Δ0 implies
the consistency of Δ′ ∗ Δ0.

The proof for rules Out and AdaInCont are similar and
simpler than those for rules In and AdaInNew, respectively.

(2). The proof is by cases on system reduction rules. The
case of rule OP is trivial, since Δ = Δ′.

Rule AdaOutCont. Being h λ-free, Δ does not
contain virtual monitors. By Lemma 2(9) and (2),

� M [P] | s:h || σ � Δ implies � = �1 ∪ �2,

Δ = Δ1 ∗ Δ2 (16)

�1 M [P] � Δ1 (17)

�2 s:h � Δ2 (18)

By Lemma 4(4),M
Π !λ−−→ implies

M = Π !{λi }i∈I (19)

and λ = λ j for some j ∈ I . By Lemma 2(3), the judgment
(17) gives �1 = ∅ and

Δ1 = {s[p]:M } (20)

 P � s[p]:T (21)

and T ∝ M .

By Lemma 5(4), the judgment (21) and P
s[p]!(λ(F),T′)−−−−−−−−→ P ′

imply
 P ′�s[p]:T′. We consider only the caseMp �= end,
the proof for the case Mp = end being similar but for the
use of rule {s[p]:〈m,end,−〉} �⇒ {s[p]:〈m,−〉}. Since
T′ ∝ Mp, then we derive

∅ Mp[P ′] � {s[p]:Mp} (22)

by rule MP. Similarly, for all q ∈ Π ′\(Π ∪ {p}) we can
derive

∅ Mq[Pq{s[q]/yq}] � {s[q]:Mq} (23)

by rule MP, since (Pq,Tq) ∈ P and Tq ∝ Mq.
ByLemma2(4), (5) and (6), the judgment (18) gives�2 =

{s}. Rule QSendG applied to the judgment (18) derives

{s} s:h · (p,Π, λ(G)) � Δ2�Δ3 (24)

where Δ3 = {s[p]:〈Π !λ,−〉} ∪ {s[q]:〈ε,G � q 〉 | q ∈ Π}.
Notice that Δ2�Δ3 is defined, since Δ2 does not contain
virtualmonitors.Applying ruleNPar to judgments (22), (23)
and (24) we conclude

{s} Mp[P ′] | N | s:h · (p,Π, λ(G)) � Δ′

where N = ∏
q∈Π ′\(Π∪{p}) Mq[Pq{s[q]/yq}] and Δ′ =

{s[p]:Mp} ∗ {s[q]:Mq | q ∈ Π ′\(Π ∪ {p})} ∗ (Δ2�Δ3).
Notice that (16), (20) and (19) imply

Δ = {s[p]:〈m,Π !{λi }i∈I ,−〉} ∗ Δ′
2

for some m such that Δ2 ≈ {s[p]:〈m,−〉}�Δ′
2. Since

{s[p]:〈m,Π !{λi }i∈I ,−〉} �⇒ {s[p]:〈m ; Π !λ,Mp,−〉}
for λ = λ j with j ∈ I

123

SOCA (2015) 9:249–268 265

∅ �⇒ {s[q]:〈ε,G�q 〉} for q ∈ Π

∅ �⇒ {s[q]:Mq} for q ∈ Π ′\Π ∪ {p}
we get Δ �⇒∗ Δ′. The session typing Δ′ contains only
monitors which are projections of the global type G. There-
fore, the consistency of Δ ∗ Δ0 implies the consistency of
Δ′ ∗ Δ0.

The proof for rule AdaOutNew proceeds as in the previ-
ous case. ��

The next lemma shows that typings for systems are invari-
ant under structural equivalence of networks, as expected.

Lemma 7 If
� N ||σ�Δ and N ≡N ′, then
� N ′ ||σ�Δ.

Proof ByLemma 2(9) and rule System, it is enough to show
that
� N � Δ and N ≡ N ′ imply
� N ′ � Δ. The proof
is by induction on the definition of structural equivalence,
observing that
∅ end[P] � ∅ and using typing rule Equiv.

��
Theorem 1 (Subject Reduction) If
� S � Δ with Δ con-
sistent andS −→∗ S ′, then
� S ′ � Δ′ for some consis-
tent Δ′ such that Δ �⇒∗ Δ′.

Proof It is enough to show the statement for the case S ≡
E [N] || σ and S ′ ≡ E [N ′] || σ ′, where either N −→ N ′
or N || σ −→ N ′ || σ ′ by one of the rules considered in
Lemma 6. By the structural equivalence on networks, we
can assume E = (

−→
νs)([] | N0) without loss of gener-

ality. Lemma 7 and Lemma 2(9), (8) and (7) applied to

� S � Δ give
�1 N � Δ1 and
�0 N0 � Δ0, where
� = (�0 ∪ �1) \ −→s and Δ = (Δ0 ∗ Δ1) \ −→s . The consis-
tency ofΔ implies the consistency ofΔ0∗Δ1 byLemma2(8).
In the case N −→ N ′, by Lemma 6(1) there is Δ′

1 such that

�1 N ′ �Δ′

1 andΔ1 �⇒∗ Δ′
1 andΔ0 ∗Δ′

1 is consistent. In
the case N || σ −→ N ′ || σ ′, by Lemma 6(2), there isΔ′

1 such
that
�1 N ′ || σ ′ �Δ′

1 (that is
�1 N ′ �Δ′
1 by Lemma 2(9))

and Δ1 �⇒∗ Δ′
1 and Δ0 ∗ Δ′

1 is consistent. Therefore,
we derive
� S ′ � Δ′, where Δ′ = (Δ0 ∗ Δ′

1) \ −→s by
applying typing rulesNPar, Res, and System. Observe that
Δ �⇒∗ Δ′ and Δ′ is consistent. ��

Wesay that a system is initialwhen its network is a parallel
composition of session initiators, which is always typeable.
The type system can guarantee progress, proviso that the col-
lection of processes and types contains at least one process for
each monitor which is created at run-time in the adaptations.
This can also be statically checked when the domains of the
adaptation functions which occur in processes are finite. We
say that a collection P is complete if, for every global type
G in the domain of an adaptation function which occurs in
a process belonging to P , there are processes in P whose
types are adequate for the monitors obtained by projecting
G onto its participants.

Theorem 2 (Progress) If P is complete, S is an initial
system and S −→∗

P S ′, then S ′ has progress, i.e.

1. every input monitored process will eventually receive a
message, and

2. every message in a queue will eventually be received by
an input monitored process.

Proof Coppo et al. [13] show that an initial system without
adaptation flags has progress (by rewriting the result of [13]
in our setting).

With respect to the framework of Coppo et al. [13], each
adaptation step, in our model, can be seen as the starting
of a new interaction protocol where all participants can be
implemented thanks to the completeness of P . Therefore,
the following key features ensure the progress property in
our case:

1. all the interaction protocols prescribed by a global type
are terminating, either by exchanging adaptation flags or
reaching end;

2. a participant is a process, monitored by a projection of a
global type, with at most one channel, so there is no com-
munications among participants monitored by different
global types, even when they are in the same session;

3. by Subject Reduction, systems are well typed and reduc-
tion preserves the consistency of session typings, thus all
communications take place in the order prescribed by the
global types.

Notice that Point (2) holds thanks to the condition of λ-
freeness in rulesAdaOutCont andAdaOutNew. Conclud-
ing, the computation can be seen as a succession of indepen-
dent terminating communication protocols, each of which
has the progress property. So, the whole computation has it.

��

7 Related work

The literature includes several works aimed at studying adap-
tive systems in different application contexts and by differ-
ent perspectives on the conceptual notion of adaptation. The
paper [7] provides a valuable discussion on this issue and an
interesting classification of various approaches. The state-of-
the-art in service choreography adaptation is analysed in [31].
We focus here on the papers which are more related to the
distinguishing features of our approach.

7.1 Adaptable processes

In [5], Bravetti et al. present a calculus in which adapt-
able processes can be modified by “update patterns”. Run-
time adaptation of structured communications is approached

123

266 SOCA (2015) 9:249–268

in [20] by combining the constructors for adaptable processes
of Bravetti et al. [5] with the session type system of Gar-
ralda et al. [22] for the Boxed Ambient calculus [8]. Ses-
sion behaviours are never disrupted by adaptation actions,
since processes engaged in active sessions cannot be updated.
This calculus deals with adaptations of single processes,
not with adaptations of the choreography of communicating
processes, and only considers dyadic sessions and synchro-
nous communications.

7.2 Adaptable choreographies

The paper most similar to ours is Anderson and Rathke
[1], where global and session types are used to guaran-
tee deadlock-freedom in a calculus of multiparty sessions
with asynchronous communications. Only part of the run-
ning code is updated. Two different conditions are given for
ensuring liveness. The first condition requires that all chan-
nel queues are empty before updating. The second condition
requires a partial order between the session participants with
a unique minimal element. The participants are then updated
following this order. Our adaptation framework allows the
progress property to be guaranteed without assuming such
conditions.

The paper [14], building on [16,17,30] and [15], proposes
a rule-based approach in which all interactions, under all
possible changes produced by the adaptation rules, proceed
as prescribed by an abstract model. In particular, the sys-
tem is deadlock-free by construction. The adaptive system is
composed by interacting participants deployed on different
locations, each executing its own code. Adaptation is per-
formed by distributed adaptation servers, which are reposito-
ries of adaptation rules. Rules can be added or removed at any
moment, while the system is running. Applicability depends
on execution environment andproperties of the code region to
be replaced. If a rule is applied, it replaces part of the code of
(some of) the participants with a newer version, able to better
meet the requirements. Adaptations of different participants
are coordinated ensuring coherent behaviour. Data and con-
trol flow statements are done in a Java-style syntax. Central to
the technical development are the notions of adaptive inter-
action oriented choreography and adaptive process oriented
choreography, which resemble our global types and moni-
tors. Although there are many analogies between this and
our paper, there are important differences. In [14], auxiliary
communications are needed to ensure that all participants
take the same branch in conditionals, and new participants
cannot be added by an adaptation. Moreover in [14], adap-
tation involves only a part of the choreography and can be
applied in any moment, while in our calculus, the interaction
protocols contain the adaptation points and the reconfigura-
tion step applies to the whole system.

The language of service choreographies defined in [6] is
extended with two operators in [4] to take into account adap-
tation. One operator allows for the specification of adapt-
able scopes that can be dynamically modified, while the sec-
ond may dynamically update code in one of such scopes. A
similar extension is given for the service contract language
of Bravetti and Zavattaro [6], so that projection can relate the
two adaptable languages. The main difference with our pro-
posal is that the set of possible participants to the modified
choreographies is fixed once for all, in the adaptable scopes.

7.3 Monitors

In the literature, there are many calculi in which the process
behaviour is statically and/or dynamically controlled by
means ofmonitors, for example [21,26]. Theworks thatmost
influenced the present paper are Chen et al. [11] and Bocchi
et al. [3]. The calculus in those papers is a multiparty ses-
sion calculus with assertions, and therefore, it is much more
expressive than our calculus. In fact, the monitors in [3,11]
prescribe not only the types of the exchanged data, but also
that the values of these data satisfy some predicates. Another
main difference is that thosemonitors contain information on
the behaviours of all session participants, while our monitors
represent the behaviour of single participants.

7.4 Intersection and union types

In the present paper, we type processes with intersections and
unions taking inspiration from [33]. The type syntax in that
paper is more liberal than ours, for example not requiring
labels in an intersection and in a union be different, so more
processes can be typed. Also in [33], the most interesting
processes correspond to external choices between inputs and
internal choices between outputs.

Subtyping for intersections andunions is naturally inspired
by their set-theoretical interpretation. Considering the map-
ping between monitors and types of Definition 8, in this
paper, we give a subtyping which is the opposite of that
considered in [33]. Both subtypings have been largely used
[9,18,23,24,29,32,34,35,37]. The main reason of this dif-
ference is that in typing processes, one can either assume or
derive the types of channels. In the simple case of a process
P with only one channel y, the typing judgments have the
shapes y : T
 P and
 P � {y : T}, respectively. This is
the reason why subtyping in [23] and in [32] is defined in
opposite ways. Choices between fewer inputs are smaller in
the subtyping of Gay and Hole [23] and bigger in the subtyp-
ing of Mostrous et al. [32]. Choices between outputs behave
dually.

123

SOCA (2015) 9:249–268 267

8 Conclusion

We have presented a formal model of self-adaptation in mul-
tiparty sessions. The framework is based on self-adaptive
monitors and global types. In the service-oriented context,
global types can be exploited as choreographies of service
interactions and monitors as local protocol specifications
of services. From this perspective, the present paper pro-
vides a formal model for assessing the impact of highly
evolving environments, which demand for dynamic self-
reconfigurations of the whole system. Interactions among
services may be added or removed as well as new services
may be required. We use a type discipline to ensure that ser-
vice collaborations will behave in a safe way after dynamic
adaptations.

Differently from approaches focusing on adaptation as
code modification in software systems, our approach is
choreography centred (similar to [14] for this aspect). When
dynamic conditions demand a change, the global choreogra-
phy updates itself together with the newmonitors which pre-
scribe the new behaviours to the participants. A process fills
(implements) a given monitor if its type is adequate for that
monitor, otherwise a different implementation (process) need
to be found. Notably, we proved that all monitored processes
behave correctly and interact with each other in a safe way,
once the adaptation has been performed.

As a main feature, we achieve a decentralised control of
the adaptation and a notable flexibility in the dynamics of
self-reconfiguration. According to its monitor, any partici-
pant can be in charge of checking global data and sending the
adaptation request, instead of devoting a centralised mech-
anism to this task. Furthermore, the dynamic reconfigura-
tion can add new participants, while some of the old partici-
pants are not longer involved. Finally, processes, that are sim-
ply implementation code, can follow different incompatible
computational paths, thus each participant can be differently
implemented in the various adaptation steps.

One apparent limitation of our calculus is that processes
can only operate on a single channel. This limitation can be
addressed by extending the process language and its typing
rules, without major consequences on the rest of the devel-
opment. Instead, adding session delegation would require
further investigation.

We plan to experiment with implementations of our
approach, to evaluate its feasibility.

We are working towards a quantitative version of our
model, where the global state also contains dynamically
evolving semantic information about processes, such as rep-
utation or performance rates. Using this information, adap-
tation functions will be able to choose a single process
among all the processes matching a monitor, as one of
the best implementations for that participant. In the present
calculus, this issue results in an arbitrary choice, since

processes can be taken solely on the basis of their com-
patibility with monitors from the point of view of safe
adaptations. In a realistic application, instead, it would be
interesting to involve other requests concerning quantitative
aspects.

Acknowledgments The authors gratefully thank the anonymous
referees for their accurate and enlightening remarks, that strongly
improved both the presentation and the technical development. This
work was partially supported by EU Collaborative project ASCENS
257414, ICT COST Action IC1201 BETTY, MIUR PRIN Project
CINA Prot. 2010LHT4KM and Torino University/Compagnia San
Paolo Project SALT.

References

1. Anderson G, Rathke J (2012) Dynamic software update for mes-
sage passing programs. In: APLAS’12, LNCS, vol 7705. Springer,
Berlin, pp 207–222

2. Bettini L, Coppo M, D’Antoni L, De Luca M, Dezani-Ciancaglini
M, Yoshida N (2008) Global progress in dynamically interleaved
multiparty sessions. In: CONCUR’08, LNCS, vol 5201. Springer,
Berlin, pp 418–433

3. Bocchi L, Chen T.C, Demangeon R, Honda K, Yoshida N
(2013) Monitoring networks through multiparty session types. In:
FMOODS/FORTE’13, LNCS, vol 7892. Springer, Berlin, pp 50–
65

4. Bravetti M, Carbone M, Hildebrandt T, Lanese I, Mauro J, Perez
J.A, Zavattaro G (2014) Towards global and local types for adap-
tation. In: SEFM’13, LNCS, vol 8368, Springer, Berlin, pp 3–14

5. Bravetti M, Di Giusto C, Pérez J.A, Zavattaro G (2012) Adaptable
processes. Log Methods Comput Sci 8(4):1–71

6. Bravetti M, Zavattaro G (2007) Towards a unifying theory for
choreography conformance and contract compliance. In: SC’07,
LNCS, vol 4829. Springer, Berlin, pp 34–50

7. Bruni R, Corradini A, Gadducci F, Lluch-Lafuente A, Vandin
A (2012) A Conceptual framework for adaptation. In: FASE’12,
LNCS, vol 7212. Springer, Berlin, pp 240–254

8. Bugliesi M, Castagna G, Crafa S (2004) Access control for mobile
agents: the calculus of boxed ambients. ACM Trans Program Lang
Syst 26(1):57–124

9. Carbone M, Honda K, Yoshida N (2012) Structured
communication-centered programming for web services. ACM
Trans Program Lang Syst 34(2):8:1–8:78

10. Castagna G, Dezani-Ciancaglini M, Padovani L (2012) On global
types and multi-party sessions. Log Methods Comput Sci 8:1–45

11. Chen TC, Bocchi L, Deniélou P.M, Honda K, Yoshida N
(2012) Asynchronous distributed monitoring for multiparty ses-
sion enforcement. In: TGC’11, LNCS, vol 7173. Springer, Berlin,
pp 25–45

12. Coppo M, Dezani-Ciancaglini M, Venneri B (2014) Self-adaptive
monitors for multiparty sessions. In: PDP’14, IEEE, pp 688–696

13. Coppo M, Dezani-Ciancaglini M, Yoshida N, Padovani L (2014)
Global progress for dynamically interleaved multiparty sessions.
Math Struct Comput Sci (to appear)

14. Dalla Preda M, Gabbrielli M, Giallorenzo S, Lanese I, Mauro J
(2014) Deadlock freedom by construction for distributed adaptive
applications. CoRR. arxiv.org:1407.0970

15. Dalla Preda M, Giallorenzo S, Lanese I, Mauro J, Gabbrielli
M (2014) AIOCJ: a choreographic framework for safe adaptive
distributed applications. In: SLE’14, LNCS, vol 8706. Springer,
Berlin, pp 161–170

123

http://arxiv.org/abs/1407.0970

268 SOCA (2015) 9:249–268

16. Dalla Preda M, Lanese I, Mauro J, Gabbrielli M (2013) Adap-
tive choreographies. http://www.cs.unibo.it/lanese/publications/
adaptchor.gz

17. Dalla Preda M, Lanese I, Mauro J, Gabbrielli M, Giallorenzo
S (2013) Safe run-time adaptation of distributed systems. http://
www.cs.unibo.it/lanese/publications/fulltext/safeadapt.gz

18. Demangeon R, Honda K (2011) Full abstraction in a subtyped
pi-calculus with linear types. In: CONCUR’11, LNCS, vol 6901.
Springer, Berlin, pp 280–296

19. Deniélou P.M, Yoshida N (2011) Dynamic multirole session types.
In: POPL’11. ACM Press, New York, pp 435–446

20. Di Giusto C, Pérez JA (2013) Disciplined structured communica-
tions with consistent runtime adaptation. In: SAC’13, ACM Press,
New York, pp 1913–1918

21. Ferrari GL, Moggi E, Pugliese R (2002) Guardians for ambient-
based monitoring. ENTCS 66(3):52–75

22. Garralda P, Compagnoni A.B, Dezani-Ciancaglini M (2006)
BASS: boxed ambients with safe sessions. In: PPDP’06, ACM
Press, New York, pp 61–72

23. GayS,HoleM(2005)Subtyping for session types in thePi calculus.
Acta Inf 42(2/3):191–225

24. Gay SJ (2008) Bounded polymorphism in session types. Math
Struct Comput Sci 18(5):895–930

25. Ghezzi C, Pradella M, Salvaneschi G (2011) An evaluation of the
adaptation capabilities in programming languages. In: SEAMS’11.
ACM Press, New York, pp 50–59

26. Gorla D, HennessyM, Sassone V (2005) Security policies as mem-
branes in systems for global computing. ENTCS 138(1):23–42

27. Honda K, Vasconcelos VT, Kubo M (1998) Language primitives
and type disciplines for structured communication-based program-
ming. In: ESOP’98, LNCS, vol 1381. Springer, Berlin, pp 22–138

28. Honda K, Yoshida N, Carbone M (2008) Multiparty asynchronous
session types. In: POPL’08, ACM Press, New York, pp 273–284

29. Kouzapas D, Yoshida N, HondaK (2011) On asynchronous session
semantics. In: FMOODS/FORTE’11, LNCS, vol 6722, Springer,
Berlin, pp 228–243

30. Lanese I, Bucchiarone A, Montesi F (2010) A framework for rule-
based dynamic adaptation. In: TGC’10, LNCS, vol 6084, Springer,
Berlin, pp 284–300

31. Leite LAF, Oliva GA, Nogueira GM, GerosaMA, Kon F, Milojicic
DS (2013) A systematic literature review of service choreography
adaptation. SOCA 7(3):199–216

32. Mostrous D, Yoshida N, Honda K (2009) Global principal typ-
ing in partially commutative asynchronous sessions. In: ESOP’09,
LNCS, vol 5502, Springer, Berlin, pp 316–332

33. Padovani L (2010) Session types = intersection types + union types.
In: ITRS’10, EPTCS, vol 45, pp 71–89

34. Padovani L (2011) Fair subtyping for multi-party session types.
In: COORDINATION’11, LNCS, vol 6721, Springer, Berlin,
pp 127–141

35. Padovani L (2013) Fair subtyping for open session types. In:
ICALP’13, LNCS, vol 7966, Springer, Berlin. pp 373–384

36. Psaier H, Juszczyk L, Skopik F, Schall D, Dustdar S (2010) Run-
time behavior monitoring and self-adaptation in service-oriented
systems. In: SASO’10, IEEE Computer Society, pp 164–173

37. Vasconcelos VT (2009) Fundamentals of session types. In:
SFM’09, LNCS, vol 5569, Springer, Berlin. pp 158–186

123

http://www.cs.unibo.it/lanese/publications/adaptchor.gz
http://www.cs.unibo.it/lanese/publications/adaptchor.gz
http://www.cs.unibo.it/lanese/publications/fulltext/safeadapt.gz
http://www.cs.unibo.it/lanese/publications/fulltext/safeadapt.gz

	Self-adaptive multiparty sessions
	Abstract
	1 Introduction
	1.1 Example
	1.2 Structure of the paper

	2 Syntax
	2.1 Global types
	2.2 Monitors
	2.3 Processes
	2.4 Network
	2.5 System

	3 Process types
	4 Semantics
	5 Examples
	6 Safety
	7 Related work
	7.1 Adaptable processes
	7.2 Adaptable choreographies
	7.3 Monitors
	7.4 Intersection and union types

	8 Conclusion
	Acknowledgments
	References

