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Abstract In QoS-based Web service recommendation,
predicting quality of service (QoS) for users will greatly
aid service selection and discovery. Collaborative filter-
ing (CF) is an effective method for Web service selection
and recommendation. CF algorithms can be divided into
two main categories: memory-based and model-based algo-
rithms. Memory-based CF algorithms are easy to implement
and highly effective, but they suffer froma fundamental prob-
lem: inability to scale-up. Model-based CF algorithms, such
as clustering CF algorithms, address the scalability prob-
lem by seeking users for recommendation within smaller and
highly similar clusters, rather than within the entire database.
However, they are often time-consuming to build and update.
In this paper, we propose a time-aware and location-aware
CF algorithms. To validate our algorithm, this paper con-
ducts series of large-scale experiments based on a real-world
Web serviceQoS data set. Experimental results show that our
approach is capable of addressing the three important chal-
lenges of recommender systems–high quality of prediction,
high scalability, and easy to build and update.

Keywords Web service · Qos prediction · Time-aware ·
Location-aware · Collaborative filtering algorithm

1 Introduction

In Web service-oriented environments, Web services are in
essence loosely coupled, hosted by different providers, and
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located in different location. With the exponential growth
of Web services, there are many Web services with identi-
cal or similar functionalities, but different QoS [1]. Thus,
Web services with identical or similar functionalities would
be identified by QoS, which has become a critical issue in
services computing [2].

On the other hand, the demands of the service con-
sumers vary significantly. It is not possible to fulfill all con-
sumer expectations from the service provider perspective,
and hence, a balance needs to be made via a negotiation
process. By the end of the negotiation process, provider and
consumer reach an agreement. In SOA terms, this agree-
ment is referred to as a service-level agreement (SLA).
SLA has been widely used in business systems, e.g., Ama-
zon [3]. SLAs contain service-level objectives (SLOs) and
numerical QoS objectives, which the service needs to ful-
fill. QoS promises are typically defined as legally binding
SLAs.

A SLA between a service provider and its customers will
assure customers that they can get the service they pay for
and will obligate the service provider to achieve its service
promises. For cases of violations, SLAs often define mon-
etary penalties. Hence, providers have a strong interest in
reducing the number of SLA violations for their services.
Thus, a prior identification of SLA violations has become
a very important research topic, e.g., [4]. It predicts SLA
violations by comparing the predictions of QoS values with
existing customer SLAs. The QoS performance of Web ser-
vices observed from the users’ perspective is usually quite
different from that declared by the service providers in SLA,
mainly due to the following reasons: (1) QoS performance of
Web services is highly related to invocation time, since the
service status (e.g., workload and number of clients) and the
network environment (e.g., congestion) change over time.
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For example, in throughput data set 3,1 which was published
in references [5], when user 141 invokes service 4,499 at
time interval 20, the throughput is 39.953053. But when the
same user invokes the same service at different time interval
45, the throughput becomes 6.022647. The first throughput
is six times larger than the second. (2) Different users may
observe quite different QoS performance when invoking the
same Web service at the same time. For example, in respond
time data set 3 (see footnote 1), when user 56 or 57 invokes
service 353 at time interval 37, the respond time is 20.0. Both
user 56 and 57 belong to AS2 AS11318. But when user 53
who belongs toASAS1742 invokes service 353 at time inter-
val 37, the respond time is 0.0010. Therefore, predicting the
QoS values is a critical issue for a prior identification of SLA
violations.

Leitner’s [4] approach predicts SLA violations by com-
paring the predictions of SLOs values with existing cus-
tomer SLAs. The SLO may be composed of one or more
QoS measurements that are combined to produce the SLO
achievement value. Therefore, the approach for predicting
the QoS value with high accuracy and high scalability is
really important for identification of SLA violations, e.g.,
Leitner’s approach [4].

Based on the above analysis, predicting the QoS value is
becomingmore andmore essential for service-oriented appli-
cations designers to make service selection, service compo-
sition, and identification of SLA violations.

CF [6–9] is an effective method for Web service selec-
tion and recommendation. For example, collaborative filter-
ing has been widely used in commercial recommendation
systems [10]. CFwould automatically predict theQoS values
of a target Web service for an active service user by employ-
ing historical QoS information from other similar service
users, who have similar historical QoS values on the service
set, in which every service is similar to the target service. In a
typical CF scenario, a recommender system consisting of N
users andM services, the relationship between users and ser-
vices is denoted by an N ×M matrix, called the user-service
matrix. Every entry qn,m in this matrix represents a vector
of QoS values (e.g., response time and failure rate), which
is observed by the user n on the service m. If user n has not
invoked the service m before, then qn,m = 0.

Researchers have devised a number of collaborative filter-
ing algorithms, which could be divided into two main cate-
gories: memory-based and model-based algorithms.
Memory-based CF algorithms use the entire or a sample
of the user-service database to generate a prediction. Every

1 http://www.wsdream.net/wsdream/dataset.html.
2 An autonomous system (AS) is either a single network or a group
of networks that is controlled by a common network administrator on
behalf of a single administrative entity (such as a university and a busi-
ness enterprise). An autonomous system has a globally unique number.

user is part of a group of people with similar interests.
By identifying the so-called neighbors of a new user (or
active user), a prediction of preferences on new services
for him or her can be produced. Model-based CF algo-
rithms design and develop models (such as machine learning
and data mining algorithms) to recognize complex patterns
based on the training data and then make intelligent predic-
tions for test data or real-world data, based on the learned
models.

Memory-based CF algorithms are easy to implement and
highly effective but suffer from a fundamental problem:
inability to scale-up. Algorithms based on memory-based
approaches often cannot cope well with the large numbers
of users and services. Model-based CF algorithms, such as
clustering CF algorithms, address the scalability problem
by seeking users for recommendation within smaller and
highly similar clusters, rather than within the entire data-
base. However, they are often time-consuming to build and
update.

This paper proposes a time-aware and location-aware col-
laborative filtering algorithm, which combines the strengths
of memory-based approaches and model-based approaches
and overcomes shortcomings of both approaches. QoS per-
formance of Web services is highly related to locations,
since the user-observed QoS performance of Web services
is greatly influenced by the network distance and the Inter-
net connections between users and Web services. Therefore,
our approach divides the users set and services set into many
clusters according to the location information. Then, it tries
to seek similar users and services within smaller and highly
similar clusters, rather than within the entire database. This
enables our approach to be scalable. Since our approach clas-
sifies users and services according the location information,
adding and deleting users or services will only update these
clusters, which contain those users and services, while other
clusters will not be affected. This enables our approach to
build and update clusters quickly.

QoSperformanceofWeb services is highly related to invo-
cation time, since the service status (e.g., workload and num-
ber of clients) and the network environment (e.g., congestion,
etc.) change over time. Therefore, time factor is employed by
our approach to improve the prediction accuracy. QoS per-
formance of Web services is also highly related to locations,
since the user-observed QoS performance of Web services
is greatly influenced by the network distance and the Inter-
net connections between users and Web services. Therefore,
location factor is also employed by our approach to improve
the prediction accuracy.

The rest of this paper is organized as follows: Sect. 2 intro-
duces related work. Section3 presents a motivating scenario.
Section4 describes the time-aware and location-aware col-
laborative filtering algorithm. Section5 presents experiments
and results. Section6 concludes this paper.
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2 Related work

With the exponential growth of Web applications, there are
lots of investigations focusing on different kinds of issues.
For example,Web service selection [1,20],Web service com-
position [21,22], failure prediction [23], and reliability pre-
diction [24]. In this section, we briefly present some of the
research literatures related to collaborative filtering, recom-
mender systems, and QoS prediction.

Collaborative filtering methods are widely adopted in
commercial recommender systems [12,25]. Researchers
have devised a number of collaborative filtering algorithms,
which could be divided into two main categories: memory-
based and model-based algorithms [11]. The most often
analyzed examples of memory-based collaborative filter-
ing include user-based approaches [26] and item-based
approaches [27,28]. Memory-based CF methods are easy to
implement and highly effective, but they suffer from a poten-
tial challenge, which is shown as follow:

Scalability Memory-based CF methods require computa-
tion that grows with both the number of users and the number
of services.When the number of users or services is too large,
calculating similarity values for each pair of users or services
is time-consuming.

Much research effort focuses on improving the predic-
tion accuracy of memory-based CF algorithms, but seldom
focuses on scalability. For example, WSRec is a hybrid
method.WSRec is a user-based and item-based collaborative
filtering algorithm to make QoS prediction [13]. But WSRec
suffers from serious scalability problem. In order to address
the scalability problem, our approach divides the users set
and services set into many clusters according to the location
information and tries to seek similar users and serviceswithin
smaller and highly similar clusters.

Chen et al. [16] and LACF [17] also take location factor
into account. Chen is the first to recognize the influence of
user location in Web services QoS prediction, and he also
proposes a novel method. However, services’ location infor-
mation is not employed. Tang et al. [17] proposes a method
of location-aware collaborative filtering to recommend Web
services to users by incorporating locations of both users and
services. LACF is a clustering CF algorithm. Clustering CF
algorithms are trade-offs between scalability and prediction
performance [29]. In order to further improve the predic-
tion accuracy, our approach employs time factor, since QoS
performance of Web services is highly related to invocation
time.

In order to improve the prediction accuracy, different kinds
of factors are taken into account when the missing QoS val-
ues are predicted by collaborative filtering algorithm. Fig-
ure1 shows those factors that have been employed by CF.
Jiang et al. [14] take into account the influence of person-
alization of Web service items when computing degree of

Fig. 1 The factors have been employed by CF

Fig. 2 The relationship between our approach and others

similarity between users. The method based on the observa-
tion that more popular services or services with more stable
QoS fromuser to user should contribute less to user similarity
measurement. Zhang et al. [15] take the environment factor
and user input factor into account, where environment fac-
tor refers to those environmental features, which have effect
on the QoS of Web service, e.g., bandwidth, and input fac-
tor refers to those input features, which have effect on QoS
of Web service, e.g., input data size. All above works focus
on improving the prediction accuracy of memory-based CF
algorithms, but none of them focus on scalability.

Model-based approaches employ machine learning tech-
niques to fit a predefined model based on the training data
sets.Model-based approaches include several types: the clus-
tering models [18] and the latent factor models [19]. Clus-
ter models have better online scalability than memory-based
collaborative filtering methods because they compare the
user to a controlled number of segments rather than an
entire customer base. But general clustering computation
is time-consuming to build and update. Other model-based
approaches also suffer from the same problems.

A relationship Fig. 2 and a comparison Table1 have been
given in this section. The relationship Fig. 2 shows the place-
ment of our approach among others, and the comparison
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Table 1 Comparison of our
approach with other approaches

Missing
data

Similarity
weight

Scalability Easy to build
and update

Time-
aware

Location-
aware

UPCC [11] No No No Yes No No

IPCC [12] No No No Yes No No

WSRec [13] No Yes No Yes No No

Jiang et al. [14] No No No Yes No No

Zhang et al. [15] Yes No No Yes No No

Chen et al. [16] No No Yes Yes No Yes

LACF [17] No No Yes Yes No Yes

TLACF Yes Yes Yes Yes Yes Yes

Xue et al. [18] Yes No Yes No No No

Salakhutdinov and Mnih [19] No No Yes No No No

Table1 shows thedifferences betweenour approach andother
approaches. Missing data will be described in Sect. 4.6. Sim-
ilarity weight has been employed to reduce the influence of a
small number of common users or services. In other words,
similarity weight has been employed to emphasize high sim-
ilarity and to punish low similarity. Similarity weight will be
described in Sects. 4.4 and 4.5.

Our approach divides the users set and services set
into many clusters and tries to seek similar users and ser-
vices within smaller and highly similar clusters. Thus, our
approach is scalable. Since our approach classifies users and
services just according to location information, the time com-
plexity of our clustering computation is O(N + M) and
the time complexity of updating clusters is O(1), where N
is the number of users and M is the number of services.
The time complexity of general model-based approaches to
build models, such as singular value decomposition (SVD),
is O(N 3 + M3) [30]. The time complexity of SVD updating
is O(k2 × M + k2 × N ), where k is the number of factors
[31]. Thus, the clusters can be built and updated quickly by
our approach. General model-based CF algorithms design
and develop models by machine learning algorithms, data
mining algorithms, etc., which are difficult to implement,
while our approach classifies users and services just accord-
ing to location information; thus, the implementation of our
approach is easier. In other words, our approach would over-
come the disadvantage of general model-based approaches.
Since Clustering CF algorithms are trade-offs between scal-
ability and prediction performance [29], in order to improve
the prediction accuracy, our approach employs time factor,
since QoS performance of Web services is highly related to
invocation time.

Therefore, our approach combines the strengths of
memory-based approaches and model-based approaches and
overcomes shortcomings of both approaches. Our approach
is efficient in predicting the missing QoS values as analyzed
in Sect. 4.8. Moreover, our approach significantly improves
prediction accuracy.

3 A motivating scenario

CF is an effective method for Web service selection and rec-
ommendation. Researchers have devised a number of collab-
orative filtering algorithms, which could be divided into two
main categories:memory-based andmodel-based algorithms
[11].

The memory-based CF methods are notably deployed
into commercial systems, since they are easy to implement
and highly effective [16]. But when the number of existing
users and services grow tremendously, traditional memory-
basedCFalgorithmswill suffer from serious scalability prob-
lems, with computational resources going beyond practical
or acceptable levels. It is O(NM) in the worst case, where N
is the number of users andM is the number of services, since
it examines N users and up to M services for each customer
[10].

Model-based CF methods, such as clustering CF algo-
rithms, have better online scalability than memory-based CF
methods, but they are often time-consuming to build and
update [18]. Cluster models have better online scalability
because they compare the user to a controlled number of
segments rather than an entire user base.

Based on the above discussion, it is certainly helpful to
have a novel method with better online scalability, which is
easy to implement, easy to build, and easy to update. In this
paper, location information has been employed to enable our
approach to be scalable, easy to build, and easy to update.
And time information has been employed to further improve
the prediction accuracy.

Nevertheless, there are some problems that need to be
solved to make accurate and efficient QoS prediction using
location and time information: (1) How to represent user or
service location and acquire location information? (2)How to
employ and represent time information? (3) How to combine
location and time information with collaborative filtering to
predict QoS values? and (4) How do we design experiments
for performance and efficiency evaluation?
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4 The QoS prediction algorithm

4.1 Notations and definitions

The following are important notations used in the rest of this
paper:

U = {u1, u2, . . . , un} is a set of service users, where n
refers to the total number of service users registered in the
recommendation system.

S = {s1, s2, . . . , sm} is a set of Web services, where m
refers to the total number of Web services collected by the
recommendation system.

A = {a1, a2, . . . , ae} is a set of ASNs,3 where e refers to
the total number of ASs detected from all users and services.
Let aui denotes ASN to which the user ui ’s IP belongs. Sim-
ilarly, as j denotes ASN to which the service s j ’s IP belongs.

Aui = {u|u ∈ U, ui ∈ U, aui ∈ A, au ∈ A, aui = au}.
Aui is a subset of the setU . Aui consists of those users who’s
IP and the user ui ’s IP belong to the same ASN. If user
u ∈ Aui and ui ∈ Aui , then user u’s IP and user ui ’s IP
belong to the same ASN.

As j = {s|s ∈ S, s j ∈ S, as j ∈ A, as ∈ A, as j = as}. As j
is a subset of the set S. As j consists of those services who’s
IP and the service s j ’s IP belong to the same ASN. If service
s ∈ As j and s j ∈ As j , then service s’s IP and service s j ’s IP
belong to the same ASN.

C = {c1, c2, . . . , c f } is a set of country IDs,where f refers
to the total number of countries detected from all users and
services. Let cui denotes country ID to which the user ui ’s
IP belongs. Similarly, cs j denotes country ID to which the
service s j ’s IP belongs.

Cui = {u|u ∈ U, ui ∈ U, cui ∈ C, cu ∈ C, cui = cu}.
Cui is a subset of the setU .Cui consists of those users who’s
IP and the user ui ’s IP belong to the same country. If user
u ∈ Cui and ui ∈ Cui , then user u’s IP and user ui ’s IP
belong to the same country.

Cs j = {s|s ∈ S, s j ∈ S, cs j ∈ C, cs ∈ C, cs j = cs}. Cs j
is a subset of the set S.Cs j consists of those services who’s IP
and the service s j ’s IP belong to the same country. If service
s ∈ Cs j and s j ∈ Cs j , then service s’s IP and service s j ’s IP
belong to the same country.

T = {t1, t2, . . . , tr } is a set of time interval, where r refers
to the total number of time interval. For example, 1day has
24h with a time interval lasting for 15min, then r = 96.

3 ASN denotes globally unique number of the AS to which the IP
belongs. Note that even if users are within a same AS, it does not defi-
nitelymean that they are close geographically, and vice versa. Generally
speaking, intra-AS traffic is much better than inter-AS traffic regarding
transmission performance such as response time. Therefore, even if two
users are located in the same city, they may seem far away from each
other in terms of network distance if their computers are within different
ASs.

Fig. 3 A framework for Web service recommender system

M = {qui ,s j ,tk |1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r} is the
user-service-time matrix, where qui ,s j ,tk is a vector of QoS
attribute values acquired from ui invoking s j at tk . If ui has
no experiences on s j at tk, qui ,s j ,tk = ∅.

The approach proposed by this paper address the scala-
bility problem by seeking users and services for recommen-
dation within smaller and highly similar clusters, rather than
within the entire database.

The approach proposed by this paper divides the users
set U and the services set S into many clusters according
to the location information. Then, it attempts to seek topK
users with the highest degree of similarities to active user ui
within smaller and highly similar clusters Aui or Cui , rather
than within the entire users setU. And it also attempts to seek
topK services with the highest degree of similarities to target
service s j within smaller and highly similar clusters As j or
Cs j , rather than within the entire services set S.

Both Aui and Cui are user clusters. Cui classifies users at
the level of countries, which is a very coarse-grained level.
Aui classifies users at the level of ASN, which is a more
fine-grained level. Both As j and Cs j are service clusters. Cs j
classifies services at the level of countries. And As j classifies
services at the level of ASN.

4.2 Collaborative framework for Web service recommender
system

In this section, we present the collaborative framework for
QoS prediction of Web services. Figure3 shows the sys-
tem architecture, which mainly includes the following pro-
cedures: (1) An active user provides the location and time
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information for the system. (2) The Input Handler processes
the input data. (3) The Find Similar Services find similar ser-
vices from the user-service-timematrix. (4) The Find Similar
Users find similar users from the user-service-time matrix.
(5) The Predict Missing Values predicts the missing QoS
values for the active user using our approach. (6) The Rec-
ommender employs the predicted QoS values to recommend
optimal Web services to the active user.

4.3 Overview of algorithm

In this section, an abstract description of time-aware and
location-aware QoS predicting algorithm and a simple exe-
cution process of our algorithm will be given. Let ui1 be an
active user and s j1 be a target service and tk1 be the time inter-
val. When the active user invokes the target service at tk1 , the
missing QoS values need to be predicted for ui1 . The time-
aware and location-aware QoS predicting algorithm com-
prises the following three sub-procedures.

1. Calculate the average similarity between target service
s j1 and service s j2 at time interval tk1 , where s j2 ∈ As j1

−
{s j1} or s j2 ∈ Cs j1

− {s j1}. Select the topK services with
highest average similarity to the target service which will
be used to calculate the user average similarity.

2. Calculate the user average similarity based on the data of
services selected in the first step.

3. Predict QoS for active user based on the result of the first
and second steps.

The simple execution process of our algorithm is shown
in Fig. 4. And what is worth mentioning, the set of proper-
ties (i.e., availability, throughput, reliability, execution and
duration) that can be evaluated by traditional collaborative
filtering algorithm can also be evaluated by our algorithm.

4.4 Determine the services used for prediction

One critical step in the collaborative filtering algorithm is to
compute the similarity between services and then to select the
most similar services. Computation of the average similarity
between service s j1 and service s j2 could be divided into
three steps. The first step is to isolate the users who have
invoked both of them. The second step is to calculate the
similarity between service s j1 and service s j2 at time interval
tk by formula (3), where tk ∈ tD . The third step is to calculate
the average similarity between service s j1 and service s j2 at
time interval tk1 by formula (1).

Calculating the average similarity between service s j1 and
s j2 at time interval tk1 is as formula (1):

AVGsimtk1 ,d
(s j1, s j2) =

∑

tk∈tD
sim(s j1,tk , s j2,tk )

|tD| (1)

Fig. 4 The prediction generation process is illustrated for five neigh-
bors

where AVGsimtk1 ,d
(s j1, s j2) denotes the average similarity

between service s j1 and s j2 at time interval tk1 . AVGsimtk1 ,d

(s j1, s j2) ranges from [−1, 1] with a larger value indi-
cating that services s j1 and s j2 are more similar. When
AVGsimtk1 ,d

(s j1, s j2) is equal to 1, common users have
almost sameQoS on service s j1 and s j2 at time interval set tD .
The negative value indicates that common users always have
contrary QoS experiences. Time interval set tD is defined as
follow:

tD =

⎧
⎪⎪⎨

⎪⎪⎩

{tk |k1 − d ≤ k ≤ k1 + d, 1 ≤ k1 − d, k1 + d ≤ r}
{tk |k1 − d ≤ k ≤ r, 1 ≤ k1 − d, k1 + d � r}
{tk |1 ≤ k ≤ k1 + d, 1 � k1 − d, k1 + d ≤ r}
{tk |1 ≤ k ≤ r, 1 � k1 − d, k1 + d � r}

(2)

where r refers to the total number of time interval. A tunable
parameter d is used to reduce the search depth. For exam-
ple, when d = 1 and tk1 = t2, we can get tD = {t1, t2, t3} and
AVGsimt2,d(s j1, s j2) =
sim(s j1,t1 ,s j2,t1 )+ sim(s j1,t2+s j2,t2 )+ sim(s j1,t3 ,s j2,t3 )

3 . When d =
2 and tk1 = t2, we can get tD = {t1, t2, t3, t4} and
AVGsimt2,d(s j1, s j2) =
sim(s j1,t1 ,s j2,t1 )+sim(s j1,t2 ,s j2,t2 )+sim(s j1,t3 ,s j2,t3 )+sim(s j1,t4 ,s j2,t4 )

4 .
Therefore d is used to limit the search depth.
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sim(s j1,tk , s j2,tk ) represents the similarity between service
s j1 and s j2 at time interval tk . There are a number of differ-
ent methods to compute the similarity between services. For
example, cosine-based similarity [28], Pearson correlation
coefficient (PCC) [28], and adjusted-cosine similarity [28].
PCC often overestimates the similarities of services, which
are actually not similar but happen to have similar QoS on a
few common users [32]. To address this problem, this paper
employs a similarity weight to reduce the influence of the
small number of similar common users. An enhanced PCC
for sim(s j1,tk , s j2,tk ) is defined as:

sim(s j1,tk , s j2,tk )

=
∑

u∈Us j1
,s j2

,tk
(qu,s j1 ,tk −qs j1 ,tk )(qu,s j2 ,tk −qs j2 ,tk )

√∑
u∈Us j1

,s j2
,tk

(qu,s j1 ,tk −qs j1 ,tk )
2×

√∑
u∈Us j1

,s j2
,tk

(qu,s j2 ,tk −qs j2 ,tk )
2

×
∣
∣
∣Usj1 ,s j2 ,tk

∣
∣
∣

∣
∣Uflag

∣
∣

(3)

From this definition, sim(s j1,tk , s j2,tk ) ranges from [−1,
1] with a larger value, indicating that services s j1 and s j2 are
more similar at time interval tk . When sim(s j1,tk , s j2,tk ) is
equal to 1, common users have almost same QoS on service
s j1 and s j2 at time interval tk . The negative value indicates
that common users always have contrary QoS experiences at
time interval tk .
Where Usj1 ,s j2 ,tk

⊆ Uflag. Usj1 ,s j2 ,tk
is the set of common

users of service s j1 and s j2 at time interval tk .

∣
∣
∣Us j1

,s j2
,tk

∣
∣
∣

|Uflag| is

a similarity weight. When
∣
∣
∣Usj1 ,s j2 ,tk

∣
∣
∣ is small, the similar-

ity weight

∣
∣
∣Us j1

,s j2
,tk

∣
∣
∣

|Uflag| will devalue the similarity estimation

between the services. qu,s j1 ,tk is a vector of QoS attribute
values acquired from user u invoking s j1 at time interval tk .
qs j1 ,tk represents the vector of average QoS values of service
s j1 at time interval tk . qu,s j2 ,tk is a vector of QoS attribute
values acquired from u invoking s j2 at time interval tk .qs j2 ,tk
represents the vector of average QoS values of service s j2 at
time interval tk .

Uflag is a user cluster to which the active user ui1 belongs.
Uflag is used to decrease the time complexity of calculating
the similarity between two services. Uflag is defined as:

Uflag =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Aui1
, if flag = 0 and |Aui1

| ≥ TH
Cui1

, if (flag = 1 or (flag = 0
and |Aui1

| < TH)) and |Cui1
| ≥ TH

U, if flag = 2 or ((flag = 1or (flag = 0
and |Aui1

| < TH)) and |Cui1
| < TH)

(4)

where there is a parameter flag which is used to set the scope
of Uflag. For example, when flag = 0 and |Aui1

| ≥ TH,
the common users set Uflag = Aui1

. In this case, the time
complexity of calculating the similarity between two services
is O(|Aui1

|), rather than O(|U |), according to Eq. (3). TH is

a threshold. Since it will not be reliable when there are too
few common users to generate similarity values between two
services [29], a variable TH is employed.

We can get the average similarity of the two services by
the Eqs. (1), (2) and (3).

4.5 User similarity calculation

Similar services selection is a very important step for mak-
ing accurate prediction, since dissimilar services will lead to
inaccurate missing value prediction. Traditional Top-K algo-
rithm sorts the services according to the similarity and simply
returns the topK most similar services as topK services. In
practice, some services are not similar to the target services.
Traditional Top-K algorithm ignores this problem and still
chooses the topK most similar services to predict the miss-
ing value. This will greatly influence prediction accuracy.
Then, similar to [13], a similar service will be removed from
the set of the topK similar services if its similarity is equal
to or smaller than 0.

Ss j1 ,topK would be gotten by traditional Top-K algorithm.
And the scope of Ss j1 ,topK is defined as follows:

Ss j1 ,topK ⊆

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

As j1
, if flag = 0 and

∣
∣
∣As j1

∣
∣
∣ ≥ topK

Cs j1
, if (flag = 1 or

(flag = 0 and
∣
∣
∣As j1

∣
∣
∣ < topK))

and
∣
∣
∣Cs j1

∣
∣
∣ ≥ topK

S, if flag = 2 or

(flag = 1 and
∣
∣
∣Cs j1

∣
∣
∣ < topK)

or(flag = 0 and
∣
∣
∣As j1

∣
∣
∣ < topK

and
∣
∣
∣Cs j1

∣
∣
∣ < topK)

(5)

where the cardinality of the set Ss j1 ,topK is equal to topK.
There is a parameter flag, which is used to set the scope of

Ss j1 ,topK. For example, when flag = 0 and
∣
∣
∣As j1

∣
∣
∣ ≥ topK,

our approach attempts to seek similar services within smaller
and highly similar clusters As j1

, rather than within the entire
services set S. Therefore, Ss j1 ,topK ⊆ As j1

. When flag = 1

and
∣
∣
∣Cs j1

∣
∣
∣ ≥ topK, our approach attempts to seek similar

services within similar clusters Cs j1
, rather than within the

entire services set S. When flag = 2, it will seek within
the entire services set S directly. Thus, flag can limit similar
services search to a much smaller scope.

Similar to [13], those similar services will be removed
from Ss j1 , topK if their similarity is equal to or smaller than 0.
Then, a new set of similar services S′

s j1 ,topK
′ can be gotten,

where S′
S j1 ,topK

′ ⊆ Ss j1 ,topK, and topK
′ are the cardinality of

the set S′
S j1 ,topK

′ , and topK′ ≤ topK.
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This set collecting topK′ services with most trusting ref-
erential value composes a new matrix MtopK′,tD . The matrix
MtopK′,tD is defined as follow:

MtopK′,tD = {qui ,s j ,tk |ui ∈ U, s j ∈ S′
s j1 ,topK

′ , tk ∈ tD}
Time interval set tD is defined in formula (2).
Then, the average similarity between users can be cal-

culated based on the new matrix MtopK′,tD . Calculating the
average similarity between users is as formula (6):

AVGsimtk1 ,d
(ui1 , ui2) =

∑
tk∈tD sim(ui1,tk , ui2,tk )

|tD| (6)

where AVGsimtk1 ,d
(ui1 , ui2) denotes average similarity

betweenuserui1 andui2 at time interval tk1 .AVGsimtk1 ,d
(ui1 ,

ui2) ranges from [−1, 1] with a larger value indicating
that users ui1 and ui2 are more similar. When AVGsimtk1 ,d

(ui1 , ui2) is equal to 1, both users have almost same QoS on
common services at time interval set tD . The negative value
indicates that both users always have contrary QoS experi-
ences on common services at time interval set tD .

The definition of time interval set tD is given in Eq. (2).
sim(ui1,tk , ui2,tk ) represents the similarity between service

ui1 and ui2 at time interval tk . Just like the sim(s j1,tk , s j2,tk ),
an enhanced PCC for sim(ui1,tk , ui2,tk ) is defined as:

sim(ui1,tk , ui2,tk )

=
∑

s∈Sui1 ,ui2 ,tk
(qui1 ,s,tk −qui1 ,tk )(qui2 ,s,tk −qui2 ,tk )

√∑
s∈Sui1 ,ui2 ,tk

(qui1 ,s,tk −qui1 ,tk )
2×

√∑
s∈Sui1 ,ui2 ,tk

(qui2 ,s,tk −qui2 ,tk )
2

×
∣
∣
∣Sui1 ,ui2 ,tk

∣
∣
∣

∣
∣
∣S′

s j1 ,topK
′
∣
∣
∣

(7)

From this definition, sim(ui1,tk , ui2,tk ) ranges from [−1, 1]
with a larger value, indicating that users ui1 and ui2 are more
similar at time interval tk . When sim(ui1,tk , ui2,tk ) is equal to
1, both users have almost same QoS on common services at
time interval tk . The negative value indicates that both users
always have contrary QoS experiences on common services
at time interval tk .

where Sui1 ,ui2 ,tk ⊆ S′
s j1 ,topK

′ . Sui1 ,ui2 ,tk is the set of com-

mon services which is invoked by user ui1 and ui2 at time

interval tk .

∣
∣
∣Sui1 ,ui2 ,tk

∣
∣
∣

∣
∣
∣
∣S

′
s j1

,topK′
∣
∣
∣
∣

is a similarityweight.When
∣
∣
∣Sui1 ,ui2 ,tk

∣
∣
∣

is small, the similarityweight

∣
∣
∣Sui1 ,ui2 ,tk

∣
∣
∣

∣
∣
∣
∣S

′
s j1

,topK′
∣
∣
∣
∣

will devalue the sim-

ilarity estimation between the users. qui1 ,s,tk is a vector of
QoS attribute values acquired from user ui1 invoking service
s at time interval tk . qui1 ,tk represents the vector of average
QoS values of user ui1 on service set S′

s j1 ,topK
′ at time inter-

val tk . qui2 ,s,tk is a vector of QoS attribute values acquired
from user ui2 invoking service s at time interval tk . qui2 ,tk
represents the vector of average QoS values of user ui2 on

service set S′
s j1 ,topK

′ at time interval tk . We can get the aver-

age similarity between the two users by the Eqs. (2), (6), and
(7) and new matrix MtopK′,tD .

The final prediction is based on performance of the left
topK users, Uui1 ,topK

= {uy1, uy2 , . . . , uytopK }. The parame-
ter flag is also used to set the scope of Uui1 ,topK

. The scope
of Uui1 ,topK

is defined as follow:

Uui1 ,topK
⊆

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aui1
, if flag = 0 and

∣
∣
∣Aui1

∣
∣
∣ ≥ topK

Cui1
, if (flag = 1 or

(flag = 0 and
∣
∣
∣Aui1

∣
∣
∣ < topK))

and
∣
∣
∣Cui1

∣
∣
∣ ≥ topK

S, if flag = 2 or

(flag = 1 and
∣
∣
∣Cui1

∣
∣
∣ < topK)

or (flag = 0 and
∣
∣
∣Aui1

∣
∣
∣ < topK

and
∣
∣
∣Cui1

∣
∣
∣ < topK)

(8)

4.6 Missing data prediction

Some user ∈ Uui1 ,topK
have not invoked the target service

at target time interval. These missing data will have great
impact on prediction. Simply ignoring these missing data
would reduce the prediction accuracy. The general method
calculates the missing data by average value of neighbors.
Neighbors are those users whose ordinal number of the rows
are near the user’s ordinal number of the row. Thus, it is
probable that the neighbors are not similar users. Therefore,
the average value is not accurate, for it ignores the difference
among users. This paper employs a novel method to calculate
themissing data. It takes time and location factor into account
to calculate the missing data. For examples, to calculate the
missing data qui ,s j ,tk :

qui ,s j ,tk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
t∈(tD−t ′D ) qui ,s j ,t

|tD−t ′D| , if tD − t ′D 	= ∅
∑

u∈(Uui ,topK−Uui ,topK
′′) qu,s j ,tk

∣
∣Uui ,topK−Uui ,topK

′′∣∣ , if tD − t ′D = ∅
andUui ,topK−Uui ,topK

′′ 	=∅
DV if Uui ,topK−Uui ,topK

′′ =∅
and tD − t ′D = ∅

tD would be calculated by Eq. (2). t ′D = {t |t ∈ tD, qui ,s j ,t =
∅}. Uui ,topK would be calculated by Eq. (8). Uui ,topK

′′ =
{u|u ∈ Uui ,topK, qu,s j ,tk = ∅}. DV denotes default value.
Empirically, assuming some default value for the missing
data can improve the CF prediction performance [29]. In this
paper, DV is a variable. DV has different values in different
applications. For example, Chee et al. [33] use the average
value as default voting to extend each user’s rating history.
Breese et al. [11] use a neutral or somewhat negative prefer-
ence for the unobserved ratings. Our approach tries to calcu-
late the missing data by the same user’s QoS experiences on
the service at other time or similar users’ QoS experiences
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on the service at the same time. For example, qui ,s j ,tk ′ or
qui ′,s j ,tk would be used to calculate the missing data qui ,s j ,tk .

4.7 Prediction making

After computing the degree of similarity between the active
user and all other users, a user similarity vector has been
gotten. By the traditional Top-K algorithm, we can get Top-
K similar users set Uui1 ,topK

.
Similar users selection is a very important step for making

accurate prediction, since dissimilar userswill lead to inaccu-
rate missing value prediction for the active user. In practice,
some users are not similar to active user. Traditional Top-
K algorithms ignore this problem and still choose the topK
most similar users to predict the missing value. This will
greatly influence prediction accuracy. Then, similar to [13],
a similar user will be removed from the set of the topK sim-
ilar users if its similarity is equal to or smaller than 0. Then,
a new set of similar users U ′

ui1 ,topK
′′′ can be gotten, where

U ′
ui1 ,topK

′′′ ⊆ Uui1 ,topK
and topK′′′ is the cardinality of the

set U ′
ui1 ,topK

′′′ and topK′′′ ≤ topK.

Our approach computes the prediction on the target ser-
vice s j1 for the active user ui1 at time interval tk1 by comput-
ing the weighted sum of the QoS attribute values given by
the similar users on the target service s j1 at time interval tk1 .
Each QoS attribute value is weighted by the corresponding
average similarity AVGsimtk1 ,d

(ui1 , ui2) between users ui1
and ui2 .

After the above step, qui1 ,s j1 ,tk1 could be predicted by sim-
ilar users set U ′

ui1 ,topK
′′′ .

qui1 ,s j1 ,tk1 =
∑

u∈U ′
ui1

,topK′′′ AVGsimtk1 ,d
(ui1 , u)×qu,s j1 ,tk1

∑
u∈U ′

ui1
,topK′′′ AVGsimtk1 ,d

(ui1 , u)

(9)

qui1 ,s j1 ,tk1 could be predicted by Eq. (9).

4.8 Complexity analysis

The main computation of our approach is seeking the topK
services with the highest degree of similarities to target ser-
vice s j1 and the topK users with the highest degree of simi-
larities to active user ui1 .

Based on the formulas (1), (2), (3), and (4), the worst-
cast time complexity of calculating the average similarity
between two services is O(n × (d + 1)), where n refers
to the total number of users registered in the recommenda-
tion system and d is a parameter for our approach. Thus,
the worst-cast time complexity of seeking the topK services
with the highest degree of average similarities to target ser-
vice s j1 is O(n × (d + 1) × m), where m refers to the total

number of services registered in the recommendation system.
Based on the formulas (5), (6) and (7), the time complexity
of calculating the average similarity between two users is
O(topK × (d + 1)), where topK is the cardinality of the set
SSj1 ,topK. Thus, the worst-cast time complexity of searching
the topK users with the highest degree of average similar-
ities to active user ui1 is O(topK × (d + 1) × n). Since
topK ≤ m, the worst-cast time complexity of our approach
is O(n × (d + 1) × m).

The best time complexity of calculating the average simi-

larity between two services is O
(∣
∣
∣Aui1

∣
∣
∣ × (d + 1)

)
, where

∣
∣
∣Aui1

∣
∣
∣ is cardinality of the set Aui1

and ui1 is the active use.

Thus, the best time complexity of seeking the topK services
with the highest degree of average similarities to target ser-

vice s j1 is O
(∣
∣
∣Aui1

∣
∣
∣ × (d + 1) ×

∣
∣
∣As j1

∣
∣
∣
)
, where

∣
∣
∣As j1

∣
∣
∣ is

cardinality of the set As j1
. Since the time complexity of calcu-

lating the average similarity between two users is O(topK×
(d + 1)), the best time complexity of seeking the topK users
with the highest degree of average similarities to active user

ui1 is O
(
topK × (d + 1) ×

∣
∣
∣Aui1

∣
∣
∣
)
. Thus, the best time

complexity of our approach is O
(
x × (d + 1) ×

∣
∣
∣Aui1

∣
∣
∣
)
,

where x = MAX
(
topK,

∣
∣
∣As j1

∣
∣
∣
)
.

When numbers of existing users and services grow
tremendously, i.e., Amazon.com has more than 29 million

customers and several million catalog items, topK 

∣
∣
∣Aui1

∣
∣
∣

and topK 

∣
∣
∣As j1

∣
∣
∣. When flag = 0, we can get Ss j1 ,topK ⊆

As j1
and Uui1 ,topK

⊆ Aui1
according to formulas (5) and

(8). In this case, the actual complexity of our approach
is almost equal to the best time complexity. And what is
worth mentioning, when d 
 r , i.e., d = 2, the accuracy
of our approach is rather high according to the experiment
results, where r refers to the total number of time interval.
Then, thefinal performance of the algorithm is approximately

O
(∣
∣
∣Aui1

∣
∣
∣ ×

∣
∣
∣As j1

∣
∣
∣
)
, where

∣
∣
∣Aui1

∣
∣
∣ 
 n and

∣
∣
∣As j1

∣
∣
∣ 
 m.

This complexity analysis shows that our approach is very
efficient and can be applied to large-scale systems.

5 Experiments

In this paper, the QoS prediction quality has been employed
to evaluate recommendation quality, since it is a key com-
ponent for service recommendation system. The normalized
mean absolute error (NMAE) metric has been used to mea-
sure the prediction quality. We conduct several experiments
and then compare our approach with several state-of-the-art
collaborative filtering predictionmethods to evaluate the new
method proposed by this paper. Specifically, these experi-
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ments adopt a real-world Web service data set in order to
improve the credibility of the results.

All experiments were implemented and deployed with
JDK6.0, EclipseHelios ServiceRelease 2,ApacheHttpCom-
ponents4 and the tool provided by Team Cymru.5

All experiments were run on a win7-based PC with Intel
Core i3-3220 CPU having a speed of 3.3 GHz and 4GB of
RAM.

Our experiments could be divided into two phases. The
first phase consists of three experiments,which are described,
respectively, in Sects. 5.3, 5.4, and5.5. The secondphase con-
sists of two experiments, which are described, respectively
in Sects. 5.6, and5.7. The purpose of the first phase is to ana-
lyze the impact of flag, d, and topK on prediction accuracy.
The purpose of the second phase is to evaluate the prediction
performance and efficiency through comparison between our
approach and some other well-known prediction methods.

In the following, Sect. 5.1 gives the description of our
experimental data set and introduces the common Hypothe-
sis for all experiments and shows how we get the NSA from
IP, Sect. 5.2 defines the evaluation metrics, Sects. 5.3, 5.4,
and5.5 study the impact of parameter flag, d and topK,
respectively, Sects. 5.6 and5.7 compares the prediction qual-
ity and efficiencyof our approachwith other competingmeth-
ods, respectively, finally, the discussion of the evaluation is
given in Sect. 5.8.

5.1 Data set

To evaluate our approach in the real world, this paper adopts a
real-worldWeb service data setWSDream data set 3,6 which
was published in Ref. [5]. In order to evaluate our approach,
we get the users’ IP and services’URL fromZhengwho is the
second author of the paper [5].And the users’ IP andWebSer-
vices’ URL of WSDream data set 3 can be found in our Web
site.7 We convert theWeb services’ URL to the equivalent IP
address by java class java.net.InetAddress. And we accom-
plish IP to ASNmapping and IP to countrymapping by Team
Cymru. The tool has been published in Web site.8 Apache
HttpComponents has been used to automatically accomplish
IP to ASN mapping and IP to country mapping.

The original data set 3 contains QoS records of service
invocations on 4,532 Web services from 142 users at 64
time interval, which are transformed into a user-service-time
matrix. Every time interval lasts for 15min. Then, the data
set is a 142 × 4,532 × 64 user-service-time matrix, and
each item is a pair values (RT, TP). RT denotes response

4 http://hc.apache.org/.
5 http://www.team-cymru.org/Services/ip-to-asn.html#dns.
6 http://www.wsdream.net/wsdream/dataset.html.
7 http://radlab.sjtu.edu.cn/?p=154.
8 http://whois.cymru.com/.

time and TP denotes throughput. The original user-service-
time matrix will be decomposed into two simpler matri-
ces: 142 × 4,532 × 64 user-service-time RT matrix and
142 × 4,532 × 64 user-service-time TP matrix.

Forty users’ IP addresses have not been provided by the
author of the paper [5]. And we fail to translate or map 777
services’ URL to IP addresses or ASN. Thus, the new user-
service-time RT matrix and TP matrix are 102× 3,755× 64
user-service-time RT matrix and 102 × 3,755 × 64 user-
service-time TPmatrix, respectively. The newRTmatrix and
TP matrix will be used to compute similarity and measure
prediction quality in following experiments.

We find that all 102 users are distributed within 68 ASs
and 20 countries and all 3,755 services are distributed within
861 ASs and 68 countries.

In the following experiment, the 102 users are divided into
two groups: 82 service users randomly selected as training
service users and the rest as test service users. The RTmatrix
is divided into the RT-training matrix and the RT-test matrix,
and so is the TPmatrix. For the training matrix, we randomly
remove entries to make the matrix sparser with density 30%.
The value of DV is 0 for convenience. And the value of TH
is 50. Each experiment is performed 100 times, and their
average values are taken as results.

5.2 Evaluation metrics

Measures for evaluating the quality of a recommender system
can be mainly categorized into two classes:

1. Statistical accuracy metrics evaluate the accuracy of
a system by comparing the numerical prediction QoS
values with the actual QoS values acquired by invok-
ing actual service. Mean absolute error (MAE) [34]
between actuality and predictions is awidely usedmetric.
MAE is a measure of the deviation of predictions from
their actual QoS values. For each actuality-prediction
pair 〈Aqui ,s j ,tk , Pqui ,s j ,tk 〉, this metric treats the absolute
error between them equally. The MAE is computed by
first summing these absolute errors of the N correspond-
ing actuality-prediction pairs and then computing the
average. Formally,

MAE =
∑

ui ,s j ,tk

∣
∣Aqui ,s j ,tk − Pqui ,s j ,tk

∣
∣

N

where Aqui ,s j ,tk denotes actual QoS values of Web ser-
vice s j observed by user ui at time interval tk and
Pqui ,s j ,tk denotes the predicted QoS values of Web ser-
vice s j observed by user ui at time interval tk , and N
denotes the number of predicted values. The lower the
MAE, the higher the recommendation system accuracy.
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Since different QoS properties of Web services have dis-
tinct value ranges, the normalized mean absolute error
(NMAE) [34] metric is also used to measure the predic-
tion accuracy. NMAE is defined as:

NMAE = MAE
(∑

ui ,s j ,tk Aqui ,s j ,tk

)
/N

Lower NMAE value represents higher prediction accu-
racy about recommendation system.

2. Decision support accuracymetrics evaluate how effective
a prediction system is at helping a user select high-quality
Web services from the set ofWeb services. These metrics
assume the prediction process as a binary operation either
Web services are predicted (good) or not (bad). With this
observation,whether aWeb service has a prediction score
of 3 or 7 on a ten-point scale is irrelevant if the user
only chooses to consider predictions of 8 or higher. The
most commonly used decision support accuracy metrics
is ROC sensitivity [35].

In this paper, NMAE is employed to measure the predic-
tion quality, since it is most commonly used and easiest to
interpret directly.

5.3 Impact of parameter flag

In the definition of formulas (4), (8), and (5), there is a para-
meter flag which is used to set the scope of common users,
similar users, and similar services, respectively. To study
the impact of parameter flag, two experiments have been
implemented.We set topK = 5, 10, 15, . . . , 45, respectively,
d = 0 and vary the value of flag from 0 to 2 with a step value
of 1. And the results is shown in Figs. 5 and 6.

flag = 0 means that common users and the topK similar
users would be located in the AS to which the active user
belongs and the topK similar services would be located in the
AS to which the target service belongs. flag = 1 means that
common users and the topK similar users would be located
in the Country to which the active user belongs and the topK
similar services would be located in the Country to which
the target service belongs. flag = 2 means that the location
factor will not be taken into account when calculating the
average similarity between two services and identifying the
topK similar users and services.

According to Fig. 6, when topK ≥ 30, the prediction
accuracy of our approach tends to decrease with the increase
of topK, which may be due to the fact that most ASs have
only a very small number of users and services in the data set;
hence, users or services within themmust have similar neigh-
bors from other ASs, especially when topK becomes large.
We find out that this phenomenon does exist and certainly

Fig. 5 Impact of the parameter flag for response time (d = 0)

Fig. 6 Impact of the parameter flag for throughput (d = 0)

reduces the correlation between location closeness and QoS
similarity. But according to Figs. 5 and 6, we can conclude
that the prediction accuracy of our approach is improved
with the decrease in the parameter flag. In other words, the
algorithm which takes the location factor into account would
improve prediction accuracy.

5.4 Impact of parameter d

In the definition of formula (2), there is a parameter d which
is used to reduce the search depth. To study the impact of
parameter d, two experiments have been implemented. We
set topK = 5 and flag = 0, respectively, and vary the value
of d from 0 to 40 with a step value of 2. And the results are
shown in Fig. 7. According to Fig. 7, we can conclude that
the prediction accuracy of our approach oscillates along with
the increase of the value of parameter d. The reasons are as
follows. On the one hand, since QoS performance of Web
services is highly related to invocation time, there are three
main factors which may decrease the prediction accuracy of
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Fig. 7 Impact of the parameter d (flag = 0)

our approach. First, the average similarity of services which
are extremely similar to target service at and only at the time
interval tk1 would decrease with the increase of the parameter
d. Second, the average similarity of services which are not
similar to target service at the time interval tk1 would increase
with the increase of the parameter d. Third, most of highly
similar services and users are in the same time interval or
nearby time intervals with the active user and target service.
On the other hand, the average similarity of services which
are extremely similar to target service at the time interval tk1
would increase with the increase of the parameter d, which
would improve the prediction accuracy according to Eq. (9).
What is worth mentioning, when the value of parameter d
is 0, our approach has the minimal similar user or service
search depth and higher prediction accuracy compared with
other methods.

According to the analysis above, we can conclude that
the prediction accuracy of our approach would be improved
with the increase of the parameter d, and it also would be
decreased with the increase of the parameter d, whether the
prediction accuracy of our approach would be improved or
decreased is determined by the values of the data set and the
current value of the parameter d. Thus, the variation curves
of prediction accuracy of our approach would be different for
different data sets. This can explain why for certain values of
d the NMAE value for throughput is completely inconsistent
with that of the response time in Fig. 7.

5.5 Impact of parameter topK

To study the impact of parameter topK, two experiments have
been implemented. We set d = 0 and flag = 0, respectively,
and vary the value of topK from 5 to 45 with a step value of
5. And the results are shown in Fig. 8. As shown in Fig. 8, we

Fig. 8 Impact of the parameter topK (flag = 0 and d = 0)

observe that as topK increases, the NMAEdecreases (predic-
tion accuracy increases), but when topK surpasses a thresh-
old, the NMAE increases (prediction accuracy decreases)
with further increase of the value of topK. This observa-
tion indicates that too few similar users and services are not
enough to characterize the features of active user and tar-
get service, while too many similar users and services will
increase the number of users and services which are actually
not similar and the number of users and services which are
similar but located in other ASs.

5.6 Compare our method with other well-known prediction
methods

In order to study the prediction performance, we compare
the prediction accuracy of the following methods:

1. UPCC [11] employs the average QoS value of the users
on other Web services to predict the missing value. And
UPCC is a well-known prediction method.

2. IPCC [12] employs the average QoS value of the Web
service item observed by other users to predict the miss-
ing value for the active users. IPCC is also a well-known
prediction method.

3. WSRec [13] is a hybrid algorithm combing UPCC and
IPCC. Similar to WSRec, our approach is also a hybrid
algorithm combing UPCC and IPCC. ButWSRec suffers
from serious scalability problem. In order to overcome
the disadvantage of WSRec, our approach divides the
users set and services set into many clusters according to
the location information and tries to seek similar users
and services within smaller and highly similar clusters.

4. LACF [17] is a location-aware hybrid CF. LACF also
divides the users set and services set into many clusters
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Table 2 NMAE performance
comparison

Throughput
topK = 5

Throughput
topK = 10

Response time
topK = 5

Response time
topK = 10

UPCC 0.986 0.960 1.040 0.932

IPCC 1.090 1.130 0.960 0.820

WSRec 0.850 0.943 0.813 0.801

LACF 0.813 0.826 0.789 0.729

TLACF 0.717 0.649 0.715 0.558

according to the location information, and it is also scal-
able. LACF is a clustering CF algorithm. Clustering CF
algorithms are trade-offs between scalability and predic-
tion performance [29]. In order to further improve the
prediction accuracy, our approach employs time factor,
since QoS performance of Web services is highly related
to invocation time.

Since UPCC and IPCC have been widely accepted and
adopted, they have been picked up for comparison in a num-
ber of CF-based approaches. Thus, they are also picked
up for comparison in this paper. Since our approach is a
clustering CF algorithm and clustering CF algorithms are
trade-offs between scalability and prediction performance,
our approach employs time factor to improve the prediction
accuracy. In order to show the improvement of prediction
accuracy, our approach should be compared with a cluster-
ing CF algorithm and a hybrid algorithm. Since WSRec is a
well-known hybrid algorithm, it is picked up for comparison
in this paper. Since LACF is a location-aware hybrid CF and
it also divides the users set and services set intomany clusters
according to the location information, LACF is picked up for
comparison in this paper.

The original 102 × 3,755 × 64 user-service-time RT
matrix and TP matrix are converted into 102 × 3,755 user-
service RT matrix and TP matrix, respectively. qui ,s j =
qui ,s j ,tk where tk ∈ {1, 2, . . . , 64}. In order to simulate the
real-world situation, tk will be randomly selected from set
{1, 2, . . . , 64}. For any two entries of 102 × 3,755 user-
service RT matrix, qui1 ,s j1 = qui1 ,s j1 ,tk1 and qui2 ,s j2 =
qui2 ,s j2 ,tk2 , if ui1 	= ui2 or s j1 	= s j2 , it is possible that
tk1 	= tk2 . And so does 102 × 3,755 user-service TP matrix.

The 102 service users are divided into two groups: 82
users randomly selected as training service users and the
rest as test service users. The 102 × 3,755 user-service RT
matrix is divided into the RT-training matrix and the RT-test
matrix, and so is the 102 × 3,755 user-service TP matrix.
For the training matrix, we randomly remove entries to make
the matrix sparser with density 30 %. Each experiment is
performed 100 times, and their average values are taken as
results.

Table2 shows the prediction accuracy comparison of dif-
ferentmethodswhen topK=5 or topK=10. TLACF denotes

Table 3 Comparison of predicting time of different approaches (sec-
ond)

UPCC IPCC WSRec LACF TLACF

Throughput 0.0163 0.0305 0.0478 0.0023 0.0027

Response time 0.0167 0.0341 0.0537 0.0029 0.0034

the time-aware and location-aware collaborative filtering
algorithm with parameter d = 0 and flag = 0. TLACF is
proposed by these papers.

It can be seen from Table2 that TLACF has significantly
smaller NMAE values, which indicates better prediction per-
formance. Under all the different experimental settings, our
approach consistently outperforms other methods.

When topK=5, it also can be observed from Table2 that
the average percent of improvement in prediction accuracy
of our approach against UPCC, IPCC, WSRec, and LACF
are 29.27, 29.87, 13.85, and 10.60 %, respectively.

The results shown in this section indicate that the predic-
tion accuracy would be improved, when time factor has been
taken into account.

5.7 Prediction efficiency evaluation

Another advantage of our approach is its efficiency. In
order to study the efficiency of our approach, the prediction
approach proposed by this paper TLACF is also compared
with UPCC, IPCC, WSRec, and LACF.

Since time factor has been employed to improve the
prediction accuracy in our approach, the efficiency of our
approach would be lower than LACF. Therefore, we need to
compare the efficiency of our approach with that of LACF to
study how much the efficiency has been lost by employing
time factor. Moreover, the efficiency of our approach should
also be compared with UPCC, IPCC, and WSRec to study
how much the efficiency has been improved by employing
location factor.

Given settings: topK=10, density=30 %, flag=0 and
d = 0. Each experiment is performed 100 times and their
average values are taken as results. Table3 compares the aver-
age predicting time (unit second) of different methods.
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It can be seen from Table3 that our approach has sig-
nificantly smaller predicting time than UPCC, IPCC, and
WSRec, which indicates that our approach is an efficient
approach. Both LACF and our approach TLACF are cluster-
ingCF algorithms and classify users and services just accord-
ing to location information. Since our approachTLACF takes
time factor into account, the predicting time of our approach
is slightly larger than LACF.

When topK=10, it also can be observed from Table3
that the average percent of improvement in efficiency of
our approach against UPCC, IPCC, WSRec, and LACF are
448, 967, 1,575, and −14.76 %, respectively. −14.76 %
denotes that the efficiency of our approach is lower than
LACF.

The results shown in this section indicate that the effi-
ciency would be improved, when location factor has been
taken into account.

5.8 Discussion

From those experimental results, we make some important
observations.

First, our approach is efficient in predicting the missing
QoS values based on the analysis in Sect. 4.8 and the exper-
iment result shown in Sect. 5.7. The improvement is signif-
icantly large, since our approach divides the users set and
services set intomany clusters according to the location infor-
mation, and then, it tries to seek similar users and services
within smaller and highly similar clusters, rather than within
the entire database.

The second observation is that the prediction accuracy of
our approach is significantly improved. QoS performance
of Web services is highly related to invocation time, since
the service status (e.g., workload and number of clients) and
the network environment (e.g., congestion) change over time.
Therefore, time factorwould be employed to improve the pre-
diction accuracy. Our experimental results shown in Sect. 5.6
support that claim. QoS performance of Web services is also
highly related to locations, since the user-observed QoS per-
formance of Web services is greatly influenced by the net-
work distance and the Internet connections between users and
Web services. Our experimental results shown in Sect. 5.3
support that claim.

The third observation is that our approach is easy to build
and update. Since our approach classifies users and services
only according to the location information, adding and delet-
ing users or services will only update these clusters which
contain those users and services, while other clusters will not
be affected. This enables our approach to build and update
clusters quickly.

Therefore, our approach is capable of addressing the three
important challenges of recommender systems–high qual-

ity of prediction, high scalability, and easy to build and
update.

6 Conclusion

Collaborative filtering is an effective method for Web ser-
vice selection and recommendation.Memory-basedCF algo-
rithms are easy to implement and highly effective, but they
suffer from a fundamental problem: inability to scale-up.
Model-based CF algorithms, such as clustering CF algo-
rithms, address the scalability problem by seeking users for
recommendation within smaller and highly similar clusters,
rather thanwithin the entire database.However, they are often
time-consuming to build and update.

In this paper, we propose a time-aware and location-
aware collaborative filtering algorithm which combines the
strengths of memory-based approaches and model-based
approaches and overcomes shortcomings of both approaches.
To validate our algorithm, this paper conducts series of large-
scale experiments based on a real-world Web service QoS
dataset. Experimental results show that our approach is capa-
ble of addressing the three important challenges of recom-
mender systems—high quality of prediction, high scalability,
and easy to build and update.

In future work, we will take other QoS factors and rela-
tionships among QoS factors into consideration, study how
to incorporate them into QoS prediction and how to alleviate
the data sparsity problem. Predicting SLO values will be also
taken into account.
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