
SOCA (2015) 9:107–138
DOI 10.1007/s11761-014-0154-x

ORIGINAL RESEARCH PAPER

An approach for selecting best available services through
a new method of decomposing QoS constraints

Chellammal Surianarayanan · Gopinath Ganapathy ·
Manikandan Sethunarayanan Ramasamy

Received: 19 March 2013 / Revised: 29 December 2013 / Accepted: 26 January 2014 / Published online: 20 February 2014
© Springer-Verlag London 2014

Abstract Quality of Service (QoS) plays as a discrim-
inating factor for selecting appropriate services that meet
the given user’s non-functional requirements during service
composition. There is a compelling need to select suitable
services quickly so that the composition can meet dynamic
needs. Recently, local selection approaches for QoS-based
selection have been put forward toward reduced time com-
plexity. A methodology for selecting the best available ser-
vice combination for a given user requirement (workflow)
with a new method of decomposing QoS constraints is
proposed in this paper. The methodology consists of two
phases, namely ‘Constraint Decomposition Phase’ and ‘Ser-
vice Selection Phase’. In the Constraint Decomposition
Phase, a unique method is proposed to decompose the given
non-functional (global or workflow level) constraints into
local constraints for individual tasks in the workflow. Each
individual task with its local constraints forms a subproblem.
In the Service Selection phase, each subproblem is resolved
by finding the best available service from its respective ser-
vice class using an iterative searching procedure. A prototype
has been implemented, and the low computation time of the

Electronic supplementary material The online version of this
article (doi:10.1007/s11761-014-0154-x) contains supplementary
material, which is available to authorized users.

C. Surianarayanan (B) · G. Ganapathy
School of Computer Science and Engineering,
Bharathidasan University, Tiruchirappalli 620024, India
e-mail: chelsrsd@rediffmail.com

G. Ganapathy
e-mail: gganapathy@gmail.com

M. S. Ramasamy
Department of Mathematics, Bharathidasan University
Constituent College, Lalgudi 621601, India
e-mail: manirs2004@yahoo.co.in

proposed method makes it well suited to dynamic compo-
sition. The proposed method of decomposing constraints is
independent of number of services in a service class, and the
method is applicable to any combinational workflow with
AND, OR and Loop patterns. Further, a new method for com-
puting response time of OR execution pattern which guaran-
tees successful execution of each path in an OR pattern is a
remarkable contribution of this work.

Keywords Local service selection · QoS-based service
selection · Decomposition of QoS constraints · Web
services · Service composition

1 Introduction

Service Oriented Architecture (SOA) promotes the devel-
opment of complex business applications through service
composition where more than one services are combined
according to a specific pattern in order to achieve the given
requirement. The business requirements are usually repre-
sented as workflow. A workflow consists of a combination
of tasks. Each task represents an abstract function having
input and output parameters. The tasks are implemented and
published as services by different service providers. During
service composition, services that implement various tasks
of the workflow are discovered and combined as a compos-
ite service. Each service has a set of QoS attributes refer-
ring to non-functional attributes such as availability, latency,
scalability, cost, response time and reliability. For each task,
alternative services having same function but different QoS
are growing in large number and the group of function-
ally similar services would form the ‘service class’ [1]
for that task.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-014-0154-x&domain=pdf
http://dx.doi.org/10.1007/s11761-014-0154-x

108 SOCA (2015) 9:107–138

Fig. 1 A typical workflow of travel plan

The process of selecting appropriate services for composi-
tion must be based on QoS characteristics of services as QoS
is part of customer’s demands as in the example query Find
Currency conversion (currency conversion is the functional
demand) service with cost of the service <$50 (cost con-
straint is QoS/non-functional demand). QoS requirements
of clients are based on the nature of applications, and in cer-
tain applications, the QoS demands are very crucial that the
QoS demands are dominating in deciding the success of an
application. This is illustrated with the following example.

Consider a client who records the weather conditions at
a location during cyclone with an intention of modeling
atmospheric dispersion characteristics under cyclonic con-
ditions. Here, the client looks for a Weather Service with
response time of the service strictly less than one second.
Let us consider another client who looks for Weather Service
with cost of the service less than $50 with an intention of
simply knowing the existing weather conditions at a given
location. In the case of first client, response time of the ser-
vice is important; the client may pay even higher cost to
get the desired response time, whereas in the case of second
client cost constraint is important and this client may be sat-
isfied with a service having poor response time of say, even
one minute. In case, if the first client happens to use a ser-
vice which does not have the required response time (in this
example, less than one second), his purpose itself will not

be met and his application will be unsuccessful. Similarly,
in the case of second client if cost is higher than $50, the
client may not even avail the service. Hence, services should
be selected for composition according to QoS demands of
clients.

Further, in typical service composition, services from dif-
ferent domains will be participating in different execution
patterns, such as AND, OR and sequential, to achieve a
given requirement. For example, consider a typical work-
flow of Travel Plan given in Fig. 1. In Fig. 1, ‘AS’ denotes
AND Split, ‘AJ’ denotes AND Join, ‘OS’ denotes OR Split
and ‘OJ’ denotes OR Join. The given Travel Plan workflow
consists of 10 tasks, namely t1, t2, t3, t4, t5, t6, t7, t8, t9 and
t10 which belong to different organizations, namely Flight,
Train, Hotel, Cab and Weather. The tasks are combined in dif-
ferent patterns, such as AND, OR and sequential. For each
task, several services having similar functionality but varying
QoS characteristics would form its service class. For exam-
ple, services, namely s1

1 , s
2
1 , s

3
1 , . . .s

n1
1 are available to imple-

ment t1. Services, namely s1
2 , s

2
2 , s

3
2 , . . .s

n2
2 are available to

implement t2. Similarly, for each task in Fig. 1, several func-
tionally similar services with varying QoS characteristics are
available to implement that task. Despite the complexity of
workflow, the runtime performance of service composition
is crucial for distributed applications and applications having
online customers [16,29].

123

SOCA (2015) 9:107–138 109

Table 1 Number of service combinations and time taken by global
selection with respect to number of services

Number of
services per
service class

Global approach

Number of
service combinations

Time taken in
minutes

1 1 0.000001

2 1,024 0.000006

3 59,049 0.000018

4 1,048,576 0.000517

5 9,765,625 0.004683

6 60,466,176 0.0299

7 2.82e+08 0.1352

8 1.07e+09 0.51975

9 3.49e+09 1.658033

10 1e10 4.806633

11 2.59e+10 12.30817

12 6.19e+10 29.65435

13 1.38e+11 418.788

Hence, in this real scenario of various tasks from different
domains, with each task having several functionally similar
services, the problem of service selection is to find appro-
priate service combination which best satisfies the clients
according to their QoS requirements within relatively short
time interval as expected by clients.

To figure out service selection methods, there are two
major categories, namely global and local [30]. Global
approach performs service selection at composite service
level. In this approach, one service from each service class
is selected to form a composite service. Then, the values of
QoS attributes of composite service are computed and tested
for fulfillment against user’s QoS constraints. The possible
number of service combinations to be searched to find an
appropriate composition of ‘n’ service classes with ‘l’ num-
ber of services in each service class is ln .

In the given example scenario, to illustrate how the number
of combinations and time taken for finding optimal solution
using global approach increase with respect to number of
services, the number of services per task is increased from 1
to 13. The number of service combinations and time taken for
selecting services for different number of services are given
in Table 1.

From Table 1, the number of combinations is found
to increase exponentially with number of services. Hence,
the time taken for finding suitable service combination
also increases exponentially. This illustrates how global
approaches such as Linear Programming (LP) or Mixed
Integer Linear Programming (MILP) [6,7,17,30], heuristics
[5,29] become impractical when number of services grows.
Though the other methods such as genetic algorithm [8],

Ant Colony Optimization [31] and hybrid methods [11,27]
focus on reducing the computation time, they are applicable
only to service composition with limited number of services.
A broker-based framework for QoS-aware service composi-
tion with end-to-end constraints presented in [28] gives less
attention to time complexity issue.

Nowadays, local selection methods are widely used to
reduce the time complexity of service selection. Local selec-
tion methods achieve time reduction by dividing the problem
of selecting service combination for a given workflow into
a set of independent task level subproblems. Local selection
method treats selecting services for the workflow as main
problem and selecting service for individual task in the work-
flow as subproblem. In this approach, the possible number of
service combinations of ‘n’ service classes with ‘l’ number
of services in each service class is only l × n.

Although the existing local selection methods such as
[2,3,21] are efficient in meeting global QoS requirements,
they can handle only sequential workflows, whereas com-
mon business workflows contain execution patterns such as
AND, OR and Loop. Also, the methods such as [2,3] use
Mixed Integer Programming (MIP) to find local constraints,
which has poor time characteristics when number of ser-
vices grows. Another weakness that has to be resolved is
with respect to the computation of values of QoS attributes
for an OR pattern. Though the methods [9,15,19,22] pro-
vide a formal way (computation of expected values of QoS
attributes) to compute QoS attributes of an OR execution pat-
tern, there is no guarantee that the execution of all alternate
paths of the OR pattern will succeed when they are given a
chance for execution. Alternately, [12] formulates the local
service selection as LP model for finding optimal services.
Theoretically, an LP model takes a user-defined utility func-
tion, a set of decision variables and a set of linear constraints
as inputs. The model optimizes the utility function by opti-
mizing the decision variables subject to the given constraints.
Ultimately, the model produces optimal values for decision
variables and utility function. Though the LP model com-
putes optimal values for decision variables and utility func-
tion, it never helps in finding the identity of optimal service
(which is prerequisite for composition). Further, though we
can find the optimal values using LP models, it is not manda-
tory that a service with optimal value should be available
in a service repository. Therefore, an efficient local selec-
tion method that alleviates the above shortcomings should
be designed.

In this paper, local selection based methodology is pro-
posed in order to alleviate the above issues. QoS require-
ments consist of (i) a set of QoS constraints and (ii) a set of
QoS preferences. QoS constraints are based on range of QoS
attributes, whereas QoS preferences are based on user’s prior-
ities over different QoS attributes. QoS constraints represent
upper and/or lower bound values that QoS attributes can take.

123

110 SOCA (2015) 9:107–138

For example, Find a Weather Service with QoS constraints:
Cost <=$500 and response time <= 1 s. QoS preferences
refer to priorities or preferences of users over different QoS
attributes. For example, while querying, clients may specify
their QoS preferences as 80% priority to response time and
20% priority to cost. QoS constraints and preferences vary
from application to application.

To reduce the complexity of selecting the best avail-
able service combination, a set of independent subprob-
lems (selecting the best available service for an individual
task) equal to the number of tasks in the workflow is con-
structed. The subproblems are constructed using users’ QoS
requirements. Normally, clients are unaware that whether
their queries are implemented by single atomic service or
by a composite service [4]. Hence, whatever QoS require-
ments they specify are meant for the entire workflow. The
workflow level constraints are called as global constraints.
While constructing subproblems, the global constraints are
broken down into task-level constraints also known as local
constraints with the condition that the aggregation of local
constraints should always satisfy the global constraints. The
QoS preferences need not be decomposed as they remain
the same for workflow and tasks. In the following example,
a user specifies his QoS requirements as QoS constraints:
cost <=$5000 and latency<=70 % and QoS preferences:
80% priority to latency and 20% priority to cost. In order
to construct subproblems, it is essential to break down the
global constraints into local constraints to meet the user’s
constraints, whereas user’s QoS preferences will remain the
same for both workflow level selection and task-level selec-
tion as clients are unaware of composition. Further, in some
specific applications if at all the users are aware of compo-
sition and if they could specify constraints and preferences
for individual tasks, then the given individual constraints and
preferences will be taken into account during selection. Dif-
ferent utility functions will be constructed for different tasks,
and best services for different tasks will be selected accord-
ingly. After constructing subproblems, the independent sub-
problems are solved by finding the best available service for
each subproblem. Ultimately, these selected best services are
combined as the best available service combination for the
given workflow.

1.1 Contributions

This section highlights the contributions of the work. There
is a compelling need for selection of suitable services fairly
quicker in order to meet dynamically changing business
processes and service updates. In this work, a new and unique
method based on local selection is contributed in the field
of service composition for selecting suitable services as per
QoS requirements. Though there are a few methods based on
local selection available for service selection, a new method

is proposed that decomposes the given global constraints in
less computation time which is not based on MIP [2,3] but
on extreme values of QoS attributes of service classes.

The advantages of this contribution include reduction in
computation time, handling of combinational workflows with
various execution patterns and 100 % guarantee for suc-
cessful execution of all paths present in OR pattern. This
contribution also assures improved efficiency in selection
uniquely through heuristics-based constraint relaxation with
user’s trade-off. Further, the model can be integrated with any
service-based application which involves QoS-based selec-
tion.

As a model, firstly, the contribution fills the gap of non-
availability of efficient methods in terms of computation
time and handling workflows with different execution pat-
terns such as AND, OR and Loop. The model considers
selecting a suitable service combination for the given work-
flow as the main problem and selecting suitable service
for each task (present in the workflow) from its service
class as a subproblem. It decomposes the given global con-
straints into local constraints in such a way that the aggre-
gation of local constraints always meets the given global
constraints. It solves the subproblems simultaneously and
returns the combined solution as the best available service
combination. For each service class, the model computes
the local constraints based on extreme (minimum and max-
imum) values of QoS attributes of service class rather than
the QoS values of individual services. Computing local con-
straints based on extreme values of QoS attributes of service
class makes decomposition of constraints as independent of
number of services in a service class, which is a unique
feature. The computation time of decomposing constraints
will not change with number of services which makes the
model a better choice for applications having large service
space.

Secondly, any local selection approach has an inherent
limitation that under some situations, the method may fail to
identify a suitable service combination based on local con-
straints in spite of availability of such combination. The pro-
posed model contributes a heuristics-based approach to solve
the problem by relaxing local constraints within the permit-
ted limits.

Thirdly, a new aggregation function which does not take
into account the probability factor associated with the paths
of an OR execution pattern while computing aggregate value
of response time is proposed. This new function assures
100 % guarantee for successful execution of each alternate
path of an OR pattern when it is given a chance for execu-
tion in contrast to existing aggregation function [9,15,19,22],
which considers probability factor of paths while computing
aggregate value. With the existing function, it is not certain
that every path of the OR pattern will succeed for execution
as illustrated in Sect. 2.

123

SOCA (2015) 9:107–138 111

From methodological perspective, the model performs
service selection in two phases, viz., Constraint Decom-
position Phase and Service Selection Phase. In Constraint
Decomposition Phase, the given global constraints are
decomposed into local constraints. This is done by first trans-
forming the given workflow into sequential and then comput-
ing local constraints from the given global constraints, based
on extreme values of QoS attributes of services classes. The
model constructs subproblems by assigning local constraints
to individual service classes. In Service Selection Phase, the
model proposes an algorithm which finds suitable service for
a task from its respective service class subject to its local con-
straints. The algorithm identifies best service from the avail-
able services (for a task) rather than optimal service. There
is no guarantee that an optimal service will always exist. The
model also describes the algorithmic steps involved in relax-
ing local constraints (still satisfying global constraints) to
find a feasible solution.

From evaluation perspective as described in Sect. 4,
with typical test collection, the proposed model is found
to yield excellent time characteristics with sufficient accu-
racy (in terms of utility_ratio) when compared with exist-
ing approaches [2,15,21]. The model also describes how
techniques such as heuristics-based constraint relaxation
and user’s trade-off among different QoS attributes help in
increasing the efficiency of local selection.

The above features make the method more applicable
to dynamic service composition applications in different
domains such as e-health and e-tourism as per the example
stated earlier in this section.

2 Related work

QoS-based local selection has been handled by many
approaches. A local selection method presented in [20]
mainly focuses on the decomposition of functional require-
ments. Local selection method presented in [12] uses LP
technique to find optimal services under different modes, sub-
jective weight mode, objective weight mode and subjective-
objective weight mode. Its main focus is to handle user’s
preferences and objectivity of service quality characteristics.
Another method presented in [4] finds the best candidate ser-
vices for service composition by finding ‘skyline services’
for each class using dominance relationship. Though the
work reduces the time complexity by carrying out the detec-
tion of skyline services as an offline job, its performance is
affected by the number of constraints. An efficient method of
decomposing constraints and distributed broker architecture
is discussed in [2] for QoS-aware service selection. Though
the method of decomposition of [2] is widely used by other
research works [13,14,18,23,25], it has some inadequacy as
discussed below.

In a service class, for each QoS attribute, there will be
at least one service with minimum value and at least one
service with maximum value. Hence, the value of a QoS
attribute of service class ranges from a minimum to a max-
imum. While decomposing a global constraint, the method
divides the range of QoS attribute into a set of quality levels.
For each service class, the above method finds a particular
quality level which has the highest benefit and assigns the
same quality level as constraint for that service class. The
benefit is computed using

pzjk = h(qzjk)

l
.
u(qzjk)

umax
(1)

In (1), pzjk represents the benefit of using zth quality level of
kth attribute of j th service class, h(qzjk) denotes the number
of services that qualify the zth level, u(qzjk) denotes the high-
est utility value obtained by considering the qualified services
of zth level, umax denotes the highest utility obtained by con-
sidering all services in the j th service class and l denotes
the number of services in j th service class. From (1), it is
understood that the benefit of a quality level is influenced
by number of services present in that level. When local con-
straints are fixed based on benefit, a quality level with less
utility may be fixed as local constraint to a service class. In
that case, the method fails to discover a service with high
utility even though it exists (and hence satisfies a user less).
So, the benefit of a quality level should not be influenced
by the number of services that qualify that level. Further,
the above approach handles only sequential workflow, and
it is not applicable to the most widely used business execu-
tion patterns such as AND, OR and Loop patterns. Also, the
method uses Mixed Integer Programming (MIP) to find local
constraints which has poor time characteristics when number
of services grows.

In [9,15,19,22], the OR execution pattern is discussed
with respect to computation of QoS attributes. Let us
consider an OR pattern, u containing k sequential paths,
P1, P2, . . . , Pk . Let the i th sequential path denoted by Pi
contain mi tasks, t i1, t

i
2, . . . , t

i
mi

. Let pi denote the probabil-
ity of execution of Pi . Let rt(t ij) denote the response time of
j th task in Pi . Let rt(Pi) denote the response time of Pi . The
value of rt(Pi) is calculated using

r t (Pi) =
mi∑

j=1

r t (t ij) (2)

Let rt (u) denote the response time of u. The above
approaches compute the ‘expected response time’ of u using
(3) and fix the computed value as rt(u).

r t (u) =
k∑

i=1

pi × r t (Pi) (3)

123

112 SOCA (2015) 9:107–138

Fig. 2 An example OR unit

When response time of an OR pattern is computed based on
expected value as given by (3), it is not certain that every path
of the OR pattern will succeed for execution when a chance
is given for execution. This limitation is illustrated using an
example OR unit, u as given in Fig. 2.

In Fig. 2, ‘OS’ denotes OR Split and ‘OJ’ denotes OR Join.
P1, P2, P3 and P4 denote the sequential paths present in u.
P1 consists of two tasks, t1

1 and t1
2 . P2 consists of two tasks,

t2
1 and t2

2 . P3 consists of one task, t3
1 . P4 consists of three

tasks, t4
1 , t

4
2 and t4

3 . Based on run-time conditions, anyone
of the sequential paths in u will be executed. Let p1, p2, p3

and p4 denote the probability of execution of P1, P2, P3 and
P4, respectively. Let rt(u) denote the response time of u.
Now, consider typical values for probability of execution of
different sequential paths and for response time (minimum
response time) of different tasks as given in Tables 2 and 3,
respectively.

According to (3), the value of rt(u) is computed as 1,160.
When this computed value is assigned as rt(u), only P1 and P2

will succeed for execution. But P3 and P4 will fail because the
response time of P3 and P4 (1,600 and 1,400, respectively) is
greater than rt(u). Such failures affect the reliability and pre-
dictability of workflows. The failure of paths P3 and P4 is due
to the consideration of probability factors of the paths of the
OR pattern during the computation of response time. So, the
probability of a path in OR pattern is meant to represent the
chance of choosing a path for execution. Probability factors

Table 2 Probability of execution of different sequential paths in the
example OR unit

ID of sequential
path

Probability of
execution

P1 0.2

P2 0.1

P3 0.5

P4 0.2

Table 3 Minimum response time of different tasks in the example OR
unit

ID of task Minimum response
time

t1
1 100

t1
2 200

t2
1 150

t2
2 50

t3
1 1,600

t4
1 400

t4
2 200

t4
3 800

should not be considered while computing QoS (response
time).

As a novel approach to find response time of an OR unit
which alleviates the above failure, initially the response time
of each sequential path is computed. Let rt(Pi) denote the
response time of i th sequential path. Let k be the number of
paths in u. Let mi denote the number of tasks present in i th
sequential path. The value of rt(Pi) is calculated using (2),
and the value of rt(u) is computed using

r t (u) = max{r t (Pi) |1 ≤ i ≤ k } (4)

If rt(u) is computed according to (4), then all the paths present
in the OR unit will have sufficient time for execution. Using
(4), the value of rt(u) for the example OR unit is computed
as 1600. With this computation, the execution through any
path of OR unit will become successful.

In any service-based application, it is very essential to allot
the minimum required time for execution to all tasks/paths/
that are present in an OR pattern to ensure 100 % guarantee
for successful execution of composite service.

There may be situations where theminimum required time
itself may not satisfy the client’s demand for response time.
This means that a client may require a response time which is
lesser than the minimum required time. Certainly, it is essen-
tial to consider QoS requirements of clients, but theminimum
time required to meet 100 % successful execution cannot be
comprised to meet user’s QoS constraints. If we comprise the
time allotment, the most probable path (and hence most prob-
able workflow) itself will fail even with best case services.
This is illustrated with the following example.

Consider that Mr. X wants to travel from a place, say, A
to another place, say, B. Imagine that the travel can be per-
formed using two modes of transport, namely flight and train.
The probability of travel by the two modes of transport is 10
and 90 % respectively. Mr. X wants to book his ticket with a
Booking Service. The example is realized with an OR unit as
given in Fig. 3. Let u denote the OR pattern given in Fig. 3.
The pattern consists of two sequential paths, P1 and P2. Each

123

SOCA (2015) 9:107–138 113

Fig. 3 Another OR pattern

path contains single task. The path P1 contains the task t1,
and P2 contains t2. Corresponding to each task, multiple ser-
vices are available to implement the functionality of that task,
but with different QoS characteristics. Services which have
similar functionality but different QoS corresponding to a
task would form the service class of that task. Now, within
a service class for each QoS attribute, there may be at least
one service having minimum value for that attribute and there
may be at least one service having maximum value of that
attribute. Hence, the value of QoS attribute of a service class
ranges from a minimum to maximum. Let ti denote i th task.
Let pi ,min_r t (ti) and max_r t (ti) denote the probability of
execution, minimum response time and maximum response
time of ti . The values of probability of execution, minimum
response time and maximum response time of different tasks
are given in Table 4.

Let min_r t (u) and max_r t (u) denote the minimum
response time and maximum response time of u. The val-
ues of min_r t (u) and max_r t (u) are computed using (3) (for
simplicity, we call this method of computing response time as
conventional approach), and proposed method of computing
response time for an OR pattern using (4) is given in Table 5.

Table 4 Probability of execution, minimum response time and maxi-
mum response time of different tasks

Task Probability Minimum
response time

Maximum
response time

t1 0.1 200 210

t2 0.9 1,000 1,010

Table 5 Value of minimum response time and maximum response time
of OR pattern

Extreme values of response
time of OR pattern

Conventional
method

Proposed
method

min_r t (u) 920 1,000

max_r t (u) 930 1,010

When the values of min_r t (u) and max_r t (u) are fixed
according to conventional approach (i.e., 920 and 930), the
task t2 which has 90 % probability for execution will fail
for execution. This task cannot be executed even with best
service offer with minimum response time (1,000).

Here, irrespective of whether the OR pattern can meet
user’s constraint of response time, the pattern fails for 90 %
of its execution because of the insufficient allotment of time.
Here, the reliability of the workflow will be lost. If we allot
insufficient time to a workflow which may contain many OR
patterns, we cannot even predict the success of the workflow
which ultimately affects the client’s satisfaction.

Hence, the first aspect to be considered is to allot the min-
imum required time which guarantees 100 % successful exe-
cution, and then, the second aspect is to be considered is how
to fulfill the user’s constraints.

Let grt denote the user’s constraint of response time.
Whether the OR execution pattern given in Fig. 3 is guaran-
teed for successful execution with respect to different cases of
grt with the response time of the OR pattern computed using
conventional and proposed methods are given in Table 6.

From Table 6, the proposed method of computing QoS
values are found to satisfy the given user’s constraints
very well when compared to conventional method. Only
when grt < min_r t (u), the execution is not guaranteed
for 100 % and in this case, negotiation can be made with
users for relaxing the constraint just to meet 100 % guar-
antee for successful execution with best service offers. For
any other value of grt ≥ min_r t (u), the OR pattern is
found to be 100 % feasible with either best case or other
services.

Another work [16] employs a hierarchical Petri nets-
based approach to decompose global constraints into local
constraints for different tasks in a general flow structure.
But this method computes QoS attributes of an OR unit
based on expected values and assigns constraints accordingly.
Hence, all branches of an OR unit are not guaranteed to be
successful.

123

114 SOCA (2015) 9:107–138

Table 6 Percentage of guarantee for successful execution with respect to different cases of global constraint of response time

Different cases of grt % of guarantee for successful execution

Conventional approach
min_r t (u) = 920; max_r t (u) = 930

Proposed approach
min_r t (u) = 1,000; max_r t (u) = 1,010

Case 1: grt < min_r t (u) 90 % of execution fails 90 % of execution fails

Case 2: grt = min_r t (u) 90 % of execution fails 100 % guarantee for successful execution.

Case 3: min_r t (u) > grt ≤ max_r t (u) 90 % of execution fails 100 % guarantee for successful execution.

Based on the motivation from the literature survey, this
work proposes an alternate service selection methodology
through an efficient decomposition of QoS constraints and a
new method of computing QoS values for an OR pattern.

3 Methodology

Global selection method is a time-consuming process, and
it cannot be used in real-time situations. To reduce the
time complexity of the global approach, the proposed
methodology uses local selection method. The methodol-
ogy has two phases, viz., Constraint Decomposition Phase
and Service Selection Phase that are performed in sequence.
In Constraint Decomposition Phase, the given QoS con-
straints are decomposed into task-level constraints in such
a way that the aggregation of local constraints always
meets the given global constraints. Using task-level con-
straints and the given QoS preferences subproblems are
constructed. In Service Selection Phase, each subprob-
lem is solved to select the best available service based
on user-defined utility (constructed using the user’s pref-
erences over different QoS attributes) from its service
class subject to its local constraints. Ultimately, the ser-
vices selected for all the tasks are combined to pro-
duce the best available service combination for the given
workflow.

3.1 Constraint decomposition phase

The structure of a workflow may vary from a sequential as
in Fig. 4 to a combinational structure that contains various
execution patterns such as AND, OR and Loop as in Fig. 5.

In Fig. 5, ‘AS’ represents AND Split, ‘AJ’ represents AND
Join, ‘OS’ represents OR Split, ‘OJ’ represents OR Join, ‘LS’
represents Loop Start and ‘LJ’ denotes Loop Join. An exe-
cution pattern starts from AS to AJ forms an AND unit, an
execution pattern starts from OS to OJ forms an OR unit and
execution pattern starts from LS to LJ forms a Loop unit with
number of iterations given in brackets. An AND/OR/Loop
unit can contain sequential paths of tasks (such as t4, t5 and
t6), zero or more other AND, OR units and Loop structures
(like OR unit of t8 and t9 in sequential combination with t7,
Loop of t2 and t3) in it.

The decomposition of global constraints into local con-
straints is dependent on the method of computing QoS
attributes for various execution patterns present in a work-
flow. The execution patterns that exist in a workflow may vary
from a simple sequential task to series of sequential tasks to
AND/OR/Loop units. The AND/OR/Loop units may be sim-
ple or complex. Any simple AND or OR unit will contain only
sequential paths. A simple Loop contains only one sequential
path in it. A complex unit may contain other simple/complex
units inside. The proposed method of decomposing con-

Fig. 4 Sequential workflow

Fig. 5 Combinational
workflow

123

SOCA (2015) 9:107–138 115

Table 7 Computation of
response time for various simple
units

Type of simple unit Computation of response time

Sequential path with ‘n’ tasks
∑n

j=1 r t (t j)

Simple AND unit with ‘k’ number of sequential paths max{r t (Pi)|1 ≤ i ≤ k}
Simple OR unit with ‘k’number of sequential paths max{r t (Pi)|1 ≤ i ≤ k}
Simple Loop having one sequential path with ‘z’ tasks and ‘m’ iteration m × ∑z

j=1 r t (t j)

straints is described using the QoS attribute, ‘response time’.
Computation of response time for various simple units is
given in Table 7. In Table 7, r t (t j) denotes response time of
j th task, Pi denotes i th sequential path in AND/OR unit and
r t (Pi) denotes response time of Pi .

During decomposition of constraints, three tasks should
be performed. As the workflow ranges from sequential to
combinational workflow with complex execution patterns,
the given workflow is converted into its equivalent sequential
workflow firstly.

Secondly, before decomposition, it is necessary to check
whether there exists at least one service combination that sat-
isfies the given global constraint. This is accomplished using
the best service from each service class. The best service
from each service class is combined to form the best ser-
vice combination. The QoS of the best service combination
is computed and tested against the given global constraint. If
the best service combination satisfies the given global con-
straint, then the given global constraint will be considered
for decomposition. Otherwise, there will be no service com-
bination available to implement the given workflow subject
to the given constraints. In such case, the constraints will not
be considered for decomposition, and the user can relax the
constraints or he has to find services provided by yet other
providers.

Thirdly, if a given constraint is found to be decomposable,
it will be decomposed into local constraints and local con-
straints will be assigned to individual tasks. Further, to carry
out the above tasks, the Constraint Decomposition Phase is
split into three steps, namely conversion, decomposability
check and decomposition of constraints.

3.1.1 Conversion

In this first step, the given workflow denoted by W is con-
verted into sequential workflow denoted by W ′. To illustrate
the method of conversion, initially, the basic methods of con-
version of simple AND, simple OR and simple Loop units
are discussed. Any workflow can be converted into sequential
workflow using these basic methods.

1) Conversion of Simple AND/OR/Loop Units (Basic
methods)

Let us consider a simple unit u. The unit u may be a sim-
ple AND or a simple OR or a simple Loop. Let us consider
u as a simple AND unit or a simple OR unit as in Fig. 6.

Fig. 6 Simple AND/OR unit

Let k be the number of sequential paths in u . Let ‘ Pi ’
denote the i th sequential path in u. Let mi , 1 ≤ i ≤ k be the
number of tasks in Pi . Let t ij denote the j th task in Pi . The
value of a QoS attribute of a task (or service class) varies
from a minimum to a maximum as the service class con-
tains many functionally similar services with varying QoS,
and therefore, there will be a service with minimum value
and a service with maximum value in the service class. Let
min _rt(t ij) and max_r t (t ij) denote the minimum response

time and maximum response time of t ij . Let min_r t (Pi) and
max_r t (Pi) denote the minimum response time and maxi-
mum response time of Pi .

For each 1 ≤ i ≤ k, the values of min_r t (Pi) and
max_r t (Pi) are calculated using (5) and (6).

min _r t (Pi) =
mi∑

j=1

min _r t (t ij) (5)

max _r t (Pi) =
mi∑

j=1

max _r t (t ij) (6)

Let min_r t (u) and max_r t (u) denote minimum response
time and maximum response time of u. The values of
min_r t (u) and max_r t (u) are calculated using (7) and (8).

min _r t (u) = max{min _r t (Pi) |1 ≤ i ≤ k} (7)

max _r t (u) = max{max _r t (Pi) |1 ≤ i ≤ k} (8)

Now, the given AND or OR unit is replaced by a sequen-
tial new-task whose minimum response time and maximum
response time are equal to min_r t (u) and max_r t (u), respec-
tively.

Consider u as a simple Loop that contains z sequential
tasks as given in Fig. 7.

123

116 SOCA (2015) 9:107–138

Fig. 7 Simple loop unit

Let ‘ti ’ denote i th task in u. Let min_r t (ti) and max_r t (ti)
denote the minimum response time and maximum response
time of ti . Let min_r t (u) and max_r t (u)denote the minimum
response time and maximum response time of u. Let ‘m’
denote the number of iterations that u takes. The values of
min_r t (u) and max_r t (u) are calculated using (9) and (10).

min _r t (u) = m ×
z∑

j=1

min _r t (t j) (9)

max _r t (u) = m ×
z∑

j=1

max _r t (t j) (10)

Now, u can be replaced by a sequential new-task whose min-
imum response time and maximum response time are equal
to min_r t (u) and max_r t (u), respectively.

2) Conversion of given workflow into sequential workflow
Initially, all simple AND/OR/Loop units in the given

workflow are converted into new-tasks using the basic meth-
ods. The resulting workflow may be a sequential or a combi-
national workflow. In the latter case, the conversion process is
repeated until a sequential workflow is obtained. This sequen-
tial workflow is denoted by W ′, and this workflow contains
two kinds of tasks old tasks (sequential tasks in the given
workflow) and new-tasks (converted tasks).

3.1.2 Decomposability check

In decomposability check, the compliance of W ′ for its ful-
fillment against the given global constraint of response time
is tested as follows.

Let t1, t2, . . . , tm denote the old tasks inW ′. Let t ′1, t ′2, . . . ,
t ′n be the new-tasks in W ′. Let min_r t (t1),min_r t (t2), . . . ,
min_r t (tm) denote minimum response time of 1st, 2nd,. . .,
mth old tasks and min_r t (t ′1),min_r t (t1

2
), . . . ,min_r t (t ′n)

denote minimum response time of 1st, 2nd,. . ., nth new-
tasks. Let max_r t (t1),max_r t (t2), . . . ,max_r t (tm) denote
maximum response time of 1st, 2nd ,. . .,mth old tasks. Let
max_r t (t ′1),max_r t (t1

2
), . . . ,max_r t (t ′n) denote maximum

response time of 1st, 2nd,. . ., nth sequential new-tasks. Let
min_r t (W ′) and max_r t (W ′) denote the minimum response
time and maximum response time of W ′ respectively. The
values of min_r t (W ′) and max_r t (W ′) are found using (11)
and (12).

min_r t (W ′) =
m∑

i=1

min _r t (ti) +
n∑

i=1

min_r t (t ′i) (11)

max _r t (W ′) =
m∑

i=1

max _r t (ti) +
n∑

i=1

max _r t (t ′i) (12)

Let ‘grt’ denote the given global constraint of response time.
If min_r t (W ′) > grt , the given workflow cannot be imple-
mented using the available services. In this case, the user can
relax the constraints or he has to find services provided by
yet other providers. If min_r t (W ′) ≤ grt,W ′ is a feasible
workflow. In the case of feasible workflow, the given global
constraints are decomposed into task level constraints.

3.1.3 Decomposition of constraints

Based on the values of min_r t (W ′) and max_r t (W ′) and
global constraint of response time, two local constraints of
response time, namely lower bound constraint of response
time and upper bound constraint of response time for each
task in W ′ are computed. The assignment of lower and
upper bound constraints to old tasks and new-tasks in W ′
is described below.

1) Assignment of constraints to old tasks
Let min_r t (ti) and lcr t (ti) denote the minimum response

time and the lower bound constraint of response time of ti .
The value of lcr t (ti) is assigned using (13).

lcr t (ti) = min _r t (ti) (13)

Let ucrt (ti) denote upper bound constraint of response time
of ti . The value of ucrt (ti) is computed for two different
cases as follows.

Case 1: when min_r t (W ′) = grt
The value of ucrt (ti) is computed using (14).

ucrt (ti) = min _r t (ti) (14)

Case 2: when min_r t (W ′) < grt
In this case, there are two subcases.

SubCase 2a: when max_r t (W ′) ≤ grt
The value of ucrt (ti) is computed using (15)

ucrt (ti) = max _r t (ti) (15)

SubCase 2b: when max_r t (W ′) > grt
The value of ucrt (ti) is computed using (16)

ucrt (ti) = max _r t (ti)

max _r t (W ′)
× grt (16)

2) Assignment of constraints to new-tasks
In the case of a new-task, initially, the upper bound con-

straint of response time of a new-task is computed based on
min_r t (W ′),max_r t (W ′) and grt. Let ucrt (t ′i) denote the
upper bound constraint of response time of t ′i . The value of
ucrt (t ′i) is computed for two different cases as follows.

123

SOCA (2015) 9:107–138 117

Case 1: when min_r t (W ′) = grt
The value of ucrt (t ′i) is computed using (17)

urct (t ′i) = min _r t (t ′i) (17)

Case 2: when min_r t (W ′) < grt
In this case, there are two subcases.
SubCase 2a: when max_r t (W ′) ≤ grt
The value of ucrt (t ′i) is computed using

urct (t ′i) = max _r t (t ′i) (18)

SubCase 2b: when max_r t (W ′) > grt
The value of ucrt (t ′i) is computed using (19)

ucrt (t ′i) = max _r t (t ′i)
max _r t (W ′)

× grt (19)

Now, corresponding to each new-task, there will be a simple
unit. From the constraints of a new-task, the constraints of
its corresponding simple unit are calculated. From the con-
straints of a simple unit, the constraints of tasks present in
that unit will be computed.

To illustrate the assignment of constraints from a new-task
to its respective unit and to the tasks present in the respective
unit, a particular new-task t ′ is considered. Let u(t ′) denote
the simple unit corresponding to t ′. This simple unit u(t ′)
may be a simple AND or a simple OR or a simple Loop. Let
ucrt (u(t ′i)) denote the upper bound constraint of response
time of u(t ′). The value of ucrt (u(t ′i)) is computed using

ucrt (u(t ′)) = ucrt (t ′) (20)

Consider u(t ′) as a simple AND/OR unit. Let ‘k’ denote the
number of sequential paths present in u(t ′). Let P1, P2, . . . ,
Pk denote first, second ,. . ., kth sequential path in u(t ′).
Let ‘mi ’ denote the number of tasks in an i th sequen-
tial path denoted by Pi . Let t ij denote the j th task in Pi .
Let max_r t (Pi) denote maximum response time of Pi . Let
lcr t (t ij) denote the lower bound constraint of response time

of t ij . Let ucrt (t ij) denote the upper bound constraint of

response time of t ij . When a workflow is found to be fea-
sible, then for each task, the minimum response time of that
task is assigned as the lower bound constraint of the task.
Thus, the value of lcr t (t ij) is calculated using (21)

lcr t (t ij) = min _r t (t ij) (21)

The value of ucrt (t ij) is computed using (22)

ucrt (t ij) = max _r t (t ij)

max _r t (Pi)
× ucrt (u(t ′)) (22)

Consider u(t ′) as a simple Loop that contains ‘z’ tasks in the
sequential path P . Let ‘m’ be the number of iterations that
u(t ′) takes. Let ti denote i th task in P . Let lcr t (ti) denote the
lower bound constraint of ti . Let ucrt (ti) denote the upper

bound constraint of ti . The values of lcr t (ti) and ucrt (ti) are
computed using (23) and (24).

lcr t (t j) = min _r t (t j) (23)

ucrt (ti) = max _r t (ti)

max _r t (P)
× ucrt (u(t ′)

m
(24)

Thus, the local constraints are assigned to all individual tasks
in the given workflow.

3.2 Service selection phase

Service users have a set of QoS preferences based on their
applications. The influence of a particular attribute on the
user’s utility may be different from that of other attributes.
Also, the attributes may be negative or positive. Negative
attributes such as response time, latency and cost should be
minimized. Positive attributes such as availability, scalabil-
ity and reliability should be maximized. The preferences of
user are modeled as a utility function using Simple Additive
Weighting (SAW) technique [26]. The method presented in
[2] is used for computing utility, and the utility of an i th
service of j th service class is computed using

U (s ji) =
r∑

k=1

Qmax(j, k) − qk(s ji)

Q′
max

(k) − Q′
min

(k)
× wk (25)

In (25), Q′
max(k) and Q′

min(k) denote the maximum and min-
imum values of kth QoS attribute of the given workflow. The
value of Q′

max(k) is computed by aggregating the maximum
values of kth attribute of all service classes by which the
workflow is constructed. Similarly, the value of Q′

min(k) is
computed by aggregating the minimum values of kth attribute
of all service classes by which the workflow is constructed.
Qmax(j, k) represents the maximum value of kth attribute of
j th service class. qk(s ji) represents the value of kth attribute
of i th service of j th service class, and wk represents the
weight of kth attribute. The utility function is subject to the
condition,

∑r
k=1 wk = 1 where r denote the number of

attributes. The selection of the best available service for each
task in the workflow is a subproblem, and it is formulated
thus:

For each task t j , select a service s ji from its respective
service class, S j as the best available service subject to the
conditions: U (s ji) should be maximum of all s ji ∈ S j and
s ji should satisfy the constraints of t j .

In real-time service composition, the QoS constraints and
preferences will be known only during querying time and pre-
computation of utility function, and its sorting is not possible
for assisting quick selection of the best available service for a
given task. Hence, an iterative searching procedure is devel-
oped to identify the best available service, and its pseudo
code is given in Listing 1.

123

118 SOCA (2015) 9:107–138

Listing 1 Pseudo code of searching procedure

Notations:

jS – jth Service class ; jC – Constraint of jth service class

jis - ith service of jth service class ; ()jiQ s – QoS attributes of jis

()jiU s – utility of jis ; jbs –the best available service of jS

kw - weight of kth attribute

Pseudocode: Best available service selection algorithm

Input: jS , jC , ()jiQ s of all jji Ss ∈ , kw for all attributes

Output: jbs

Begin:

max _ 0;;jb imum utilitynulls ==
For each service

ji js S∈

If (()jiQ s satisfies jC)

{

Compute ()jiU s

If (() max _jiU s imum utility>) then { max _ ();jiimum utility U s= jijbs s= }

}
End for
Return jbs

End

The best available services identified for all tasks of a
given workflow are combined to produce the best available
service combination.

Further, how the two phases of the proposed methodology
work is illustrated with a simple example in Appendix A
(supplementary material).

4 Experimentation

There are three objectives of experimentation. The first one is
to find the computation time of the proposed method to select
appropriate services for composition. The computation time
is found out as the sum of computation time of Constraint
Decomposition and Service Selection phases. The second
one is to check the correctness of the proposed approach with
standard approach. The third one is to compare the computa-
tion time of the proposed approach with other existing local
approaches.

Toward experimentation, prototype as in Fig. 8 has been
implemented and various experiments have been conducted.

The workflows from sequential to simple combinational
are considered for testing the methodology. In this prototype,
the input workflow is represented as a matrix denoted by M .

The steps involved in representing a simple combinational
workflow as a matrix are given in Listing 2.

Let us consider a simple combinational workflow shown
in Fig. 9. Let the workflow be denoted by W . According
to the steps given in Listing 2, the details of tasks are cap-
tured in Table 8. There are 12 tasks in W . The tasks are
numbered from 1 to 12. The workflow contains one AND
unit, 2 OR units and one Loop. AND unit is numbered as 1.

Listing 2 Steps involved in representing a workflow as matrix

Step 1: Assign continuous numbering to tasks present in the workflow.
The number assigned to a task becomes the ID of that task. Let an i th
task be denoted by ti where i denotes the ID of the task. For example,
the tasks present in the workflow (please refer Fig. 9) are assigned IDs
as in t1, t2, t3, . . .t12. IDs are assigned from 1 to n where n denotes the
number of tasks present in the workflow.
Step 2: The type of execution pattern in which a task is present is called
its unit type. Let ut (ti) denote the unit type of i th task. For each ti , ut (ti)
can take values 1,2 and 3 according to AND, OR and Loop, respectively,
in which ti is present. If ti is present as an individual task, ut (ti) is 4.
Step 3: Assign numbers to patterns. The number assigned to a pattern
becomes the unit ID for the tasks present in that unit. In our numbering,
we assign numbers to all patterns such that AND patterns receive contin-
uous numbering starts from 1. Similarly, OR patterns and Loops receive
continuous numbering starting from 1, i.e., AND units are numbered as
1,2,3 and so on and OR units are numbered as 1,2,3 and so on. Similarly,
Loop patterns are numbered as 1,2,3…. When two units receive same
number, they are differentiated by unit type. Now, for each task ti , u(ti)
denotes the unit ID of ti . Further, for individual tasks, u(ti) = 0
Step 4: For each pattern, assign continuous numbering starting from 1
to sequential paths present in that pattern. The number assigned to a
sequential path becomes the path ID for the tasks present in that path.
Let sp(ti) denote path ID of ti . When two sequential paths receive same
number, they are differentiated by unit ID and unit type
Step 5: Now, each task can be uniquely identified using unit type, unit
ID and path ID.
Step 6: For each task ti , if it is present in a loop, the number of iterations
denoted by i t (ti) takes an integer greater than 0. Otherwise, i t (i) = 0 .
Let min_r t (ti),max_r t (ti), lcr t (ti) and ucrt(ti) denote the minimum
response time, maximum response time, lower bound constraint of
response time and upper bound constraint of response time of ti , respec-
tively. For each ti , the values of ut (ti), u(ti), sp(ti) and i t (ti) are cap-
tured from the given workflow. For each ti , the values of min_r t (ti) and
max_r t (ti) are also given as inputs.
Now, the given workflow is represented as a Matrix, M , such that M =
(Mi j , 1 ≤ i ≤ n, 1 ≤ j ≤ 9). The order of M is given as n × 9 where
‘n’ denotes the total number of tasks present in the workflow. Let i th
row of M denote i th task of the workflow. For each i th row, the values
of task ID, ut (ti), u(ti), sp(ti),min_r t (ti),max_r t (ti), i t (ti), lcr t (ti)
and ucrt (ti) denote 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th and 9th columns
of M . Given the above details for each ti , the values of lcr t (ti) and
ucrt (ti) are computed using the proposed method of decomposition
and updated in the matrix.
(Please note: along with the above details of tasks as matrix, global
constraints also will be given as inputs to decomposition phase as in
Fig. 8. Also note that the values of columns 8 and 9 of the matrix are
initialized to 0. At the end of Constraint Decomposition Phase, the values
of lower and upper bound constraints of tasks are updated in 8th and 9th
columns of the matrix respectively.)

The two OR units are numbered as 1 and 2. The Loop unit
is numbered as 1. The AND unit contains 5 tasks, namely
t1, t2, t3, t4 and t5. Now, we have ut (t1) = 1; ut (t2) =
1; ut (t3) = 1; ut (t4) = 1; and ut (t5) = 1. Also, we have
u(t1) = 1; u(t2) = 1; u(t3) = 1; u(t4) = 1; andu(t5) = 1.

There are two sequential paths in the AND unit 1, and
they are numbered as 1 and 2. The tasks t1, t2 and t3 are
present in sequential path 1 and hence sp(t1) = 1; sp(t2) =
1; sp(t3) = 1. The tasks t4 and t5 are present in sequen-
tial path 2 and hence sp(t4) = 2; sp(t5) = 2. The task t6 is
present in Loop pattern with ut (t6) = 3; u(t6) = 1; sp(t6) =

123

SOCA (2015) 9:107–138 119

Fig. 8 Architecture of the
prototype

Fig. 9 An example workflow
taken to illustrate matrix
representation

1; i t (t6) = 3. The OR unit 1 contains 2 sequential paths
numbered as 1 and 2. Using the steps given in Listing 2,
we have unit types of t7, t8 and t9 as ut (t7) = 2; ut (t8) =
2; ut (t9) = 2. The unit IDs of t7, t8 and t9 are given as
u(t7) = 1; u(t8) = 1; u(t9) = 1, and path IDs of t7, t8
and t9 are given as sp(t7) = 1; sp(t8) = 1; sp(t9) = 2.
In a similar manner, details of other tasks are captured and
given in Table 8. Also, note that assumed values are given
for min_r t (ti) and max_r t (ti).

The details of tasks described in Table 8 can be mathemat-
ically visualized as a Matrix, M , such that M = (Mi j , 1 ≤

i ≤ n, 1 ≤ j ≤ 9). That is the order of M is n × 9 where
‘n’ denotes the total number of tasks present in W . Let the
i th row of M denote the details of the i th task of W , and the
columns of an i th row are admitted according to the columns
of Table 8. The combinational workflow given in Fig. 9 is
represented in its matrix form as in Fig. 10.

The workflow in Matrix form and the global constraints
is given as inputs to Constraint Decomposition Phase. The
given constraints are broken into local constraints and
updated in the 8 and 9th columns of M . The updated matrix,
user’s QoS preferences and the values of QoS attributes

123

120 SOCA (2015) 9:107–138

Table 8 Details of tasks present
in the workflow Task ID ut(ti) u(ti) sp(ti) min_r t (ti) max_r t (ti) it(ti) lcrt(ti) ucrt(ti)

1 1 1 1 10 100 0 0 0

2 1 1 1 20 120 0 0 0

3 1 1 1 5 150 0 0 0

4 1 1 2 50 200 0 0 0

5 1 1 2 10 300 0 0 0

6 3 1 1 14 125 3 0 0

7 2 1 1 20 200 0 0 0

8 2 1 1 14 150 0 0 0

9 2 1 2 26 200 0 0 0

10 4 0 0 12 100 0 0 0

11 2 2 1 14 130 0 0 0

12 2 2 2 30 140 0 0 0

1 1 1 1 10 100 0 0 0

2 1 1 1 20 120 0 0 0

3 1 1 1 5 150 0 0 0

4 1 1 2 50 200 0 0 0

5 1 1 2 10 300 0 0 0

6 3 1 1 14 125 3 0 0

7 2 1 1 20 200 0 0 0

8 2 1 1 14 150 0 0 0

9 2 1 2 26 200 0 0 0

10 4 0 0 12 100 0 0 0

11 2 2 1 14 130 0 0 0

12 2 2 2 30 140 0 0 0

⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎠⎝

Fig. 10 Matrix representation of the example workflow

of individual services of different service classes (which is
archived in QoS Repository) are given as input to Service
Selection Phase. In Service Selection Phase, the best avail-
able services for different tasks of the workflow are identi-
fied simultaneously (using multiple threads) as per the search
procedure given in Sect. 3.2.

Regarding test data for Constraint Decomposition Phase,
in practice, the workflows are of different nature right from
sequential workflow to combinational one. Hence, it is pro-
posed to find the time taken for decomposing constraints
to various cases such as sequential workflows, workflows
having AND patterns, workflows having OR patterns, work-
flows have Loop patterns and workflows having combi-
nation of AND, OR and Loop patterns. This necessitates
the construction of specific test collection for Constraint
Decomposition Phase. So, a collection of specific workflows
(having specified number of tasks, execution patterns, con-
straints, etc) according to requirements of experiments is con-
structed/synthesized and represented as matrices.

To study the computation time of Service Selection Phase,
the QoS dataset from [Al-masri et al. http://www.uoguelph.
ca/~qmahmoud/qws/index.html/] is used. The dataset con-
tains 9 QoS attributes for 2500 real Web services. The QoS
attributes include response time, availability, throughput,
likelihood of success, reliability, compliance, best practices,
latency and documentation. Using this dataset as base, QoS
data have been created for a collection of 10,000 services.

Experiments are performed on a Laptop with Intel Pen-
tium(R) Dual-Core, 2.20 GHz CPU, 3.0 GB memory and
Windows 7 Ultimate Operating System. The pseudocode
of the Constraint Decomposition Phase which is given in
Appendix B (supplementary material) and the procedure for
Service Selection Phase are implemented in Java 1.6 (J2SE)
with Eclipse IDE.

4.1 Computation time of constraint decomposition phase

As the input workflow may vary from sequential to com-
binational one, time taken for decomposing constraints to
various cases such as sequential workflow, simple AND/OR
pattern, simple Loop and simple combinational workflow is
discussed.

Case 1: The time taken for decomposing constraints to a
sequential workflow by varying the number of service classes
in the workflow from 10 to 100 is given in Fig. 11.

Case 2: The mechanism of decomposing and assigning
constraints to a simple OR unit is same as that of a simple
AND unit. Time taken for decomposing constraints to an
AND/OR is calculated by varying the number of sequential
paths in the pattern from 2 to 10. Time taken for decomposing
constraints with respect to number of sequential paths is given
in Fig. 12. In this example, each sequential path typically
contains 2 service classes.

Case 3: Time taken for decomposing constraints to a sim-
ple Loop by varying number of service classes from 10 to
100 is given in Fig. 13.

123

http://www.uoguelph.ca/~qmahmoud/qws/index.html/
http://www.uoguelph.ca/~qmahmoud/qws/index.html/

SOCA (2015) 9:107–138 121

Fig. 11 Time taken for
decomposing constraints to a
sequential workflow by varying
number of service classes

Fig. 12 Time taken for
decomposing constraints to a
simple AND/OR pattern by
varying number of sequential
paths

Fig. 13 Time taken for
decomposing constraints to a
simple loop by varying number
of service classes

Case 4: The time taken for decomposing constraints to
a simple combinational workflow which contains Simple
AND, Simple OR and Simple Loop patterns is computed
by varying the number of execution patterns is given in
Fig. 14. The number of patterns in the workflow is varied
from 3 to 30 in steps of 3. During experiment, the number
of AND units is increased by 1, the number of OR units
is increased by 1 and the number of Loops is increased
by 1. In this case, each AND/OR units contains 2 sequen-

tial paths with each sequential path containing 10 service
classes. Each simple Loop typically contains 10 service
classes.

Case 5: Time taken for decomposing constraints to a sim-
ple combinational workflow by varying number of execu-
tion patterns for varied number of QoS constraints, denoted
by ‘m’, is given in Fig. 15. For experimentation, negative
attributes, namely response time, latency and cost, are cho-
sen.

123

122 SOCA (2015) 9:107–138

Fig. 14 Time taken for
decomposing constraints to a
simple combinational workflow
by varying number of execution
patterns

Fig. 15 Time taken for decomposing constraints to a simple combinational workflow by varying number of execution patterns for varied number
of QoS constraints

The summary of time taken for decomposing constraints
to different cases, namely sequential workflow, AND, OR,
Loop and simple combinational workflow, is given in Table 9.
In Table 9, NAND,NOR,NLoop denotes the number of AND,
OR and Loop patterns present in a workflow. Npath denotes
the number of sequential paths present in an AND/OR/Loop.
Nsc denotes the number of service classes present in a
sequential workflow/AND/OR/Loop/combinational work-
flow. Ncons denotes the number of constraints and tdecompose

denotes the time taken for decomposing constraints.
From Table 9, it is found that the time required for decom-

posing constraints to an AND unit of 10 service classes
(574µs) is more than that of a sequential workflow hav-
ing 10 service classes (5µs). Because in case of AND unit,
the minimum response time and maximum response time
of the unit are computed, and before allocating constraints,
the unit is converted into a single new-task. From the mini-

mum response time and maximum response time of the new-
task, the constraints of the corresponding sequential paths
and tasks are computed. Due to the additional operations,
the time involved in AND (or OR unit) is more than that of
sequential workflow.

It is seen that time involved in fixing constraints to a
Loop of ‘n’ service classes is same as that of a sequential
workflow of same ‘n’ service classes because the conversion
of simple Loop into sequential workflow requires only two
extra operations. The first one is multiplication operation to
multiply extreme values of response time of sequential path
by the number of iterations of the Loop. The second one
is reverse division operation while assigning constraints to
individual tasks in the Loop (these operations consume time
of only few nanoseconds). Further, it is observed that the
increase in time taken for decomposing constraints to sequen-
tial workflow/AND/OR/Loop with respect to number of ser-

123

SOCA (2015) 9:107–138 123

Table 9 Summary of computation time of constraint decomposition phase

NAND NOR NLoop Npath Nsc Ncons tdecompose of different cases (in ms)

Sequential AND OR Loop Combinational

– – – 1 10–100 1 0.005–0.018 – – – –

1 – – 2–10 4–20 1 – 0.546–0.617 – – –

– 1 – 2–10 4–20 1 – – 0.546–0.617 – –

– – 1 1 10–100 1 – – – 0.005–0.018 –

1–10 1–10 1–10 2 50–500 1 – – – – 0.924–10.885

1–10 1–10 1–10 2 50–500 2 – – – – 1.385–12.018

1–10 1–10 1–10 2 50–500 3 – – – – 1.865–12.895

vice classes/sequential paths is very gradual. From Fig. 15
and Table 9, the increase in decomposition time is found to
vary by very small amount with respect to number of con-
straints. For example, for a workflow containing 500 tasks (10
AND patterns, 10 OR patterns and 10 Loops), the increase in
decomposition time is only 2.01 ms (from 10.885 to 12.895)
when the number of constraints is increased from 1 to 3.

4.2 Computation time of service selection phase

In Constraint Decomposition Phase, local constraints for dif-
ferent tasks are updated in the matrix M. QoS attributes of all
services are available in the QoS repository as in Fig. 8. The
priorities of user over different QoS attributes are captured.
To find the utility of any i th service in j th service class, a
utility function is constructed according to (25).

The updated matrix M, the utility function and the values
of QoS attributes of all services of different service classes
(from the QoS repository) are given as inputs to Service
Selection Phase. Here, the QoS values of services should
be retrieved from the QoS repository, and the values should
be available to Service Selection Phase. The QoS values of
services may be archived in different formats such as text
file, excel file and database in the repository. The retrieval of
QoS values from QoS repository to Service Selection Phase
is an external process as in Fig. 8. Hence, the time taken for
retrieval of QoS from repository to service selection phase is
an external factor, and it should be excluded while calculating
the computation time of Service Selection Phase.

In this work, the QoS values of test services are archived
in a disk file. Though the retrieval of QoS is an external
process, it is a prerequisite for service selection. Code has
been developed to retrieve QoS attributes from file (disk)
to an array (memory). Let tretrieval denote the time taken
for retrieving QoS attributes from disk to memory. Let ‘m’
denote the number of constraints and l denote the number of
services in a service class. To provide an insight into time
requirement of retrieval process, the value of tretrieval with
respect to l and m is given in Table 10.

Table 10 Value of tretrieval with respect to number of services and
constraints

of services tretrieval (in ms)

m = 1 m = 2 m = 3

500 21.844 22.276 24.055

1,000 31.738 32.38 34.317

1,500 37.367 37.541 42.521

2,000 42.347 42.461 45.326

2,500 45.191 45.379 48.988

3,000 47.221 47.778 49.322

3,500 49.043 49.314 50.073

4,000 49.998 50.075 51.826

4,500 51.116 52.004 53.901

5,000 52.806 53.342 54.724

5,500 54.001 54.389 55.864

6,000 55.807 56.296 57.295

6,500 57.884 58.55 58.948

7,000 58.648 60.557 60.909

7,500 60.937 62.222 64.405

8,000 64.006 65.481 65.841

8,500 66.397 66.831 67.66

9,000 67.253 68.837 69.905

9,500 69.06 69.527 70.508

10,000 69.187 70.547 72.691

From Table 10, it is understood that tretrieval varies by
a significant amount of time with respect to number of ser-
vices. For example, when the number of services is increased
from 500 to 10,000 (with m = 1), the retrieval time has
increased from 21.844 to 69.187 ms. But for a given num-
ber of services, the variation in retrieval time with respect to
number of constraints is less. For example, for 10,000 ser-
vices, time taken for retrieving one attribute, two attributes
and three attributes is 69.187, 70.547 and 72.691 ms,
respectively.

From the above study, it is understood that a consider-
able amount of time of the order of few tens of millisec-

123

124 SOCA (2015) 9:107–138

onds is involved in retrieving QoS. As the retrieval of QoS
is a prerequisite for service selection, it is suggested that the
retrieval of QoS values can be done prior to querying toward
quick service selection. Also, to handle changes in QoS val-
ues of services, the values of QoS should be refreshed at
specific intervals. In [22], the authors have monitored how
frequently the QoS values of services change at different
times of day with a collection of 39 service instances. The
authors found that the QoS values of services tend to remain
fixed from 13:30 to 21:30 h. Further, changes in QoS val-
ues have been observed at 1:33, 4:46, 7:39 and 12:29 h. The
preloading of QoS attributes will reduce the time involved
in selection of appropriate services. As in dynamic service
composition, time is crucial; keeping literature [22] as evi-
dence, we suggest refreshing the loaded QoS values once in
30 min.

During Service Selection, the QoS values of each service
are verified for their fulfillment against the local constraints.
This gives a set of services that satisfy the given constraints.
From this set of services, the service which produces the max-
imum value for the user-defined utility function is selected as
the best available service. Let tselect denote the time taken for
verifying constraint fulfillment and selecting the best avail-
able service from a single service class. The service selection
process for each task in independent, and hence, the process
of service selection for different tasks is performed simulta-
neously using multiple threads.

The time taken for selecting the best available service from
a service class with respect to l and m is found out, and the
results are given in Table 11 and in Fig. 16. During experi-
ment, the number of services is varied from 500 to 10,000,
and m is varied from 1 to 3. QoS constraints, namely response
time, cost and latency, are used for testing.

The summary of computation time of Service Selection
Phase is given in Table 12.

In Table 12, Nservice denotes number of services in a ser-
vice class, Ncons denotes number of constraints and tselect
denotes the time required for verifying QoS values and find-
ing the best available service. From Table 12, it is found that
the increase in tselect with respect to number of constraints is
very small and negligible. Also, from Table 11 and Fig. 16,
it is seen that the increase in tselect with respect to number of
services is linear.

4.3 Testing the correctness of the proposed approach

The correctness of the proposed method is evaluated by com-
paring the results obtained using the proposed method with
the results obtained using global approach (taken as stan-
dard). We define utility_ratio as the ratio of utility obtained
using the proposed approach to the utility obtained using the
global approach. The value of utility_ratio exhibits how close
the results of the proposed method are to the results of global

Table 11 Time taken for selecting the best available service from a
service class with respect to number of services for varied number of
QoS constraints

of services tselect (in ms)

m = 1 m = 2 m = 3

500 0.019 0.020 0.020

1,000 0.034 0.034 0.034

1,500 0.051 0.051 0.051

2,000 0.066 0.066 0.066

2,500 0.083 0.083 0.086

3,000 0.098 0.099 0.099

3,500 0.115 0.115 0.116

4,000 0.129 0.131 0.131

4,500 0.146 0.146 0.146

5,000 0.163 0.163 0.163

5,500 0.176 0.179 0.179

6,000 0.192 0.194 0.198

6,500 0.206 0.209 0.210

7,000 0.238 0.238 0.243

7,500 0.251 0.254 0.252

8,000 0.264 0.268 0.271

8,500 0.277 0.282 0.291

9,000 0.295 0.305 0.308

9,500 0.319 0.319 0.321

10,000 0.327 0.330 0.331

approach. The value ofutility_ratio is analyzed using sequen-
tial workflows by varying two parameters, namely number of
service classes and number of services per service class. In
global approach, initially one service from each service class
is selected and a Composite Service (CS) is formed using the
selected services. Then, the QoS of the CS is computed. The
computed QoS is tested against the given global constraint.
If a composite service fulfills the given global constraint, the
utility of the composite service is computed. The utility of a
composite service, denoted by UCS , is computed as in [2],
using (26)

UCS =
r∑

k=1

Q′
max

(k) − qk(CS)

Q′
max

(k) − Q′
min

(k)
× wk (26)

In (26), UCS represents the utility obtained using global
approach, Q′

max(k) represents sum of maximum values of
k th attribute of all service classes involved in implement-
ing a workflow and Q′

min(k) represents the sum of minimum
values of kth attribute of all service classes involved in imple-
menting a workflow, qk(CS) denotes value of k th attribute
of CS and wk represents the weight of k th attribute. In the
proposed approach, the utility of an i th service of j th ser-
vice class is computed using (25). The service which gives
the highest utility is selected as the best available service for

123

SOCA (2015) 9:107–138 125

Fig. 16 Time taken for selecting the best available service from a service class with respect to number of services for varied number of QoS
constraints

Table 12 Summary of computation time of service selection phase

Nservice Ncons tselect in µs

500–10,000 1 19–327

500–10,000 2 20–330

500–10,000 3 20–331

a service class. Let s jb denote the best available service of
j th service class. Let U (s jb) denote the utility of the best
available service of j th service class. The utility of the best
available service combination of a workflow with ‘n’ service
classes, denoted by Uproposed , is computed using

Uproposed =
n∑

j=1

U (s jb) (27)

The value of utility_ratio is computed using

utili t y_ratio = (Uproposed/UCS) × 100 (28)

The value of utility_ratio computed by varying the number
of service classes (with number of services per service class
is fixed as 10) is given in Table 13.

From Table 13, the average value of utility_ratio by vary-
ing the number of service classes is taken as 99.5 %. Utility
obtained using proposed and local approaches by varying
number of service classes from 2 to 12 is given in Fig. 17.

Further, the value of utility_ratio by varying the number
of services in a service class from 200 to 2,000 in steps of
200 is given in Table 14. Utility obtained using proposed and
local approaches by varying the number of services from 200
to 2,000 (with number of service classes fixed as 5) is given
in Fig. 18. The average utility_ratio by varying the number
of services is found to be 99.86 %.

Table 13 Value of utility_ratio by varying number of service classes

of service
classes

UCS Uproposed utility_ratio (in %)

2 0.96782 0.96782 100

3 0.958363 0.958363 100

4 0.990642 0.990642 100

5 0.970998 0.970998 100

6 0.98234 0.973491 99.09919

7 0.956581 0.947543 99.0552

8 0.940996 0.940996 100

9 0.965482 0.954574 98.87023

10 0.96348 0.955561 99.17802

11 0.984236 0.984236 100

12 0.971234 0.95543 98.37279

From the comparison results given in Tables 13 and 14,
the accuracy of the proposed approach is found to be good.

4.3.1 Computation time of proposed approach versus
global approach

As global approach is taken as the standard to validate the
correctness of the proposed approach, the computational
performance of proposed approach is also compared with
global approach with respect to number of service classes
and number of services for varied number of QoS con-
straints/attributes.

Firstly, by fixing the number of services classes (denoted
by ‘n’) and number of services per service class (denoted by
‘l’), the computation time of global and proposed approaches
for varied number of QoS constraints is found out as in
Table 15. During this test, ‘n’ is kept as 5 and l is kept as
100. The number of constraints is varied from 1 to 3. QoS

123

126 SOCA (2015) 9:107–138

Fig. 17 Utility obtained using
global and proposed approaches
by varying number of service
classes

Table 14 Utility obtained using global and proposed approaches by
varying number of services

Number of
services

Utility utility_ratio (in %)

Global
approach

Proposed
approach

200 0.989876 0.984587 99.46569

400 0.992145 0.992145 100

600 0.991698 0.986792 99.50529

800 0.989654 0.989654 100

1,000 0.990991 0.990991 100

1,200 0.986789 0.986789 100

1,400 0.990124 0.987865 99.77185

1,600 0.993451 0.992188 99.87287

1,800 0.980976 0.980976 100

2,000 0.994304 0.994304 100

constraints, namely response time, cost and latency, are used.
The graphs showing the computation time of global and pro-
posed approaches with respect to number of constraints are
given in Figs. 19 and 20, respectively.

From Figs. 19 and 20, in both approaches, the computa-
tion time increases linearly with respect to number of QoS
constraints. Further, from Table 15, the computation time
of proposed approach with respect to number of QoS con-
straints (for a fixed number of service classes and fixed num-
ber of services) is found to vary very slowly (from 10 to
14µs) when compared to that of global approach (from 221 to
360 s).

Secondly, the computation time of global and proposed
approaches with respect to number of services for varied
number of QoS constraints is given in Table 16. During test-
ing, the number of service classes is fixed as 5. The num-
ber of services per service class is varied from 40 to 110.
QoS constraints, namely response time, cost and latency, are
used. The graphs showing the computation time of global
and proposed approaches with respect to number of services
for varied number of QoS constraints are given in Figs. 21
and 22, respectively.

From Table 16 and Fig. 21, the computation time of global
approach with respect to number of services for varied num-
ber of QoS constraints is found to increase exponentially, and
the cause of exponential time characteristics arises from the

Fig. 18 Utility obtained using
global and proposed approaches
by varying number of services

123

SOCA (2015) 9:107–138 127

Table 15 Computation time of
proposed and global approaches
for varied number of QoS
constraints (for fixed n and l)

Number of
constraints
(m)

Global approach Proposed approach

Computation
time
in seconds

Time in µs

Time of
decomposition

Time of
selection

Computation time

1 221 6 4 10

2 288 7 5 12

3 360 8 6 14

Fig. 19 Time taken by global approach for varied number of QoS con-
straints (by fixing n and l)

Fig. 20 Time taken by proposed approach for varied number of QoS
constraints (by fixing n and l)

number of combinations involved in selection (and not from
number of QoS constraints as seen from Fig. 19), whereas
from Table 16 and Fig. 22, the computation time of proposed
approach with respect to number of services for varied num-
ber of QoS constraints is found to increase very slowly.

Thirdly, the computational performance of proposed
approach is compared with global approach with respect to
number of service classes for varied number of QoS con-

straints as in Table 17. The number of services is fixed as 20.
Further, the graphs showing the computation time of global
and proposed approaches with respect to number of service
classes are given in Figs. 23 and 24, respectively.

From Table 17 and Fig. 23, the computation time of global
approach is found to increase exponentially with number of
service classes. The exponential increase is due to exponen-
tial increase in number of combinations to be searched for
selection, whereas from Table 17 and Fig. 24, the compu-
tation time of proposed approach is found to increase very
slowly with respect to number of service classes.

4.4 Comparison of the proposed approach with existing
local approaches

To compare the computation time of the proposed approach
with other existing approaches, a comparative study is under-
taken as follows.

• Comparison with Alrifai et al. Approach—there are a
set of approaches [2,13,14,18,23,25] with same method
of decomposition for QoS-based local service selection.
The method of decomposing constraints of [13,14,18,
23,25] is based on [2]. Hence, at first, Alrifai et al. [2]
has been chosen to compare with the proposed approach.

• Comparison with Lianyong Qi et al. Approach—the
method proposed by Lianyong Qi et al. in [21] is similar
to [2], but it reduces the candidate search space of com-
position with a heuristic solution called Local Optimiza-
tion and Enumeration Method, which filters the numer-
ous candidates, say ‘l’ candidates corresponding to each
task into ‘h’ promising candidates. So, the method [21]
is chosen for comparison with the proposed approach.

• Comparison with Freddy Lecue et al. Approach—the
approach proposed in [15] addresses the scalability issue
of service composition by selecting composition that sat-
isfies a set of constraints rather than the one which pro-
duces optimal utility. So, we propose to compare the pro-
posed approach with [15] also.

123

128 SOCA (2015) 9:107–138

Table 16 Computation time of
proposed and global approaches
with respect to number of
services for varied number of
QoS constraints

Number of services
per service class

Global approach Proposed approach

Computation time in seconds Computation time in µs

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

40 2 2 3 20 24 29

50 6 8 11 24 28 34

60 15 22 28 27 34 40

70 33 47 61 31 39 45

80 65 93 120 35 43 53

90 118 167 216 38 48 59

100 200 284 360 42 53 64

110 339 470 604 49 59 68

Fig. 21 Time taken by global
approach with respect to number
of services for varied number of
QoS constraints

Fig. 22 Time taken by
proposed approach for different
m by varying number of services

123

SOCA (2015) 9:107–138 129

Table 17 Computation time of
global and proposed approaches
with respect to number of
service classes for varied
number of QoS constraints

Number of service classes Global approach Proposed approach

Computation time in seconds Computation time in µs

m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

2 0.000033 0.000054 0.000064 12 13 14

3 0.000558 0.000932 0.001212 14 17 18

4 0.011792 0.015201 0.17364 16 19 21

5 0.07295 1.0337 1.33741 18 20 22

6 1 2 3 20 21 23

7 33 54 67 21 23 25

8 805 1158 1497 22 24 26

Fig. 23 Time taken by global
approach by varying number of
service classes for varied
number of QoS constraints

Fig. 24 Time taken by
proposed approach by varying
number of service classes for
varied number of QoS
constraints

• Comparison of time taken for computing QoS for an
OR pattern— further, the proposed approach uses a new
method of computing QoS for OR pattern in contrast to
the approaches such as [9,15,19,22], which use the con-
ventional method of computing expected values of QoS

attributes of an OR pattern. But these approaches do not
focus on time taken for computing QoS values, an exper-
iment is conducted to compare the time taken for com-
puting QoS values of an OR pattern using conventional
and the proposed methods.

123

130 SOCA (2015) 9:107–138

Further, the detailed experimentation is discussed below.

4.4.1 Proposed approach versus Alrifai et al. approach

Two experiments have been conducted for comparison. The
experimental conditions similar to Alrifai et al. approach [2]
have been used for the comparative study. Let ‘n’ denote
the number of service classes and ‘m’ denote the number
of constraints. In the first experiment, the values of ‘n’ and
‘m’ are fixed as 10 and 3, respectively, and the number of
services in each service class is varied from 100 to 2,000 in
steps of 100. The computation time of the proposed approach,
denoted by tproposed , is computed using (29).

tproposed = tdecompose + tselect (29)

The computation time of the proposed approach with respect
to number of services in a service class is given in Table 18.
From Table 18, it is found that the time taken for decomposing
constraints (tdecompose) is only 0.009 ms and it is independent
of number of services in a service class. The time involved in
identifying the best available service(tselect) is ranging from
0.005 to 0.066 ms when the number of services is varied
from 100 to 2,000. The computation time of the proposed
approach with respect to number of services is compared to

Table 18 Computation time of the proposed approach with respect to
number of services

of services Computation time in ms

tdecompose tselect tproposed

100 0.009 0.005 0.014

200 0.009 0.008 0.017

300 0.009 0.012 0.021

400 0.009 0.015 0.024

500 0.009 0.020 0.029

600 0.009 0.023 0.032

700 0.009 0.024 0.033

800 0.009 0.028 0.037

900 0.009 0.031 0.040

1,000 0.009 0.034 0.043

1,100 0.009 0.037 0.046

1,200 0.009 0.040 0.049

1,300 0.009 0.043 0.052

1,400 0.009 0.048 0.057

1,500 0.009 0.051 0.060

1,600 0.009 0.054 0.063

1,700 0.009 0.058 0.067

1,800 0.009 0.060 0.069

1,900 0.009 0.063 0.072

2,000 0.009 0.066 0.075

values interpreted from Alrifai et al. [2], and the comparison
results of Experiment 1 are given in Table 19.

From Table 19, the increase in computation time of the
proposed approach with number of services is found to be
very less and negligible when compared to that of Alrifai et
al. [2]. Here, the drastic reduction in computation of local
constraints arises from the method of computing local con-
straints which is based on extreme values of QoS attributes
of service classes rather than the values of QoS attributes of
individual services.

In the second experiment, the number of services per ser-
vice class, denoted by ‘l’, is fixed as 500. The value of ‘m’ is
fixed as 3. The value of ‘n’ is varied from 10 to 100 in steps
of 10. The computation time of the proposed approach with
respect to number of service classes is shown in Table 20.

The computation time of the proposed approach with
respect to number of service classes is compared with the
values interpreted from Alrifai et al. [2]. The comparison
results of Experiment 2 are given in Table 21.

From Table 21, it is understood that the time variation in
Alrifai et al. [2] ranges from approximately 500 ms to approx-
imately 20,000 ms, whereas time variation in the proposed
approach ranges from 0.029 to 0.070 ms. The time variation
in the proposed approach is very small and negligible when
compared to that of Alrifai et al. [2]. Here also, the drastic
reduction in computation of local constraints is due to the
method of computing constraints, which is based on extreme
values of QoS classes rather than QoS values of individual
services.

4.4.2 Proposed approach versus Lianyong Qi et al.
approach

The method proposed in [21] is similar to [2], but it reduces
the candidate search space of composition with a heuris-
tic solution called Local Optimization and Enumeration
Method, which filters the numerous candidates, say, ‘l’ can-
didates corresponding to each task into ‘h’ promising can-
didates. For an i th task, the range of say j th attribute is
divided into‘d’ quality levels, namely q1

i j , q
2
i j , . . .q

d
i j similar

to [2]. Each level qzi j |1 ≤ z ≤ d represents a local con-
straint. For negative attributes, smaller qzi j produces more
satisfactory utility to users, and for positive attributes, larger
qzi j produces more satisfactory utility to users. Hence, in
this method, initially for negative attributes, the constraints
are fixed as [0 − qzi j], and for positive attributes, the con-
straints are fixed as [qzi j − ∞], and promising candidates
are chosen with these constraints. Then, the constraints are
reassigned from their previous levels to next level (i.e., for
negative attributes, [0 − qz+1

i j], and for positive attributes,

[qz−1
i j − ∞]) to find out further promising candidates. The

process is repeated to obtain ‘h’ promising candidates. Then,

123

SOCA (2015) 9:107–138 131

Table 19 Comparison results of
Experiment 1

of service classes # of constraints # of services Computation time in ms

Alrifai et al. approach Proposed approach

10 3 100–2,000 50–600 0.014–0.075

Table 20 Computation time of the proposed approach with respect
to number of service classes (with experimental conditions similar to
Alrifai et al. approach)

of service classes (n) Computation time in ms

tdecompose tselect tproposed

10 0.009 0.020 0.029

20 0.014 0.020 0.034

30 0.018 0.020 0.038

40 0.022 0.020 0.042

50 0.027 0.020 0.047

60 0.032 0.020 0.052

70 0.036 0.020 0.056

80 0.041 0.020 0.061

90 0.046 0.020 0.066

100 0.050 0.020 0.070

with ‘h’candidates in each task, near-to-optimal selection is
made. In this manner, in [21] the search space is reduced
from ‘l’ candidates to ‘h’ promising candidates. Further, the
approach presented in [21] handles sequential workflows.

To compare the computation time of proposed approach
with that of [21], experimental conditions similar to Lianyong
Qi et al. [21] have been used. Let ‘n’ denote the number of
service classes and ‘m’ denote the number of constraints. The
value of ‘n’ is varied from 5 to 25. The value of ‘m’ is fixed
as 4. The value of ‘l’ is fixed as 50. The computation time of
the proposed approach tproposed is computed using (29) and
given in Table 22.

The computation time of the proposed approach with
respect to number of service classes is compared with val-
ues interpreted from Lianyong Qi et al et al. [21], and the
comparison results are given in Table 23.

Another experiment is conducted to compare the compu-
tation time of the proposed approach with Lianyong Qi et al.
approach by varying the number of services from 50 to 500
and keeping the number of service classes as 5 and number of
constraints as 4. Computation time of the proposed approach
obtained by varying number of services with experimental

Table 22 Computation time of the proposed approach with respect
to number of service classes (with experimental conditions similar to
Lianyong Qi et al. approach)

of service classes (‘n’) Computation time in ms

tdecompose tselect tproposed

5 0.007 0.003 0.010

10 0.011 0.003 0.014

15 0.013 0.003 0.016

20 0.017 0.003 0.020

25 0.020 0.003 0.023

conditions similar to Lianyong Qi et al. approach [21] is
given in Table 24.

The computation time of the proposed approach with
respect to number of services is compared with values inter-
preted from Lianyong Qi et al. [21], and the comparison
results are given in Table 25.

When we compare the computation time of Alrifai et al.
method [2] with Lianyong Qi et al method [21], the compu-
tation time of Lianyong Qi et al. method [21] with respect
to number of services is found to be better than Alrifai
et al. method [2]. The reason must be Lianyong Qi et al.
method [21] selects appropriate service combination from
‘h’ promising candidates rather than from ‘l’ candidates as
in Alrifai et al. method [2]. Still, the computation time of
Lianyong Qi et al. approach [21] with respect to number of
service classes is quite high of the order of 103 ms, whereas
the proposed method outperforms both Alrifai et al. method
[2] and Lianyong Qi et al. method [21] in terms of computa-
tion time in our experimentation with given set of data (please
refer Tables 19, 21, 23 and 25). The primary reason for low
computation time is that the decomposition phase of pro-
posed method is totally independent of number of services
in a service class (method of computing local constraints is
based on extreme values of QoS attributes of service classes).
Only the selection phase of the proposed method has to scan
the QoS values of individual services, which is inevitable in
any method of selection.

Table 21 Comparison results of
Experiment 2

of service classes # of constraints # of services Computation time in ms

Alrifai et al. approach Proposed approach

10–100 3 500 500–20,000 0.029–0.070

123

132 SOCA (2015) 9:107–138

Table 23 Computation time
with respect to number of
service classes—proposed
approach versus Lianyong Qi
et al. approach

of service classes # of constraints # of services Computation time in ms

Lianyong Qi et al. approach Proposed approach

5–25 4 50 100 − 103 0.010–0.023

Table 24 Computation time of proposed approach by varying number
of services (with experimental conditions similar to Lianyong Qi et al.
approach)

of services Computation time in ms
tdecompose tselect tproposed

50 0.007 0.003 0.010

100 0.007 0.006 0.013

150 0.007 0.007 0.014

200 0.007 0.009 0.016

250 0.007 0.012 0.019

300 0.007 0.014 0.021

350 0.007 0.015 0.022

400 0.007 0.016 0.023

450 0.007 0.018 0.025

500 0.007 0.019 0.026

4.4.3 Proposed approach versus Freddy Lecue et al.
approach

In [15], Freddy Lecue et al. have addressed the scalability
issue of service composition by selecting composition that
satisfies a set of constraints rather than the one that pro-
duces optimal utility. The authors modeled service selection
as Constraint Satisfaction Problem (CSP) and solved it using
stochastic search method. While searching the method uses
Hill Climbing algorithm with two functions, namely an eval-
uation function and an adjacency function. Evaluation func-
tion is a function of both quality of semantic link and QoS
attributes of services.

Consider a composition c. Let f (c) denote the value of
evaluation function of c. The value of f (c) is computed using

f (c) = wcd Qcd(c) + wmQm (c)

wpr Q pr (c) + wt Qt (c)
(30)

In (30), Qcd(c)denotes the common description rate of c (this
factor estimates the rate of descriptions which ensure a cor-
rect data flow among the services of the composition), Qm(c)
denotes the matching quality of c (this factor ranges from 0
to 1 based on the standard semantic relations, namely exact,
plugin, subsume and intersection), Qpr (c) denotes quality of
price of c and Qt (c) denotes the quality of execution time of
c. While searching, the algorithm begins with a random com-
position c f inal , and this composition will be replaced by the
other combination if the other is adjacent to c f inal . Here, two
compositions are said to adjacent if they differ in exactly one
assignment. Reassigning of composition takes place till the
algorithm finds a combination that satisfies all constraints.

In Freddy Lecue et al. approach [15], service selection is
based on both functional and non-functional characteristics
of services. But the proposed work focuses only on the non-
functional aspect. Hence, the time taken in selecting services
based on non-functional aspect is compared with that of the
proposed work. Further, during non-functional selection in
order to achieve low computation time, Freddy Lecue et al.
approach [15] finds a single solution which satisfies all given
constraints rather than selecting optimal one from all solu-
tions.

Experimental setting similar to Freddy Lecue et al.
approach [15] has been brought into the proposed approach
for comparison. The number of iterations involved in Freddy

Table 25 Computation time
with respect to number of
services–proposed approach
versus Lianyong Qi et al.
approach

of service classes # of constraints # of services Computation time in ms

Lianyong Qi et al. approach Proposed approach

4 4 50–500 100-101 0.010–0.026

Table 26 Number of
combinations in Freddy Lecue
et al. approach and proposed
approach

Number of
service classes

Number of iterations Computation time in ms

Freddy Lecue
et al. approach

Proposed
approach

Freddy Lecue
et al. approach

Proposed
approach

100 8 × 104 35,000 2,912 0.036

200 16 × 107 70,000 4,850 0.084

300 22 × 1011 105,000 8,142 0.124

123

SOCA (2015) 9:107–138 133

Table 27 Computation time of proposed approach versus Freddy Lecue
et al. approach with respect to number of services

Number of
services

Computation time in ms

Freddy Lecue
et al. Approach

Proposed
approach

280–500 5,000–13,000 0.091–0.104

et al. approach [15] and the proposed approach with respect
to number of services classes is given in Table 26. Here, the
number of services per service class is taken as 350.

From Table 26, in Freddy Lecue et al. approach [15], the
number of iterations required to find the first composition
which satisfies the given constraints is found to increase with
respect to number of service classes. Experimental results of
[15] show that when number of tasks increases from 100
to 200 to 300, the number of iterations is found to increase
as 8 × 104, 16 × 107 and 22 × 1011, whereas in the pro-
posed approach, the number of iterations to be searched is
l × n where ‘n’ denotes the number of service classes and
‘l’ denotes the number of services. With ‘l’ fixed as 350,
and when the value of ‘n’ is increased from 100 to 200 to
300, the number of combinations is found to vary as 35,000,
70,000 and 105,000 which is a linear increase. Correspond-
ingly, from Table 26, the computation time of the proposed
approach is found to be very low when compared to Freddy
Lecue et al. approach [15].

Further, how the computation time of the methods varies
with respect to number of services per service class is given
in Table 27. Here, the number of service classes is fixed as
300.

From Table 27, when number of services per task is
increased from 280 to 500, the computation time of Freddy
Lecue et al. Approach [15] is found to vary from around

Table 28 Time taken to compute QoS for an OR pattern using conven-
tional and proposed methods

Number of
sequential
paths

Time taken to compute QoS for OR pattern (in µs)

Conventional method Proposed method

2 540 542

3 552 550

4 558 558

5 565 565

6 576 572

7 583 577

8 589 581

9 596 591

10 606 602

5,000 ms to around 13,000 ms, whereas the computation time
of the proposed approach varies from 91 to 104µs. The
increase in computation time of the proposed approach with
respect to number of service is found to be negligible when
compared with Freddy Lecue et al. Approach [15].

4.4.4 Computation time for finding QoS of an OR pattern

Time taken for computing QoS for an OR pattern using con-
ventional method and proposed method is computed by vary-
ing the number of sequential paths in OR pattern from 2 to
10 and given in Table 28 and Fig. 25. Each sequential path
contains 2 service classes.

From Table 28 and Fig. 25, it is seen that there is no much
difference in time taken while computing QoS using the con-
ventional and proposed methods. In both methods, QoS value
of each sequential path is obtained by aggregating the QoS
values of tasks present in that sequential path. In conven-
tional method, the QoS value of OR pattern is obtained by
adding the values which are obtained by multiplying QoS

Fig. 25 Time taken to compute
QoS for an OR pattern using
conventional and proposed
methods

123

134 SOCA (2015) 9:107–138

Table 29 Typical dataset chosen to illustrate the limitation of local approach

Service ID Service class-1 Service class-2 Service class-3 Service class-4 Service class-5

Response time Cost Response time Cost Response time Cost Response time Cost Response time Cost

1 45 150 61 105 189 400 123 100 200 22

2 234 123 65 145 60 217 100 200 600 150

3 190 99 180 543 45 217 453 234 67 320

4 98 89 56 234 168 218 165 190 100 350

5 450 67 176 213 124 300 170 87 56 100

6 123 560 78 34 99 220 100 78 760 98

7 80 567 167 300 345 300 190 145 344 76

8 350 150 160 95 123 231 456 87 780 76

9 54 70 123 56 160 120 123 90 500 25

10 90 90 40 128 456 218 134 220 1,500 26

of each sequential path by the concerned path’s probability,
according to (3). In proposed method, the QoS value of the
pattern is obtained by finding the maximum of QoS values of
all sequential paths according to (4). From Table 28, under
the given experimental settings, it is found that there is no
much time difference while computing QoS according to (3)
and (4) . But the proposed method of computing QoS ensures
100 % guarantee for successful execution to each path of OR
pattern when it is given a chance for execution with the con-
straints are at least equal to minimum time requirement of
the pattern, whereas the conventional method fails to provide
100 % guarantee for successful execution.

4.5 Findings

In this work, the problem of QoS-based service selection
for real-time applications with combinational workflow hav-
ing most common execution patterns, AND, OR and Loop
is addressed. As the method of decomposing constraints is
based on the extreme values of QoS attributes of service
classes and the given global constraints, the method becomes
independent of number of services in a service class. This
feature of independence is unique. The proposed method of
decomposing constraints is found to have very low computa-
tion time when compared to other approaches. From a series
of experiments, it is found that the time characteristics of the
method and utility_ratio are found to be encouraging with a
typical test collection.

In general, any local selection approach reduces the time
complexity of global approach by dividing the workflow level
selection into a set of task-level selections. Using local con-
straints, the local selection approach solves the task-level
selections quickly. Also, as the aggregation of local con-
straints is always equal to the global constraints, if a selec-
tion satisfies local constraints, it implies that the selection
meets the global constraints. But in some situations, a local

selection approach fails to detect a feasible solution that may
satisfy the given global constraints but not the simultaneous
fulfillment of local constraints. In such situations, more than
one QoS attribute will be involved. This limitation is illus-
trated with a typical dataset given in Table 29.

The dataset contains 5 service classes with each ser-
vice class containing 10 services. Two constraints, namely
response time and cost (most commonly used negative
attributes), are considered for discussion. The first column of
each row denotes service ID. An i th row in Table 29 gives the
details of an i th service in different service classes (i.e., from
service class-1 to service class-5). The values of response
time and cost of all services in different service classes are
given in the dataset.

Now, consider a query with QoS constraints “response
time <= 1000 and cost <= 800”. For the given QoS con-
straints, the local constraints of response time and the local
constraints of cost for different service classes are computed
as per the proposed method, and the values are given in
Table 30.

For the above query, the global approach identifies a ser-
vice combination, consisting of 9th, 10th, 3rd, 6th and 5th ser-
vices from 1st, 2nd, 3rd, 4th and 5th service classes, respec-
tively, with utility 0.966705 as the best available service com-
bination.

The local approach identifies the best available service
from each service class subject to local constraints. It iden-
tifies 9th, 10th, 6th and 5th services as the best available
services from 1st, 2nd, 4th and 5th service classes, respec-
tively. Here, this approach identifies no best available service
from service class-3 as there is no single service in the service
class-3 that satisfying both the local constraints of response
time and cost simultaneously.

When local approach finds no best available service for
a particular service class, then the local constraints of QoS
attributes of that service class can be relaxed (provided the

123

SOCA (2015) 9:107–138 135

Table 30 Local constraints of
response time and cost for
different service classes (of the
typical dataset)

Service class Constraint of response time Constraint of cost

Lower bound Upper bound Lower bound Upper bound

1 45 147.92 67 216.61

2 40 59.17 34 207.44

3 45 149.90 120 152.81

4 100 149.90 78 89.39

5 56 493.09 22 133.71

relaxed constraint should satisfy the global constraints) to
discover any existing feasible solution. A heuristic approach
is suggested for relaxing the local constraints of service class
so that efficiency of the local selection approach will be
improved. The heuristic approach is illustrated with two con-
straints, namely response time and cost.

Let Qglobal
k denote the global constraint of kth attribute.

Let Qlocal(j, k) denote the local constraint of kth attribute
of j th service class. Let Qassigned

k denote the sum of kth
attribute of all selected best available services. The value of
Qassigned

k is computed using (31)

Qassigned
k =

n∑

j=1

qk(s jb)
∣∣s jb �= null (31)

In (31), s jb denotes the best available service of j th service
class and qk(s jb) denotes the kth attribute of s jb.

Following are the steps used to relax local constraints of
a service class for which the best available service is null.
Consider a service class S j for which s jb is null.

Step 1: Find a set of services from S j which meet at least
one of the given local constraints (i.e., either response time
or cost). Let this set of services is denoted by Sinitial .

Step 2: Find all services from Sinitial which meet the con-
straint of higher priority attribute. Let these services would
form the set Scandidate. Now, the services in Scandidate satisfy
the constraints of attribute with higher priority but may not
satisfy the constraints of the attribute with lower priority.

Step 3: Consider lth attribute as the low priority attribute.
Find the service which has minimum value for lth attribute
from Scandidate. Let this value be Qmin(l).

Step 4: Find the remaining or balance value of lth attribute,
denoted by Qbalance

l after assigning lth attribute to all the

best available services using (32). In (32), Qglobal
l denotes

the global constraint of lth attribute and Qassigned
l denote the

sum of lth attribute of the best available services of all service
classes implementing the workflow (for which s jp �= null).

Qbalance
l = Qglobal

l − Qassigned
l (32)

Step 5: Let Qlocal(j, l) denote the local constraint of lth
attribute of j th service class. If Qbalance

l > Qmin(l) relax

Qlocal(j, l) using (33)

Qlocal(j, l) = Qmin(l) (33)

When the local constraint of lth attribute is relaxed for j th
service class, then the value of Qbalance

l should be updated
according to

Qbalance
l = Qbalance

l − Qlocal(j, l) (34)

Step 6: After constraints are relaxed, the services which sat-
isfy the simultaneous fulfillment of both the constraints of
attribute with higher priority and attribute with lower prior-
ity are identified. From the resulting set, the service having
the minimum value for higher priority attribute will be cho-
sen as the best available service.

The steps are applied to the above example as follows.
For the given query, the local selection approach produces
null for the best available service of service class-3. The set
Sinitial is constructed with 2nd, 3rd, 5th, 6th, 8th and 9th
services of service class-3. Let us consider response time
(first attribute) and cost (second attribute) as the high and
low priority attributes, respectively. Now, the set of services
that satisfy the constraint of response time are extracted from
Sinitial . This set forms Scandidate and Scandidate contains 2nd,
3rd, 5th, 6th and 8th services from service class-3. There
are two services in this set that has minimum value for cost
(217). They are second and third services of service class-3.
The values of Qassigned

2 and Qbalance
2 are found as 376 and

424, respectively. Here, it is found that Qbalance
2 > Qmin(2)

and hence, the constraint of cost is relaxed from 146 to 217
for service class-3. The value of Qbalance

2 is updated as 207.
Now, both the services (second and third services) in ser-
vice class-3 satisfy the local constraint of cost. Of these two
services, the third service is selected as the best available ser-
vice for service class-3 as it has minimum value for response
time. With this heuristic approach, the best available service
combination identified by the local approach is given as 9th,
10th, 3rd, 6th and 5th services from 1st, 2nd, 3rd, 4th and 5th
service classes, respectively, with utility score 0.966705.

Thus, when a local approach finds no best available service
from a service class, the heuristic approach relaxes the local
constraints of such service class and tries to identify feasible
service.

123

136 SOCA (2015) 9:107–138

Table 31 Extreme values of response time and cost of different service classes

Service_ class 1 Service_ class2 Service_ class3 Service_ class4 Service_ class5 Aggregated QoS

Minimum_response_time 40.5 36 40.5 90 50.4 257.4

Maximum_response_time 702 280.8 711.36 800 1,800 4, 294.2

Minimum_cost 60.3 30.6 40 70.2 19.8 220.9

Maximum_cost 884.52 847.08 624 365.04 546 3, 266.6

An empirical study has been taken up with the following
objectives

• To find the utility for different queries and compare it with
that of global approach

• To find the efficiency of the proposed approach and com-
pare it with that of global approach

• To find how heuristics-based constraint relaxation improves
the efficiency of the proposed approach

• To find how user’s trade-off among various QoS attributes
improves the efficiency of the proposed approach.

Here, efficiency is defined as the ratio of number of queries
answered within expected time to the number of queries
posted within expected time. Efficiency is expressed in %.

e f f iciency = number_of _queries_answered

number_of _queries_posted
× 100

(35)

Toward the study, an experiment has been conducted with 5
services classes, each containing 100 services. Response time
and cost have been chosen as the interested QoS attributes.
The values of response time and cost of all services of differ-
ent service classes are given in Appendix C (supplementary
material) for reference. Consider user’s QoS preferences are
given as 80 % preference to response time and 20 % pref-
erence to cost. Let grt and gc denote the global constraint
of response time and cost, respectively. The availability of
appropriate service combination is mainly determined by
user’s constraints, QoS preferences and the values of QoS
attributes of individual services. To find efficiency of differ-
ent approaches, the QoS values of individual services are
kept same for all approaches. The constraints are based on
extreme values of QoS of service classes. The extreme val-
ues of response time and cost of different service classes are
given in Table 31.

Now, the queries are constructed with different QoS con-
straints that fall between the ranges of aggregated QoS of ser-
vices. Seventy-five queries are constructed with constraint of
response time and constraint of cost ranging from 4,000 to
300. Constraints are decreased in steps of 50. For each query,
the utility of the proposed approach is computed and given
in Appendix D (supplementary material) for reference. For

Table 32 QoS values of solutions obtained using the proposed and
global approaches

Total number of solu-
tions produced by the
proposed approach

Number of solutions
produced by the
proposed approach
that have the same
QoS values as global
approach

Number of solutions
produced by the pro-
posed approach that
have QoS values dif-
ferent from global
approach

66 59 7

Table 33 Average utility obtained using global and proposed
approaches

Number of
queries

Average utility
obtained using
global approach
(%)

Average utility
obtained using
the proposed
method (%)

66 97.233 97.156

comparison purpose, for each query the utility obtained using
global approach is also given in Appendix D (supplementary
material). Global method is found to yield answers for con-
straints in the range 4,000 ≥ grt ≥ 300 and 4,000 ≥ gc ≥
300. The global approach is found to answer 73 queries out
of 75 queries, and its efficiency is found to be 97.3 %. The
proposed approach is found to answer 66 queries. The QoS
values and utility values obtained for these 66 queries have
been compared to the QoS values and utility values obtained
using global approach as given in Tables 32 and 33.

From experimentation, the proposed approach is found to
answer the queries for the constraints in the range, 4000 ≥
grt ≥ 750 and 4000 ≥ gc ≥ 750. When the user’s
constraints are very close to the minimum values of QoS
attributes, simultaneous fulfillment of local constraints may
not get fulfilled. In our example, when 700 ≥ grt ≥ 300
and 700 ≥ gc ≥ 300, the proposed local approach fails to
meet the simultaneous fulfillment of local constraints. Now,
the cost constraint is relaxed using heuristics method of con-
straint relaxation subject to the condition that the aggrega-
tion of local constraints of cost always satisfies the given
global constraint of cost. When the proposed approach is
combined with this heuristics-based constraint relaxation,
feasible solutions are obtained for constraints in the range

123

SOCA (2015) 9:107–138 137

Table 34 Number of queries
answered and efficiency of
different approaches

Proposed local
selection

Proposed local selec-
tion with heuristics-
based constraint relax-
ation

Proposed local selec-
tion with trade-off

No of queries answered 66 5 4

Efficiency 88 % 95 % 100 %

700 ≥ grt > 450 and 700 ≥ gc > 450. This kind of
constraint relaxation may not find a feasible solution when
relaxation fails to satisfy the global constraint. In this exam-
ple, when 450 ≥ grt ≥ 300 and 450 ≥ gc ≥ 300, local
approach in combination with heuristics fails to find a solu-
tion, because constraints cannot be relaxed beyond a particu-
lar condition as the relaxed constraints violate the global con-
straints. In this range, user’s trade-off among QoS attributes
are considered. When we consider user’s trade-off among
various attributes, all QoS constraints will not be fulfilled. In
this example, two constraints are considered. Consider that
the constraint of response time is given higher priority, and it
is a hard constraint (which much be definitely satisfied) than
the constraint of cost, a soft constraint (which may or may
not be satisfied). While selecting services, if no solution is
found, then the constraint having lower priority (i.e., cost)
will be compromised and ultimately the cost constraint may
not be met. In this example, when 450 ≥ grt ≥ 300 and
450 ≥ gc ≥ 300, local approach in combination with user’s
trade-off helps in finding a feasible solution. The number
of queries answered by (i) the proposed approach, (ii) pro-
posed approach in combination with heuristics-based con-
straint relaxation (when proposed method fails) and (iii) the
proposed method in combination with user’s trade-off when
both proposed approach and proposed in combination with
heuristics fail are computed. The efficiency of the above
approaches is calculated using (35). The number of queries
answered by different approaches and the efficiency of the
approaches are given in Table 34. The efficiency of the above
approaches is given in Fig. 26.

From Table 34 and Fig. 26, the efficiency of the pro-
posed method is found to be 88 %. When it is combined with
heuristics-based constraint relaxation, its efficiency is found
to increase by 7 %. Further, when both proposed approach
and proposed approach with heuristics fail, user’s trade-off
improves the efficiency of the approach by 5 %. Also, while
finding best services, there may be little probability to obtain
more than one service combinations as best service combi-
nation. This can occur when more than one service combina-
tion produces the same utility. If at all more than one service
combinations are obtained as best combinations, one of the
combinations will be chosen for composition while others
can be considered as alternatives to the chosen one which
may fail to deliver the expected task due to runtime errors.

Fig. 26 Efficiency of proposed method, proposed method with heuris-
tics and proposed method with user’s trade-off

5 Conclusion

This paper presents a newly developed local selection
methodology for selecting best available service combina-
tion for a given workflow having most common business
structures AND, OR and Loop based on QoS. The method-
ology has been implemented and tested by a series of exper-
iments. This methodology is found to yield excellent time
characteristics and utility_ratio when compared with exist-
ing approaches. This paper describes a new method for com-
puting response time of OR execution pattern, which guar-
antees 100 % successful execution of every path in an OR
unit when the path is given a chance for execution. But the
existing approaches assign response time to an OR unit based
on ‘expected response time’ of an OR unit in which all the
paths of an OR unit are not guaranteed for successful execu-
tion when a chance is given for execution. In this case, even
a workflow may fail to get executed when any one of its OR
path with insufficient time (assigned as per expected response
time) gets a chance to execute. The proposed methodology
alleviates this shortcoming.

From experiments, it is found that the retrieval of QoS
values of services from its storage/repository to a concerned
service application is found to consume time of the order
of few tens of milliseconds, and it is recommended that the
retrieval of QoS must be done prior to querying for quick
selection. The method identifies a service combination which

123

138 SOCA (2015) 9:107–138

is the best among the available feasible combinations rather
than identifying optimal combination, which is not certain to
exist in real situations. Further, the methodology suggests a
heuristic approach to relax local constraints and to improve
the efficiency of local selection approach. The experimen-
tal evaluations show significant improvement in computation
time, utility_ratio and detection efficiency while identifying
the best available services for composition. This is especially
useful for applications with real-time composition.

References

1. Alrifai M, Risse T (2008) Efficient QoS-aware service composition.
In: The proceedings of the 3rd workshop on emerging web services
technology. IEEE, Los Alamitos, CA, pp 60–70

2. Alrifai M, Risse T (2009) Combining global optimization with
local selection for efficient QoS-aware service composition. In:
The proceedings of the 18th international conference on World
Wide Web, ACM, pp 881–890

3. Alrifai M, Risse T, Dolog P, Nejdl W (2009) A scalable approach for
QoS-based web service selection. In: Service-oriented computing,
2008 workshops. Springer, Berlin, pp 190–199

4. Alrifai M, Skoutas D, Risse T (2010) Selecting skyline services
for QoS-based web service composition. In: The proceedings of
the 19th international world wide web conference. ACM, North
Carolina, USA, pp 11–20

5. Anselmi J, Ardagna D, Cremonesi P (2007) A QoS-based selec-
tion approach of autonomic grid services. In: The proceedings of
the workshop on service-oriented computing performance: aspects,
issues and approaches. ACM Press, pp 1–8

6. Ardagna D, Pernici B (2007) Adaptive service composition in flex-
ible processes. IEEE Trans Softw Eng 33(6):369–384

7. Ardagna D, Pernici B (2005) Global and local QoS constraints
guarantee in web service selection. In: The proceedings of IEEE
international conference on web services. (FL, USA). IEEE Com-
puter Society, pp 805–806

8. Canora G, Esposito R (2004) A lightweight approach for QoS-
aware service composition. In: Proceedings of 2nd international
conference on service oriented computing. New York, pp 37–46

9. Cardoso J, Sheth AP, Miler JA, Arnold J, Kochut K (2004) Quality
of service for workflows and web service processes. J Web Semant
1(3):281–308

10. Chen Z, Wang H, Pan P (2010) An approach to optimal web service
composition based on QoS and user preferences. In: International
joint conference on artificial intelligence, IEEE, Jinan, China, pp
96–101

11. Gao Y, Zhang B, Na J, Yang L, Dai Y, Gong Q (2006) Optimal
selection of web services with end-to-end constraints. In: The pro-
ceedings of first international multi-symposiums on computer and
computational sciences, IEEE, China, pp 460–467

12. Hong L, Hu J (2009) A multi-dimension QoS based local service
selection model for service composition. J Netw, 4(5), Academy
Publisher, pp 351–358

13. Jin J, Cao Y, Zhu D, Pu X, Yang M (2010) A structure-wise service
selection approach for efficient service composition. In: IEEE Inter-
national conference on E-business engineering (Beijing, China),
pp 256–261

14. Jin J, Zhang Y, Cao Y, Zhou R (2010) An enhanced QoS decom-
position approach for efficient service composition. In: The pro-
ceedings of the fifth IEEE international conference on computer
science & education, (Beijing, China), pp 1680–1684

15. Lecue F, Mehandijiev N (2009) Towards scalability of quality
driven semantic web service composition. In: IEEE International
conference on web services, IEEE Computer Society, Los Angeles,
USA, pp 469–476

16. Li W-J, Li X, Liang X-J, Zhou X-C (2011) QoS-driven service
composition with multiple flow structures, In: The proceedings of
IEEE international conference on services computing, IEEE Com-
puter Society, Washington DC, USA, pp 362–369

17. Liangzhao Zeng, Boualem Benatallah (2004) A QoS-aware mid-
dleware for web service composition. IEEE Trans Softw Eng
30(5):311–327

18. Li J, Zhao Y, Liu M, Sun H, Ma D (2010) An adaptive heuristic
approach for distributed QoS-based service composition. In: IEEE
symposium on computers and communications, Beijing, China, pp
687–694

19. Menasce DA (2004) Composing web services: a QoS view. IEEE
Internet Comput 8(6):88–90

20. Oster ZJ, Santhanam GR, Basu S (2011) Identifying optimal com-
posite services by decomposing the service composition problem.
IEEE international conference on web services, (USA), pp 267–
274

21. Qi L, Tang Y, Dou W, Chen J (2010) Combining local optimization
and enumeration for QoS-aware web service composition. In: IEEE
international conference on web services, IEEE Computer Society,
pp 34–41

22. Senivongse T, Wongsawangpanich N (2011) Composing services
of different granularity and varying QoS using genetic algorithm.
In: The proceedings of World Congress on engineering and com-
puter science, International Association of Engineers, San Fran-
cisco, USA, vol. I, pp 388–393

23. Sherry SX, Zhao J, Wang H, Winter R, Zhao JL, Aier S (2010) A
negotiation based approach for service composition. In: DESRIST
2010: LNCS 6105, Springer, Berlin, pp 381–393

24. Xiong PC, Fan YS, Zhou MC (2008) QoS-aware web service con-
figuration. IEEE Trans Syst Man Cybern: Part A 38(4):888–895

25. Yanwei Z, Hong N, Haojiang D, Lei L (2010) A dynamic web ser-
vices selection based on decomposition of global QoS constraints.
In: The proceedings of IEEE youth conference on information com-
puting and telecommunications. Beijing, China

26. Yoon KP, Hwang CL (1995) Multiple attribute decision making:
an introduction (Quantitative Applications in the Social Sciences).
Sage Publications

27. Yuan-sheng L, Zhen-Hong T, Lu-Lu Y, Hong-Tao X, Zhi-hong X,
Zhi-feng W (2010) A QoS-based web service dynamic composition
framework. In: The proceedings of 9th international symposium on
distributed computing and applications to business, engineering
and science, (Hong Kong), pp 188–192

28. Yu T, Lin KJ (2005) A broker-based framework for QoS-aware web
service composition. In: IEEE international conference on eTech-
nology eCommerce and eService, IEEE, Hong Kong, pp 22–29

29. Yu T, Zhang Y, Lin K-J (2007) Efficient algorithms for web services
selection with end-to-end QoS constraints. ACM Transactions on
Web, ACM publication, Vol. 1, No. 1, Article 6

30. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng QZ (2003)
Quality driven web services composition. In: The proceedings of
the 12th international conference on World Wide Web, ACM Press,
Hungary, pp 411–421

31. Zhang W, Carl CK, Feng T, Jiang H-Y (2010) QoS-based dynamic
web service composition with ant colony optimization. In: 34th
annual IEEE computer software and applications conference.
Seoul, Korea, pp 493–502

123

	An approach for selecting best available services through a new method of decomposing QoS constraints
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	3 Methodology
	3.1 Constraint decomposition phase
	3.1.1 Conversion
	3.1.2 Decomposability check
	3.1.3 Decomposition of constraints

	3.2 Service selection phase

	4 Experimentation
	4.1 Computation time of constraint decomposition phase
	4.2 Computation time of service selection phase
	4.3 Testing the correctness of the proposed approach
	4.3.1 Computation time of proposed approach versus global approach

	4.4 Comparison of the proposed approach with existing local approaches
	4.4.1 Proposed approach versus Alrifai et al. approach
	4.4.2 Proposed approach versus Lianyong Qi et al. approach
	4.4.3 Proposed approach versus Freddy Lecue et al. approach
	4.4.4 Computation time for finding QoS of an OR pattern

	4.5 Findings

	5 Conclusion
	References

