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Abstract Components or services must often be compli-
ant to organizatorial or legal regulations. Furthermore, they
should avoid unwanted behaviour such as abortion of the exe-
cution of a service without notification of the client. Violation
of both might happen due to unintended uses of services. In
general, the intention is specified by contracts. In this work,
we consider a special form of contracts: service protocols.
These specify for a service legal sequences of operation calls.
We propose an approach for checking whether such proto-
cols are obeyed in a service composition. For this, it is neces-
sary to define a conservative abstraction of the behaviour of
service-oriented systems and a contract based on interactions
(named service protocol) to be verified. In our previous work,
we have modelled unbound concurrency, unbound recursion,
and synchronization. This article briefly presents the previous
results and extends them by exception handling mechanisms.
In particular, it takes into account that the execution of ser-
vice may raise an exception and allows the clients to react on
the exception.
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1 Introduction

Modern software development contains a big share of reusing
previously developed software called services. Often these
services are developed by third party companies and supplied
as Web Service. Our work addresses the topic composability
analysis for replaceability, compatibility, and process con-
formance, which was identified as a research challenge in
[29].

While stateless services have no restrictions on the order
of the call of operations of the interface, stateful services may
restrict this order. For example, a file service may expect that
a file is first opened for reading, then read operations may
follow, and finally the file must be closed.

Such a required client behaviour needs to be obeyed during
the execution of the service. If the client differs the service
usage from the provided service protocol, the application
might crash and cause a chain of events leading to unwished
behaviour. In the worst-case scenario a problem within one
service is appearing only for the current specific configura-
tion may lead to the crash of the complete component-based
software or service-oriented system.

Hence, our goal is to check automatically whether in a
service composition each stateful service is used correctly.
The correct usage of a stateful service must be specified by
a service protocol and should be published together with the
service interface. Therefore, it must be proven that the behav-
iour of clients of a service never violate the defined service
protocol. A violation of a service protocol means that its
operations are called not compliant to the protocol. Usually,
these protocols for stateful services are specified as a finite
state machine.

An automatic verification approach must consider the
sequences of operation calls to a stateful services. Therefore,
for a service composition, it must be checked whether the set
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of sequences of possible operation calls to a stateful service
is a subset of the set of legal operation calls specified by the
protocol. This kind of condition is called trace inclusion.

Remark 1 Note that in the literature on component-based
and service-oriented architectures, there are also other kind
of protocols, the interaction protocols, see e.g. [9]. Interac-
tion protocols specify the behaviour of a service by request
and reply messages, i.e., an abstraction service interaction
interface is modelled. Thus, their primary focus is to model
the receivable as well as the triggered interactions of a ser-
vice. Interaction protocol checking examines whether for
each request there is a reply message and vice versa, i.e.,
a bisimulation relation must be satisfied.

Service protocols consider a service interface as an appli-
cation programming interface (API), i.e., the operations spec-
ified in an interface description are atomic units. Their pri-
mary focus is to model the set of legal sequences of oper-
ations calls. Service protocol conformance checking checks
whether all sequences of operation calls to a service are legal,
i.e. trace inclusion (or alternatively, a simulation relation)
must be satisfied.

Service protocol conformance checking requires to know
the behaviour of services. Often, service providers do not
want to provide their code, business process etc., of the ser-
vice’s implementation. Thus, abstractions of the behaviour
of the services are necessary, i.e., each real behaviour cor-
responds to an abstract behaviour but not necessarily vice
versa. These abstractions should be automatically be derived
and published together with the service description. There-
fore, the basis for this abstraction is the source code of the
service implementation, usually written in higher-level pro-
gramming languages as e.g. Java, C# etc. Therefore, the
important language concepts have to be considered since
everything possibility in a programming language is used—
whether it makes sense in a certain context or not. In our
previous work [3,5], we modelled abstractions for the clas-
sical control structures such as loops, conditionals, sequen-
tial execution of statements etc. In particular, we considered
recursion and concurrency without any restrictions on recur-
sion depth or the number of concurrent threads. In this article,
we consider in addition exception handling concepts.

Currently, abstractions are often specified using Petri-
Nets (see e.g. [34,39]), pushdown systems (see e.g. [10,11]),
finite state machines (see e.g. [28,38]), or process-algebras
(see e.g. [9]). Finite state machines only allow an adequate
modelling of bound concurrency and bound recursion. This
means that the number of parallel threads and the recursion
depth are bound by a constant, respectively. If recursion is
present within the component or the application, the lan-
guage of interactions is not regular but context-free [40].
Therefore, it requires a pushdown automaton to describe all
sequences of interactions, i.e., finite state machine or those

process-algebras not taking into account sequential recur-
sion cannot model it. Furthermore, if recursive callbacks
are present, protocol conformance checking based on finite
state machine abstractions may lead to false positives [40].
Unbound recursion can be adequately modelled by pushdown
systems, but there is no adequate modelling of unbound con-
currency. Petri-Nets may model adequately unbound concur-
rency but not unbound recursion. However, recursive Petri-
nets may deal (cf., [20]) with unbound concurrency and
unbound recursion. With some process algebras, it is pos-
sible to model unbound recursion and unbound parallelism
including synchronization. This leads to a model equivalent
to a Turing Machine [20] (or a coloured Petri-Net with an infi-
nite number of colours) and is therefore not well-suited for
analysis tools. In order to provide safe protocol conformance
checking, a conservative representation of the actual com-
ponent behaviour is required. Consequently the abstraction
layer has to be capable of representing unbound recursion,
unbound parallelism as well as exception handling, such that
it can still be checked.

Protocol Conformance Checking verifies the protocol
w.r.t. these abstractions. Protocol conformance implies that
there is no protocol violation. However, it is possible that
protocol conformance cannot be proven although there is
no protocol violation in the real behaviour (false alarms).
Furthermore, service may call operations of other services.
Hence, protocol violations may occur in services not directly
used by the client.

In order to take into account indirect uses of services, it
is necessary to consider the behaviour of services. On the
one hand, services implementations fully specify this behav-
iour. On the other hand, services providers may wish to keep
secret their implementation, e.g., because it may contain busi-
ness secrets. Thus, an abstract behaviour of services that
hide implementation decisions and business secrets should
be published. A protocol conformance checker composes the
abstract behaviour of each service according to the architec-
ture of the system such that it keeps track of the calls to
operations provided by all services [5].

If this abstraction is too coarse-grained, a large number
of false alarms may be produced. In our work, the abstract
behaviour completely abstracts from data, but under this
restriction the control flow should be modelled precisely. In
particular, if recursive callbacks are present in the composed
application it should be present in the abstraction, otherwise
some protocol violations might not be discovered [40]. This
approach follows the idea that everything that is possible
should be considered. Often, it is argued that recursive call-
backs are not present in the service-oriented context. How-
ever, there are candidates for recursive callbacks such as for
example a map-reduce service [1].

It is not necessary to specify manually the abstract behav-
iour of a service implementation, since it can be automat-
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ically derived from the source code of the implementation
using standard compiler technology [3,5].

Both and Zimmermann [5] show that using Mayr’s process
rewrite systems [26], both, recursion and parallelism, can be
adequately modelled. However, the protocol conformance
checking problem becomes undecidable. An approximation
for this protocol conformance checking problem is shown in
[5] and its feasibility was demonstrated. None of these works
consider exception handling. However, in modern program-
ming languages interactions can also be initiated by excep-
tions. Hence, their characteristic behaviour triggered by con-
ditional execution of blocks as well as the execution of the
finally-block might lead to service protocol violations. In
particular, in the case of chains of interface calls, a protocol
violation might be raised somewhere in the component-based
system at the direct interfaces of the component raising the
exception.

Hence, simplified abstractions are not acceptable for
application in component systems. Therefore, it is important
to tackle these exceptions to ensure a rugged composition of
services. Our main contributions are:

(i) showing that the previous concepts cannot deal with
exceptions adequately

(ii) providing an (automatic) abstraction of exception han-
dling that can be combined with abstractions of other
programming language concepts such as procedure
call and return, forking and synchronizing parallel
processes, loops, conditional statements, statement seq-
uences,

(iii) and showing an approach for protocol conformance
checking based on this abstraction.

Section 2 defines process rewrite systems, protocols and pro-
vides a running example. In Sect. 3, the abstraction of excep-
tion semantics to process rewrite systems is demonstrated.
Section 4 shows how to check protocol conformance. Sec-
tion 5 discusses related work.

2 Preliminaries

This section introduces our service model, its execution
semantics including exception handling, and summarizes [3–
5]. In particular, it is shown that the execution semantics nat-
urally corresponds to Mayr’s process rewrite systems [26].

A service s provides an interface Is where an interface
is a set of type descriptions and procedure signatures with
exceptions that may be raised during execution. The imple-
mentation of s may call procedures of other services. The
required interface Rs of s is the set of procedures of other
services called by s. A service-oriented system is a directed
graph S � (W S, C) where W S is a set of services such that
each service s ∈ W S, p ∈ Rs there is an edge (s, s′) ∈ C

with p ∈ Is′ . Hence, any call leaving existing service s ∈ W S
calls a procedure of another service s′ ∈ W S. Consequently,
if a service implementation might lead to a call of another
procedure, it is represented within S.
There are two kinds of procedures in interfaces, asynchro-
nous and synchronous procedures. If a synchronous proce-
dure is called, the caller waits until the callee is completed.
If an asynchronous procedure is called, the caller and the
callee concurrently continue their execution. A synchronize
statement sync f is a barrier, i.e. the execution waits until the
last asynchronous call of f is completed. Before a (synchro-
nous or asynchronous) procedure p returns, all asynchronous
procedures called by p must be completed.

For the implementation of the services, programming lan-
guages such as e.g. Java, C#, or BPEL can be used. For the
purpose of this article, the complete consideration of all pro-
gramming language concepts would be too much. Instead we
consider the most important concepts such as loops (with the
classical semantics of while-loops), conditionals, sequential
execution of statements, a synchronization statement, syn-
chronous and asynchronous procedures, and exception han-
dling. Loops, conditional statements, and sequential execu-
tion of statements have the standard semantics. Synchronous
and asynchronous procedure calls and the synchronization
have a semantics as described above.

In contrast to these concepts, exception handling has a
rather complex semantics: The statement raise E raises the
exception E . This means the execution is being interrupted,
i.e., it is not being continued by the execution of the next
statement. If the exception E has been raised outside of a try-
block, then the current procedure stops with the exception E ,
i.e., the corresponding call raises E . A try statement

try { · · · }
when E1 { · · · }
· · ·
when En { · · · }
finally { · · · }

is executed as follows (this is according to Java, C#, BPEL):
The statements in the try-block are being executed as usual.
If an exception E is raised, then the block of the first excep-
tion handler when Ei {· · · } with Ei = E is executed.1 If E is
different from any exceptions in the exception handlers, the
try statement terminates with exception E . Note that asyn-
chronous procedure calls within a try-block, an exception
handler, or a finally-block must be synchronized when the
block is left. Without loss of generality, we assume that the
last statement of try-block synchronizes asynchronous pro-
cedure calls within the block—either by a synchronize or by
a return statement.

However, the execution of the try statement definitely fin-
ishes with the execution of the finally-block, no matter what

1 This can be easily extended to a subtype hierarchy of exception types.
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Fig. 1 A service-oriented
system

happens inside the try-block or the exception handler. Hence,
a return statement or raising an unhandled exception within
a try-block or an exception handler is earliest being executed
after the finally-block has been executed. However, if the
finally-block executes a return statement or raises an excep-
tion, then it returns from the current procedure or ends with
an exceptional state without executing any open return or
raise statement.

Example 1 Figure 1 shows a service-oriented system con-
sisting of three services s1, s2, and s3 with provided inter-
faces I1, I2, and I3, respectively. The provided interfaces
are shown by circles, the required interfaces are visualized
by opened circles and service bindings are visualized by
arrows. The symbols qi represent program points indicat-
ing each statement. Procedure b of interface I2 is the sole
asynchronous procedure. Every other procedure is synchro-
nous. The execution starts with calling main of service s1.
The return statement at program point q10 in Fig. 1 would
not be executed if the finally block would be replaced by

finally { q16 : sync b;
q17 : d();
q18 : return;

}

The reason is that before returning by the return statement
at q10, the finally block is being executed and this execution

executes q18. If there would be a return statement, then this
would be the return from procedure a.

Remark 2 The semantics of loops, conditional statements,
sequential execution, and the synchronous procedure call
(and return) is surprisingly uniform across different pro-
gramming languages. The semantics of exception handling
– including the finally-statement– is according to Java, cf.
Chapter 11.3 of [19]. The try statement with a finally clause
of C# and .NET has an analogous semantics. We do not con-
sider function calls as they could be transformed into pro-
cedure calls with result parameters. Similarly, other control
structures such as different loops, switch statements can be
transformed into while-loops and conditionals, respectively.
Such transformations are often applied in compilers for inter-
mediate code generation.

Remark 3 The interface Is of a service can be specified using
WSDL. The exceptions are specified by the fault-part in
the operations. There are several approaches on Web Service
Composition with exception handling, see e.g. [18,23]. In
particular, the stub generated from a WSDL interface descrip-
tion of a service s might raise exceptions that can be handled
by the client using s.

This article assumes that a protocol of a service s is given
by a finite state machine As � (Σs, Rs,→s, rs

0, Fs) where
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Fig. 2 Protocols of the services in Fig. 1

Fig. 3 A protocol violation in
Fig. 1

Σs denotes the set of operations symbols in the interface of
service s, Rs are the states of s, rs

0 is the state when s is
started by a client, and Fs is the set of final states. A final
state must be reached when the client finishes the use of s.
Thus, the language L(As) accepted by the finite state machine
As defines the set of legal sequences of operation calls to s.
Hence, a service protocol contains only operation calls avail-
able in the service description. In particular, a software archi-
tect is enabled here to define a required behaviour without
knowing (or specifying) the service implementation. This is
a main distinction in comparison with interaction protocols
[9]. Figure 2 shows the state diagrams of protocols of the
services in Fig. 1 which are used as an example throughout
this article (final states are indicated by squares and initial
states by an arrow without source). If the protocols A2 or
A3 reach state E, then a protocol violation occurs. Here, A2

permits only calls of b followed by a least one call of c; all
other sequences lead to an error state.
Example 2 Figure 3 shows a possible execution of the
service-oriented system in Fig. 1 when the value 1 is read.
Steps (1) and (2) are synchronous calls. The program point
after the call is pushed onto the runtime stack. Step (3) is an
asynchronous call. In this case, the stack forks, i.e., it has now

two branches: one for the caller and one for the callee. This
kind of runtime structure is called a cactus stack. [13,21]
showed that a cactus stack can be used as a runtime system
for concurrent processes. Note that each stack in a cactus
stack might be maintained on a different processor. Hence,
cactus stacks are a well-suited as a logical runtime model
for distributed systems such as service compositions. Thus,
in Fig. 3, the cactus stacks after steps (5) and (10) could be
maintained by three processors.

The call of b(1) raises exception Exc1. In a step, all inter-
leavings are possible, i.e. any top element of a stack in the
cactus stack can be taken for the next step. Suppose the call
c(1) (Step 4) is taken. Then, in (5), b(1) is called, which also
raises Exc1. Since this exception is not handled, the synchro-
nize statement results in Exc1 (Step (6)). Step (7) shows that
now the exception handler in the body of c is being executed
and this calls f (0). Then – as above – a(0) is called. Note
that the branch from q9 cannot be removed until q9 is on the
top of the (main-) stack. This execution demonstrates that
protocol A2 is violated because service s2 receives the calls
b(1), c(1), b(1), b(0), i.e., A2 will be in state E after this
sequence. Furthermore, this sequence stems from the execu-
tion of an exception handler.
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Thus, an abstract state can be represented as a cactus stack of
program points and exception states and an abstract seman-
tics transforms cactus stacks into cactus stacks. The trans-
formations are (i) changing a state on one of the top stack
elements, (ii) pushing a state on one of the stacks, (iii) pop-
ing a state from one of stacks, (iv) forking to a new stack, (v)
synchronizing two stacks (i.e., waiting for a forked stack to
be emptied).

According to [3], there is a one-to-one correspondence
between cactus stacks and process-algebraic expressions.
The set PEX(Q) of process-algebraic expressions over a
finite set Q (atomic processes) is the smallest set satisfying:

(i) Q ⊆ PEX(Q)

(ii) If e, e′ ∈ PEX(Q), then e.e′ ∈ PEX(Q) and
e ‖ e′∈PEX(Q) (sequential and parallel composition,
respectively).

(iii) ε ∈ PEX(Q)

The empty process, denoted by ε, is the identity w.r.t. sequen-
tial and parallel composition.

For example, the cactus stack in Fig. 3 after step (10)
can be represented by the process-algebraic expression
(((q8‖q22).q35.q31.q9)‖qExc1).q35.q3.

Hence, the transformations of cactus stacks can be repre-
sented by rewrite rules for process-algebraic expressions, as
demonstrated in Fig. 4. These rules are a short summary of
our previous work [4,5]. The rewrite rules are labelled with
the name of the operation provided by a service if an exter-
nal service is being called while internal calls or control logic
(e.g., thread operations) are labelled with λ. The reason is that
protocol conformance checking only considers interaction

sequences between services (w.r.t. the considered interaction
protocol) but not internal procedure calls within a service.
A process rewrite system (short: PRS) is a tuple Π �
(Σ, Q,→, q0, F) where

(i) Q is a finite set (atomic processes),
(ii) Σ is a finite alphabet disjoint from Q (actions),

(iii) q0 ∈ Q (the initial state),
(iv) →⊆ PEX(Q)×(Σ�{λ})× PEX(Q) is a set of process

rewrite rules (λ ∈ Σ∗ is the empty word),
(v) F ⊆ Q ∪ {ε} (the set of final processes).

The PRS Π defines a derivation relation
⇒⊆ PEX(Q) × Σ∗ × PEX(Q) (Σ∗ is the set of all finite
words over Σ) by the inference rules in Fig. 5. The set
L(Π) � {w ∈ Σ∗ : ∃ f ∈ F • q0

w⇒ f } is the language
accepted by the PRS Π .

Remark 4 The second inference rules implies that rewrite
rules can only applied to the top of one of the stacks in a
cactus stack.

A service-oriented system S is abstracted to a process rewrite
system ΠS � (Σ, Q,→, q0, F) where Σ = ⋃

s∈S Σs is the
set of all procedures in the interface descriptions of the ser-
vices of S, Q � P P ∪ Exceptions, P P is the set of pro-
gram points, Exceptions � {qE : E is an exception}, →
is defined by as in Fig. 4, q0 is the program point where S
starts, F � QF ∪ Exceptions, and QF is the set of program
points where the main program returns (i.e., the execution of
the program terminates). Exceptional states are final because
a program may terminate in an exceptional state.

Remark 5 In Fig. 4 there is slight difference to [4,5]: it uses

q
λ→ε for a procedure. Furthermore, [5] shows a composi-

Fig. 4 Cactus stack transformations/process rewrite rules for abstract semantics
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Fig. 5 Inference rules for the definition of the derivation relation in PRSs

Fig. 6 Protocol conformance
checking of a service-oriented
system

tional construction of ΠS . For each s ∈ S, a PRS Πs is auto-
matically derived from the implementation of s by using clas-
sical compiler technology, and these PRSs are glued together
to obtain ΠS . For reasons of space, this construction has been
omitted. L(ΠS) contains all possible interaction sequences
between services that may happen during execution. Note
that programming language concepts expressing fork–join
parallelism (as e.g., in BPEL) can be abstracted analogously
to calling asynchronous procedures and synchronize with
them, respectively.

The use of a service s in service-oriented system S is defined
as a PRS Us � (Σs, Q,→s, q0, F) where Σs is the set of
operations in the provided interface of s, Q, q0, and F are
defined as above, and →s is defined as → except that all
labels l �∈ Σs are replaced by λ. The protocol conformance
checking problem checks for each service s of S whether
L(Us) ⊆ L(As).

Mayr [26] classified the process rewrite rules according
to the class of process-algebraic expressions on the left-hand
side and right-hand side, respectively: Class 1 allows only
single states, class S only single states or sequential expres-
sions, class P only single states parallel expressions, and
class G (general) allows arbitrary process-algebraic expres-
sions. Figure 4 shows the class for each rule. An (x, y)-PRS,
x, y ∈ {1, S, P, G} allows only rules whose left-hand sides
belong to class x and whose right-hand sides belong to class y.

Remark 6 (1, 1)-PRSs correspond to non-deterministic finite
state machines (with λ-transitions), (1, S)-PRSs correspond

to context-free systems, (S, S)-PRSs correspond to push-
down machines, (P, P)-PRSs correspond to Petri-Nets, and
(1, G)-PRSs correspond to process-algebras, cf. [26].

Figure 6 summarizes the approach for protocol conformance
checking of a service-oriented system, cf. [4]. Each service
is equipped with a protocol Ai . First, an abstract behaviour
Πi is determined and published for each service. Second,
these abstract behaviours are glued to an abstract semantics
ΠS that is defined as above. Third, the use Ui of each service
Si is determined as described above, and finally, for each
service Si , it is checked whether L(Ui ) ⊆ L(Ai ).

3 Abstraction of exception handling

The aim of this section is to extend the abstraction to excep-
tion handling. We first discuss the abstractions due to excep-
tion handling without a finally-block and then discuss the
abstraction of exception blocks with finally-blocks.

3.1 Exception handling without finally-Blocks

Figure 7 shows the PRS-rules specifying the abstract seman-
tics for the raise statement and for exceptional procedure
returns for synchronous and asynchronous procedures, i.e.,
the execution of the procedure stops with an unhandled
exception. The left column shows the abstract semantics if the
exception is not handled, the right column shows the abstract
semantics if the exception is handled by a uniquely defined
exception handler.
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Fig. 7 Exception handling without finally-blocks

Remark 7 For each statement (raise, procedure call, syn-
chronization) that may raise an exception, it can be stati-
cally determined whether a given exception E is handled or
unhandled. If exception E is handled, then the correspond-
ing exception handler is statically defined. Without loss of
generality, we assume that the set of unhandled exceptions
of a procedure is contained in its signature (such a set can be
determined statically). Thus, the execution of a procedure p
may end with an exceptional state qE. Thus, the PRS-rules
in Fig. 7 can be computing from service implementations by
using classical compiler technology.

The rules for the raise statement are straightforward, because
they model the execution semantics exactly: If the exception
is unhandled, the current execution stops with the excep-
tional state. Otherwise, the execution continues with the cor-
responding exception handler.

Consider now the case that a synchronous procedure m
ends with an exceptional state qE. Then, the caller of m raises
exception E . There are two cases: exception E is unhandled
(left column, Fig. 7) or handled by a corresponding exception
handler (right column). For both cases, qE is popped and
handling exceptions is analogous to the raise statement, i.e.,
the top state is replaced by qE if E is unhandled and replaced
by the program point of the corresponding exception handler,
if E is handled. The rules in the left row of Fig. 7 must be
included into the abstract semantics for each procedure call
of m.

Remark 8 For modelling exception handling, it is necessary
to use PRS-rules with the sequential composition operator

on its left-hand side because it must be modelled that an
unhandled exception qE within a procedure m leads to a re-
raising exception at the caller. Therefore, instead of continue
with the program point q ′ after the call, the program point
must be replaced by the exception state. In contrast to the
normal procedure return (which can be modelled by q → ε),
this replacement is only possible by the rule qE .q ′ → qE .

The abstract semantics of exceptional returns from asyn-
chronous procedures is analogous to exceptional returns from
synchronous procedures. The main difference is that the state
is a cactus stack that forks to a state qE stemming from a call
of an asynchronous procedure m. Since this is not a regular
return from m, either m must be synchronized explicitly or
implicitly by a returning from the callee.

3.2 Exception handling with finally-Blocks

The abstract semantics for finally-blocks must ensure that
the finally block is being executed, even if the corresponding
try-block (or a corresponding exception handler) executes a
return statement or raise an exception not handled within a
corresponding exception handler. This also applies for nested
try-blocks. Consider for example the following situation:

try { · · ·
try { · · · q : raise E′ · · · }
when E { · · · } //E �= E′
finally { · · · }

when E′ { · · · }
finally { · · · }
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The raised exception is only handled in an outer try-block.
Before executing the exception handler for E′, all finally-
blocks that correspond to inner finally-blocks containing the
statement raising E must be executed. Thus, the abstract
semantics of the rules in Fig. 7 can only be used if none
of the inner try-blocks contains a finally-block.

The main idea to ensure the execution of a finally-block
is to push the first program point of the finally-block to
the stack when entering a try-block, cf. Rule (1) of Fig. 8.
For this purpose, program points are assigned to each try-
block with a corresponding finally-block, to the end of
each try-block, to the end of exception handling block,
and to the end of the finally-block, cf. Fig. 8. Further-
more, if an inner try-block raises an exception E that is
not handled by its exception handlers, the try-block ends
with state qE . Figure 8 shows the PRS-rules for the abstract
semantics.

If the execution reaches the end of the try-block or the end
of one of its exception handlers, then the abstract associated
program point can be obtained by the second element of the
stack, cf. Rules (2) and (3). Together with Rule (4), these
rules ensure that the finally-block is being executed and after
its execution, the statement s after the finally-block is being
executed. This is the reason for pushing the program point of
s onto the stack in Rules (2) and (3). If the try-block executes a
return statement, then this execution must be postponed until

the try-block has been completed and its program point must
be pushed onto the stack. For this, the two elements on the
top of the stack must be exchanged, cf. Rule (5). Together
with Rule (6) for regularly leaving the finally-block, these
rules ensure that the return statement is being executed after
finishing the finally-block.

The situation is more complicated if the finally-block exe-
cutes a return statement because in this case, the return state-
ment of the try-block is not being executed. Consider for
example Fig. 8: If q7: return is executed, then q2: return is
not executed although q2 is the second top element on the
stack (by Rule (5)). Therefore, the second element on the
stack must be removed, cf. Rule (7). Rule (7) is also able
to deal with nested try-blocks. Consider for example a syn-
chronous procedure p where the body contains the following
nested try-block:

try { · · ·
try { · · · q1 : return · · · }
when E { · · · } //E �= E′
finally { · · · q2 : return · · · }

when E′ { · · · }
finally { · · · q3 : return · · · }

When executing q3 : return, the four program points on
the top of the stack are q3.q2.q1.q ′ where q ′ is a program
point after a procedure call of p. According to Rule (7),

Fig. 8 Abstract semantics for
exception handling with
finally-blocks
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Fig. 9 Abstract semantics of
the services in Fig. 1

the abstract semantics contains the rules2 q3.q2
λ→q3 and

q3.q1
λ→q3. Together with the PRS-rule q3.q ′ λ→q ′, it can be

shown that q3.q2.q1.q ′ λ⇒q ′, i.e., the procedure returns by the
return statement of the outer finally block. A simple induc-
tive argument shows that such a derivation can be constructed
for arbitrarily nested try-blocks with corresponding finally-
blocks that contain return statements. Rules (8), (9), and (10)
of Fig. 8 correspond to Rules (5), (6), and (7) when the try-
block raises an unhandled exception E′ or an exception han-
dler raises exception E′.

Remark 9 Similar arguments as above also apply to asyn-
chronous procedures. Here, two stacks of a cactus stack have
to be considered. The situation on the top of the two stacks
is (q3.q2.q1)‖q ′ where q ′ is a synchronization statement or
any program point between the asynchronous procedure call
before the corresponding synchronization statement. Then, it

holds (q3.q2.q1)‖q ′ λ⇒q3‖q ′. Now, the process rewrite rules of
the abstract semantics for synchronization or asynchronous
procedure return can be applied.

Example 3 Figure 9 shows the process rewrite rules of
the abstract semantics for the service-oriented system in
Fig. 1. The initial state is q0, the set of final states is F =
{q9, qExc1 , qExc2}. The following derivation corresponds to
the execution in Fig. 3 (the rule is as a lower index of the
arrow):

q0
λ⇒(2)q2

f⇒(4)q34.q3
a⇒(56)q6.q35.q3

2 Formally, it also contains the rule q2.q1
λ→q2, but this rule plays no

role in the discussion.

λ⇒(7)q7.q16.q35.q3
b⇒(8)(q8‖q20).q16.q35.q3

λ⇒(32)(q8‖q21).q16.q35.q3

λ⇒(34)(q8‖qExc1).q16.q35.q3
c⇒(9)((q24.q9)‖qExc1).q16.q35.q3

λ⇒(38)((q26.q9)‖qExc1).q16.q35.q3

λ⇒(40)((q27.q32.q9)‖qExc1).q16.q35.q3

b⇒(41)(((q28‖q20).q32.q9)‖qExc1).q16.q35.q3

λ⇒(32)(((q28‖q21).q32.q9)‖qExc1).q16.q35.q3

λ⇒(34)(((q28‖qExc1).q32.q9)‖qExc1).q16.q35.q3

λ⇒(45)((qExc1 .q32.q9)‖qExc1).q16.q35.q3

λ⇒(47)((q30.q32.q9)‖qExc1).q16.q35.q3

f⇒(48)((q34.q31.q32.q9)‖qExc1).q16.q35.q3
a⇒(56)((q6.q35.q31.q32.q9)‖qExc1).q16.q35.q3

λ⇒(7)((q7.q16.q35.q31.q32.q9)‖qExc1).q16.q35.q3

b⇒(8)(((q8‖q20).q16.q35.q31.q32.q9)‖qExc1).q16.q35.q3

λ⇒(33)(((q8‖q22).q16.q35.q31.q32.q9)‖qExc1).q16.q35.q3

At the end of the second line, rules (9) and rules (32) are
applicable. It is worth to compare the last expression of the
seventh line with the cactus stack in Fig. 3 after step (3). It
has basically the same shape except that program points q32

and q16 are not present in the cactus stack. These program
points are the first program points of the finally-blocks and are
pushed onto the stack when the corresponding try statement
is executed.
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4 Protocol conformance checking

For checking the conformance of a protocol of a service s
in a service-oriented system S, it must be checked whether
L(Us) ⊆ L(As) where the use of s is defined by the PRS
Us � (Σs, Q,→, q0, F) and As � (Σs, Rs,→s, rs

0, Fs) is
the finite state machine defining the protocol of s. Both and
Zimmermann [5] proves that this problem is undecidable for
the classes of (x, G) process rewrite systems, i.e., if sequen-
tial composition and parallel composition occurs in a PRS,
the protocol conformance checking becomes undecidable.

The goal is to construct—similar to [5]—the Combined
Abstraction. The Combined Abstraction is a PRS K with the
following properties:

(i) K belongs to the same class of PRSs as Us ,
(ii) L(K ) ⊇ L(Us) ∩ (Σ∗

s \L(As)), and
(iii) if Us belongs to one of the classes of (x, y)-PRSs,

y ∈ {1, S}) then L(K ) = L(Us) ∩ (Σ∗
s \L(As)).

Note that Σ∗
s \As is the language accepted by the finite state

machine Ās � (Σs, Rs,→s, rs
0, F̄) where F̄s � Rs \ Fs is

the set of all non-final states of As . Thus, L(K ) �= ∅ implies
protocol conformance.

Both and Zimmermann [5] defines the Combined Abstrac-
tion for the class of (1, G)-PRS and [4] extends it to
the class of (P, G)-PRS. This article extends it further
to the class of (G, G)-PRS. Here, the construction of the
Combined Abstraction is based on a normalized process
rewrite system that consists only of rules of the forms
q

α→q ′, q.q ′ α→q ′′, q
α→q ′.q ′′, q ‖ q ′ α→q ′′, and q

α→q ′ ‖ q ′′.
Mayr [26] shows that for any PRS Π there exists a normal-
ized PRS Π ′ with L(Π) = L(Π ′). However, Π ′ may have
more atomic processes.

In contrast to [5], the construction of the Combined
Abstraction for (G, G)-PRS is based on the construction
of a pushdown system in [22] that accepts the intersec-
tion of a context-free language and a regular language.
The Combined Abstraction of Us = (Σs, Q,→, q0, F)

and Ās = (Σs, Rs,→s, rs
0, F̄s) is a process rewrite system

K � (Σs, QK ,→K , q K
0 , FK ) where QK � Rs × Q, qk

0 �
(r0, q0), →K � T11 ∪ T1S ∪ TS1 ∪ T1P ∪ TP1 ∪ T0 as defined
in Fig. 10, and FK � Fs × F . The proof of its correctness is
based on the following

Theorem 1 Let Us � (Σs, Q,→, q0, F) be a PRS , Ās �
(Σs, Rs,→s, rs

0, F̄s) be a finite state machine, and K �
(Σs, QK ,→K , q K

0 , FK ) be the Combined Abstraction of Us

and Ās . Furthermore, let be e ∈ PEX(Q) be a process-
algebraic expression over Q and r ∈ Rs a protocol state,
and x ∈ Σ∗

s such that there is a f ∈ F and r̄ ∈ F̄s with

e
x⇒ f and r

x⇒s r̄ . Then, there is a e′ ∈ PEX(QK ) and a
fk ∈ FK such that the following properties are satisfied:

(i) e and e′ have the same shape, i.e., e is obtained from
e′ by removing the first component contained in each
atomic process of e′.

(ii) All states on the top of the stacks in the cactus stack
corresponding to e′ have the protocol state r .

(iii) e′ x⇒K fk

Proof See Appendix 1 ��
Corollary 1 Let Us � (Σs, Q,→, q0, F) be a PRS , Ās �
(Σs, Rs,→s, rs

0, F̄s) be a finite state machine, and K �
(Σs, QK ,→K , q K

0 , FK ) be the Combined Abstraction of Us

and Ās . Then, L(Us) ∩ L(As) ⊆ L(K ).

Proof Let be x ∈ L(As)∩ L(Us). Then, q0
x⇒ f for a f ∈ F

and r0
x⇒r̄ for a r̄ ∈ F̄s . Hence, by Theorem 1(iii) there is

a fk ∈ FK such that (r0, q0)
x⇒K (ar̄ , f ). Thus, x ∈ L(K )

since q K
0 = (r0, q0). ��

Remark 10 If the Combined Abstraction only contains rules
from T11 ∪ T1S ∪ TS1, then equivalence holds. In particular,
there is no need to apply Lemma 2. The combined abstraction
specializes to the construction as well the proof in Appendix 1
to the intersection of pushdown machines and finite state
machines as described in [22]. In this case, equivalence holds
[22].

If condition (ii) is violated, then the cactus stack would
have two top-of-stack elements with different protocol states.
This makes no sense because there is only one protocol of
service s, and therefore, the protocol cannot be at the same
time in two different states. We call cactus stack violating
condition (ii) as inconsistent.

The transition rules T11, T1S , and TS1 are a slight gener-

alization of those in [22]. Note that r
λ⇒sr , and for a ∈ Σs

Fig. 10 Transition rules for the
combined abstraction
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Fig. 11 Inconsistent cactus
stack

it is r
a⇒sr ′ iff r

a→sr ′. The transition rules T1P and TP1 are
straightforward. The ideas stem from [4,5]. The transition
rules T0 are required for maintaining a consistent state of the
protocol as demonstrated by Example 4:

Example 4 Consider the finite state machine A2 in Fig. 2
and suppose that Us contains the following transition rules

q0
b→q1 ‖ q2, q1

c→q3, q2
b→q3, q3 ‖ q3

c→q4 where q4 is
the final state. Then, bbcc ∈ L(Us) \ L(A2), i.e., there is
a protocol violation. Without the rules in T0, the following
derivations are possible:

qK
λ⇒(r2

0 , q0) by TS

b⇒(r2
1 , q1) ‖ (r2

1 , q2) by T1P

b⇒(r2
1 , q1) ‖ (E, q3) by T11

c⇒(r2
1 , q1) ‖ (E, q4) by T11

c⇒(r2
2 , q3) ‖ (E, q4) by T11

qK
λ⇒(r2

0 , q0) by TS

b⇒(r2
1 , q1) ‖ (r2

1 , q2) by T1P

b⇒(r2
1 , q1) ‖ (E, q3) by T11

c⇒(r2
2 , q3) ‖ (E, q3) by T11

c⇒(r2
2 , q4) ‖ (E, q3) by T11

For none of these two process-algebraic expressions, there
are λ-transitions that lead to a final state. Thus, the proto-
col violation is not detected. The reason is that for both

derivations, a change of the protocol state was not taken
into account. For both derivations, after the second step,
the left operand of ‖ still indicates that A2 is in state r2

1
although by the transitions the (final) protocol state E is
reached for the right operand. Figure 11 shows the corre-
sponding cactus stack. Each top element of a cactus stack
should have the same protocol state because there is only one
protocol, and therefore, the protocol state must be unique.
With the rules of T0, it is possible to change the protocol
state of the left operand to E before applying another tran-

sition rule. Thus, (r2
1 , q1) ‖ (E, q3)

λ⇒(E, q1) ‖ (E, q3)
c⇒

(E, q3) ‖ (E, q3)
c⇒(E, q4) ∈ FK for both cases. Hence, the

protocol violation is detected.

Example 5 (Combined Abstraction) The Combined Abstrac-
tion of the PRS in Fig. 9 and the protocol automaton A2 in
Fig. 2 has 220 atomic processes and 398 transition rules. For
reasons of space we only give a derivation demonstrating the
protocol violation discussed in Example 2 (the class of the
applied transition rule according to Fig. 10 is indicated below
the derivation step, TSS is a combination of TS1 and T1S), cf.
Fig. 12. This derivation should be compared with the deriva-
tion in Example 3. Note that all operations different from b
and c are replaced by λ since the other operations are not
contained in the interface of service s2.

Fig. 12 A derivation using the rules of a combined abstraction (Example 5)
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5 Related work

Many works on static protocol checking of components con-
sider local protocol checking on FSMs. The same approach
can also be applied to check protocols of objects in object-
oriented systems. The idea of static type checking by using
FSMs goes back to Nierstrasz [28]. His approach uses regular
languages to model the dynamic behaviour of objects, which
is less powerful than context-free grammars (CFG). There-
fore, the approach cannot handle recursive callbacks. In [25],
object-life cycles for the dynamic exchange of implemen-
tations of classes and methods using a combination of the
bridge/strategy pattern are considered. The approach com-
prises dynamic as well as static conformance checking. How-
ever, it is also based on FSMs, which are in general still
used widely in similar approaches (e.g., [15,27,35]). Ten-
zer and Stevens [38] investigate approaches for checking
object-life cycles. They assume that object-life cycles of
UML-classes are described using UML state-charts and that
for each method of a client, there is a FSM that describes
the calling sequence from that method. In order to deal
with recursion, Tenzer and Stevens add a rather complicated
recursion mechanism to FSMs. It is not clear whether this
recursion mechanism is as powerful as pushdown automata
and therefore could accept general context-free languages.
Pradel et al. [32] discuss protocol conformance checking of
APIs analogous to ours. It is designed for object-oriented
programs and focuses on containers and iterators. Their
approach learns protocols and statically checks them. The
static protocol conformance checker may report false posi-
tives but no false negatives. It is based on an intra-procedural
branch-sensitive program analysis. Hence, their approach is
able to take into account data flow but has a rather impre-
cise abstraction of recursion, since the latter would require
a context-sensitive interprocedural program analysis. Fur-
thermore, [32] does not discuss exception handling and
concurrency.

Zimmermann and Schaarschmidt [40] show that if the
behaviour is a context-free language due to recursive call-
backs, finite state approaches may lead to false positives.
Furthermore, they introduced an approach for protocol con-
formance checking based on context-free systems. Exception
handling would require pushdown systems. Lin et al. [24] use
pushdown systems and discuss an approach of adaptation to
protocols based on pushdown systems. All these works are
for sequential systems.

Schmidt et al. [37] propose an approach for protocol
checking of concurrent component-based systems. Their
approach is also FSM-based. Thus, it is also unable to deal
with recursive callbacks. Both and Zimmermann [4,5] use the
restricted class of (P, G)-PRS. Thus, it allows the adequate
modelling of unbound recursion, unbound concurrency, and

explicit synchronizations. However, exceptions are not con-
sidered in these works.

An alternative approach for an investigation of protocol
conformance is the use of process-algebras such as CSP
(e.g., [2]). These approaches are more powerful than FSMs
and context-free grammars. However, mechanized check-
ing requires some restrictions on the specification language.
For example, [2] uses a subset of CSP that allows only the
specification of finite processes. At the end the conformance
checking is reduced to checking FSMs similar to [37]. In
[30], behavioural protocol conformance is used to describe a
problem similar to ours. In contrast to our approach the devel-
oper has to define not only the allowed receivable calls but
also the calls of the component. This approach cannot handle
recursive callbacks, since the verification is reduced to finite
state model. Many works use process-algebras as abstrac-
tions for the formal (behavioural) analysis of e.g. BPEL
applications.

[16] uses CSP, while [31,36] use CCS-Process-algebras
are similar to (P, G)-PRSs. These two works do not verify
the behaviour in our sense. To the best of our knowledge, we
are not aware of works in protocol conformance checking tak-
ing into account unbound recursion, unbound concurrency,
and exception handling.

Other works such as [8] use another notion of behavioural
conformance as this article. Their notion of conformance
basically implies absence of deadlocks and livelocks, i.e.,
they want to reach a desired state. In contrast, protocols in
this article specifies sequences of operation calls that must be
satisfied, i.e., it is more a safety condition rather than a live-
ness condition. Furthermore, [8] does not abstract the service
behaviour from an implementation. The latter is done by [33]
who abstracts the service implementation to a ZING model.
They check also a kind of absence of deadlocks as [8] using
a simulation relation.

Bouajjani and Emmi [7] discuss the analysis of recur-
sive parallel programs. They restrict themselves to finite
data types and explore the decidability of problems such as
e.g. reachability. It seems that there model is slightly more
general as there are situations where the reachability prob-
lem becomes undecidable. Their approach doesn’t consider
exception handling.

de Caso et al. [12] abstract contracts to protocols (mod-
elled as finite state machines) in the sense of this article and
validates them. This is done for both, the client and the server
and a simulation, bi-simulation or protocol conformance can
be checked automatically. Abstractions from implementa-
tions are not considered. Dumez et al. [14] derive a compo-
sition specification from interaction protocols and derives an
implementation of composed services satisfying the speci-
fication. Ghezzi et al. [17] discuss a dynamic approach for
protocol conformance checking.
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6 Conclusions

This article extends our previous work of protocol confor-
mance checking towards exception handling. The approach
is capable to represent exception handling even via service
interactions. The abstractions are computed using an auto-
matic translation. A more rugged composition of SOAs is
now possible. In contrast to our previous work, the most
general class of process rewrite systems is needed for mod-
elling exception handling, unbound recursion, unbound con-
currency, and explicit synchronization. Table 1 shows an
interesting correspondence between the rule classifications
according to Mayr and the adequate modelling of program-
ming language concepts. In particular, it shows what is
required for modelling the language concepts if one abstracts
completely from data. Thus, we have the correspondence
between Mayr’s hierarchy of process rewrite systems and
programming language concepts shown in Fig. 13. In our
previous work, we had a correspondence to the class (P, G)-
PRS (Process Algebra Nets). With exception handling, we
have a correspondence to the (G, G)-PRS, the general class
of process rewrite systems.

The reachability problem is decidable for each class
of PRS while the inclusion problem to regular languages
becomes undecidable in any class containing a G, i.e., that

Table 1 Rule classes and programming language concepts

Rule Language concept Rule class

q
α→q ′ Internal state transition (1, 1)

q
α→q ′.q ′′ Synchronous procedure call (1, S)

q
α→ε Regular procedure return (1, 1)

q
α→q ′ ‖ q ′′ Asynchronous procedure call (1, P)

q ‖ q ′ α→q ′′ Synchronization (P, P)

q.q ′ α→q ′′.q̄ Exception handling (S, S)

q.q ′ α→q ′′ Exceptional procedure return (S, S)

α is a function symbol or empty

includes parallel as well as sequential composition. In a sim-
ilar way as [5], we have defined a Combined Abstraction
that approximates the inclusion problem by a reachability
problem such that the approximation is exact iff the process
rewrite system belongs to a decidable class. The reachability
problem can be solved by the algorithm in [26].

However, this algorithm requires exponential space (and
therefore at least exponential time) in the worst case since
the reachability problem for process rewrite systems is
EXPSPACE-hard [26]. It is subject to future work to check
whether the worst-case behaviour practically occurs and to
apply some heuristics to get it more efficient if necessary. For
the latter, the same ideas as in [3,4,6] may apply. In partic-
ular, [6] has shown that protocol conformance checking of
complex systems is possible in acceptable time.

Taking into account data is a challenge: the data types
of variables must be abstracted to finite domains. However,
this leads to a severe state explosion problem as in classical
model checking. Thus, in order to consider data in protocol
conformance checking, a more goal-oriented abstraction is
required.

Acknowledgments We thank the anonymous referees for their
remarks and suggestions. They were helpful to considerably improve
the article.

Appendix A: Proof of Theorem 1

This appendix contains the complete proof of Theorem 1
and the formalization of the notion of top-of-stack elements.
Before Theorem 1 is being proven, we have to introduce
some notions and properties of these notions to be used in the
proof. The first subsection discusses properties of process-
algebraic expressions in general and shows formally how
process rewrite rules are applied. The second subsection dis-
cusses properties of the Combined Abstraction K of PRS Us

and a protocol As . In particular, process-algebraic expres-
sions of K are related to process-algebraic expressions of Us

Fig. 13 PRS-Hierarchy and expressiveness w.r.t. programming language concepts a PRS-Hierarchy and its expressiveness b PRS-Hierarchy and
programming language concepts
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Fig. 14 Some notions on sequences

and protocol states of As . The last subsection contains the
proof of Theorem 1.

A.1 Properties of process-algebraic expressions

Let Q be a set of atomic processes and e ∈ PEX(Q) be a
process-algebraic expression over Q. Although the opera-
tors . and ‖ are associative, we assume for the purpose of
this appendix a left associative bracketing. Furthermore, we
assume that expressions containing the empty process are
being simplified.

An occurrence is a finite sequence o ∈ {0, 1}∗. Figure 14
shows some notations on occurrences. ++ is an associative
operator with identity [].

Occurrences are used to navigate in process-algebraic
expressions, to denote specific sub-expressions, and to
replace specific sub-expressions by other sub-expressions.
The following definitions are the usual definitions used for
general terms over a given signature and are specialized to
process-algebraic expressions.

Definition 1 (Navigation by Occurrences) Let Q be a set of
atomic expressions and ⊥ �∈ Q (it represents the symbol for
undefined). The subexpression of e ∈ PEX(Q) at occurrence
o ∈ {0, 1}∗ is a process-algebraic expression e[o] ∈ PEX(Q)

inductively defined as follows:

(i) ε[o] � ⊥ and q[o] � ⊥ for q ∈ Q, o �= []
(ii) e[[]] � e for e �= ε

(iii) (e1 ◦ e2)[0 : o] � e1[o] for e1, e2 �= ε, ◦ ∈ {., ‖}
(iv) (e1 ◦ e2)[1 : o] � e2[o] for e1, e2 �= ε, ◦ ∈ {., ‖}

Definition 2 (Replacement) Let Q be a set of atomic expres-
sions, e ∈ PEX(Q) and o ∈ {0, 1}∗ be such that e[o] �= ⊥.
The replacement of e at o by e′ ∈ PEX(Q) is a process-
algebraic expression e[e′/o] ∈ PEX(Q) inductively defined
by:

(i) e[e′/[]] � e′
(ii) (e1 ◦ e2)[e′/0 : o] � e1[e′/o] ◦ e2 for e1, e2 �= ε,

◦ ∈ {., ‖}
(iii) (e1 ◦e2)[1 : o] � e1 ◦e2[e′/o] for e1, e2 �= ε, ◦ ∈ {., ‖}

Example 6 (Occurrences) Let e � (((q28 ‖ q23).q32.q9) ‖
qExc1).q16.q35.q3. Then, e[[0, 0, 0, 0, 0, 0, 0]] = q28,
e[[0, 0, 0, 0, 0, 0, 1]] = q21, e[[0, 0, 1]] = qExc1 ,

e[[1, 1]] = ⊥, e[[0, 0, 0]] = (q28 ‖ q21).q32.q9), and
e[[0, 0, 0, 0, 0, 0]] = q28 ‖ q23. Furthermore
e[q29/[0, 0, 0, 0, 0, 0]) = ((q29.q32.q9)‖qExc1).q16.q35.q3.

Figure 15 shows the expression tree of the expression in
Example 6 and the result of the replacement. In general, an
occurrence o defines a path in e ∈ PEX(Q) from the root to a
sub-tree, e[o] is the expression corresponding to this sub-tree
and e[e′/o] replaces this subtree by the tree corresponding to
expression e′.

Informally, Proposition 1(i) states that if e is replaced by
e′ at o then each occurrence ō with prefix o refers to a subex-
pression of e′, in particular to those where o′ is the suffix
obtained by removing ō from o. Note that o refers to the
root of e′. Proposition 1(ii) states that replacing twice an
expression by a sub-expression, the last replacement over-
rides the first replacement. Proposition 1(iii) states that if an
expression is replaced at occurrence o the sub-expression of
e at o, then e remains unchanged. Proposition 1(iv) states
that a sub-expression at an occurrence o′ is independent of a
replacement if o′ does not refer to a sub-tree of o. Note that o′
refers to a sub-tree of e[o] iff o � o′. Proposition 1(v) states
for this case, the replacements can be exchanged.

Proposition 1 (Properties of Occurrences and Replace-
ments) Let Q be a set of atomic processes, e, e′, e′′ ∈
PEX(Q) be process-algebraic expressions over Q, and
o, o′ ∈ {0, 1}∗ such that e[o] �= ⊥ and e[o′] �= ⊥. Then,
the following properties hold:

(i) e[e′/o][o++o′] = e′[o′]. In particular e[e′/o][o] = e′.
(ii) e[e′/o][e′′/o] = e[e′′/o]

(iii) If e[o] = e′ then e[e′/o] = e
(iv) If o �� o′ and o′ �� o then e[e′/o][o′] = e[o′]
(v) If o �� o′ and o′ �� o then

e[e′/o][/e′′/o′] = e[e′′/o′][e′/o]

Proof (i) The proof is by induction on o

Case 1: o = []. Then,

e[e′/[]][[]++o′] = e[e′/[]][o′] [] is identitiy of ++
= e′[o] by Definition 2(i)

Case 2: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e = e1 ◦ e2

for a ◦ ∈ {., ‖}. Hence,

(e1 ◦ e2)[e′/0 : ō][(0 : ō)++o′]
= (e1 ◦ e2)[e′/0 : ō][0 : (ō++o′)] associativity of ++
= (e1[e′/ō] ◦ e2)[0 : (ō++o′)] Definition 2(ii)
= e1[e′/ō][ō++o′] by Definition 1(iii)
= e′[o′] by induction hypothesis

Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. The proof is
analogous to Case 2.
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(a) (b) (c)

Fig. 15 Expression tree and cactus stack to (((q28‖q21).q32.q9)‖qExc1 ).q16.q35.q3, an occurrence, and its replacement

(ii) The claim is proved by induction on o.

Case 1: o = []. Then,

e[e′/[]][e′′/[]] = e′′ by Definition 2(i)
= e[e′′/[]] by Definition 2(i)

Case 2: o = 0 : ō. Then, e = e1 ◦ e2 for a ◦ ∈ {., ‖}.
Hence,

(e1 ◦ e2)[e′/0 : ō][e′′/0 : ō]
= (e1[e′/ō] ◦ e2)[e′′/0 : ō] by Definition 2(ii)
= (e1[e′/ō][e′′/ō] ◦ e2) by Definition 2(ii)
= (e1[e′′/ō] ◦ e2) by induction hypothesis
= (e1 ◦ e2)[e′′/0 : ō] by Definition 2(ii)

Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. The proof is
analogous to Case 2.

(iii) Let be e[o] = e′. Then, it must be shown that e[e′/o] = e.
The proof is also an induction on o.

Case 1: o = []. Then, it holds

e[e′/[]] = e′ by Definition 2(i)
= e[[]] since e[o] = e′
= e by Definition 1(ii)

Case 2: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e = e1 ◦ e2

for a ◦ ∈ {., ‖}. Hence,

e1[ō] = (e1.e2)[0 : ō] by Definition 1(iii)
= e′ since e[o] = e′.

Thus, by induction hypothesis it is e1[e′/ō] = e1. Then,
it holds:

(e1 ◦ e2)[e′/0 : ō] = (e1[e′/ō] ◦ e2) by Definition 2(ii)
= e1 ◦ e2 by induction hypothesis

Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. The proof is
analogous to Case 2.

(iv) The proof is by induction on the longest common prefix
of o and o′.

Case 1: [] is the longest common prefix of o and o′.
Then, it is o = [c1 : ō] and o′ = [c2 : ¯̂o] for c1, c2 ∈
{0, 1}, c1 �= c2, ō, ô ∈ {0, 1}∗. Since e[o] �= ⊥, it is
e = e1 ◦e2 for a ◦ ∈ {., ‖}. Let be c1 = 0 and c2 = 1 (the
case c1 = 1 and c2 = 0 is proven analogously). Then,

(e1 ◦ e2)[e′/0 : ō][1 : ô]
= (e1[e′/ō] ◦ e2)[1 : ô] by Definition 2(ii)
= e2[ô] by Definition 1(iv)
= (e1 ◦ e2)[1 : ô] by Definition 1(iv)

Case 2: The longest common prefix of o is c : o′′
for a o′′ ∈ {0, 1}∗. Then, it is o = [c : ō] and
o′ = [c : ¯̂o], ō, ô ∈ {0, 1}∗ and o′′ is the longest common
prefix of ō and ô. We prove the case c = 0 (the case c = 1
is proven analogously):

(e1 ◦ e2)[e′/0 : ō][0 : ô]
= (e1[e′/ō] ◦ e2)[0 : ô] by Definition 2(ii)
= e1[e′/ō][ô] by Definition 1(iii)
= e1[ô] by induction hypothesis
= (e1 ◦ e2)[0 : ô] by Definition 1(iii)

(v) The proof is also by induction on the longest common
prefix of o and o′.

Case 1: [] is the longest common prefix of o and o′.
Then, it is o = [c1 : ō] and o′ = [c2 : ¯̂o] for c1, c2 ∈
{0, 1}, c1 �= c2, ō, ô ∈ {0, 1}∗. Since e[o] �= ⊥, it is
e = e1 ◦e2 for a ◦ ∈ {., ‖}. Let be c1 = 0 and c2 = 1 (the
case c1 = 1 and c2 = 0 is proven analogously). Then,
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(e1 ◦ e2)[e′/0 : ō][e′′/1 : ô]
= (e1[e′/ō] ◦ e2)[e′′/1 : ô] by Definition 2(ii)
= (e1[e′/ō] ◦ e2[e′′/ô]) by Definition 2(iii)
= (e1 ◦ e2[e′′/ô])[e′/0 : ō] by Definition 2(ii)
= (e1 ◦ e2)[e′′/1 : ô][e′/0 : ō] by Definition 2(iii)

Case 2: The longest common prefix of o is c : o′′ for
a o′′ ∈ {0, 1}∗. Then, o = [c : ō] and o′ = [c : ¯̂o] ō,

ô ∈ {0, 1}∗ and o′′ is the longest common prefix of ō and
ô. We prove the case c = 0 (the case c = 1 is proven
analogously):

(e1 ◦ e2)[e′/0 : ō][e′′/0 : ô]
= (e1[e′/ō] ◦ e2)[e′′/0 : ô] by Definition 2(ii)
= e1[e′/ō][e′′/ô] ◦ e2 by Definition 2(ii)
= e1[e′′/ô][e′/ō] ◦ e2 by induction hypothesis
= (e1[e′′/ô] ◦ e2)[e′/0 : ō] by Definition 2(ii)
= (e1 ◦ e2)[e′′/0 : ô][e′/0 : ō] by Definition 2(ii)

��
The following definition defines for process-algebraic

expressions the occurrences for the top-of-stack elements of
the corresponding cactus stacks, respectively.

Definition 3 (Top-of-Stack Occurrences) Let Q be a set of
atomic processes and e ∈ PEX(Q). The set TOP(e) of top-
of-stack occurrences of e is inductively defined by:

(i) TOP(ε) � ∅
(ii) TOP(q) � {[]} for q ∈ Q

(iii) TOP(e1.e2) � 0 : TOP(e1)

(iv) TOP(e1‖e2) � (0 : TOP(e1)) ∪ (1 : TOP(e2))

Example 7 (Top-of-Stack Elements) For the process-algebr-
aic expression e � (((q28‖q23).q32.q9)‖qExc1).q16.q35.q3,
it is

TOP(e) =
{[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 1]}.

This expression corresponds to the cactus stack in Fig. 15c.

Proposition 2 defines some properties on top-of-stack ele-
ments. The first property states that if an expression e is
replaced at a occurrence o by a sub-expression e′ and e[o]
contains top-of-stack elements, a top-of-stack element of
e[e′/o] is a top-of-stack element of e outside of e[o] or
a top-of-stack element of e′ (adjusted for e[/e′/o]). The

second property states that if e[o] doesn’t contain top-of-
stack elements then the top-of-stack elements of e are not
affected by replacements at o. Furthermore, each top-of-
stack elements refers to an atomic expression and two top-
of-stack elements cannot be proper sub-expressions of each
other.

Proposition 2 (Properties of Top-Of-Stack Elements) Let Q
be a set of atomic processes, e, e′ ∈ PEX(Q) be process-
algebraic expressions over Q, and o, o′ ∈ {0, 1}∗ be occur-
rences. Then, the following properties hold:

(i) If e[o] �= ⊥ and TOP(e) ∩ PREF(o) �= ∅ then
TOP(e[e′/o]) = TOP(e) \ PREF(o) ∪ (o++TOP(e′)).

(ii) If e[o] �= ⊥ and TOP(e) ∩ PREF(o) = ∅ then
TOP(e[e′/o]) = TOP(e).

(iii) For each o ∈ TOP(e) it is e[o] ∈ Q
(iv) If o � o′ for a o′ ∈ TOP(e) then e[o] �= ⊥.
(v) If o, o′ ∈ TOP(e) and o �= o′, then o �� o′ and o′ �� e.

Proof (i) The proof is by induction on o.

Case 1: o = []. Then, e �= ε since otherwise e[o] = ⊥.
Furthermore, it holds PREF([]) = {0, 1}∗. Then,

TOP(e)\PREF([])∪([]++TOP(e′))
= TOP(e)\{0, 1}∗ ∪ TOP(e′) by definition of ++ for sets
= ∅∪TOP(e′)
= TOP(e′) = TOP(e[e′/[]]) by Definition 2(i)

Case 2: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e = e1.e2 or
e = e1‖e2. Otherwise it would be e[o] = ⊥. By induction
hypothesis it holds

TOP(e1[e′/ō]) = TOP(e1) \ PREF(ō) ∪ (ō++TOP(e′))
(1)

and

PREF(0 : ō) = 0 : PREF(ō) (2)
Case 2.1: e = e1.e2. Then,

TOP((e1.e2)[e′/0 : ō])
=TOP(e1[e′ō].e2) by Definition 2(ii)

=0 :TOP(e1[e′/ō]) by Definition 3(iii)

=0 :(TOP(e1)\PREF(ō)∪(ō++TOP(e′)) by (1)

=(0 :TOP(e1))\(0 :PREF(ō))∪(0 : (ō++TOP(e′))
=(0 :TOP(e1))\(PREF(0 : ō))∪(0 : (ō++TOP(e′)) by (2)

=(0 :TOP(e1))\(PREF(0 : ō))∪((0 : ō)++TOP(e′)) by associativity of ++
=TOP(e1.e2)\(PREF(0 : ō))∪((0 : ō)++TOP(e′)) by Definition 3(iii)
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Case 2.2: e = e1‖e2. Then,

TOP((e1‖e2)[e′/0 : ō])
= TOP(e1[e′‖o].e2) by Definition 2(ii)
= 0 : TOP(e1[e′/ō]) ∪ (1 : TOP(e2)) by Definition 3(iii)
= (0 : TOP(e1)) \ (PREF(0 : ō)) ∪ ((0 : ō)++TOP(e′)) ∪ (1 : TOP(e2)) analogous to Case 2.1
= ((0 : TOP(e1)) ∪ (1 : TOP(e2)) \ (PREF(0 : ō)) ∪ ((0 : ō)++TOP(e′))
= TOP(e1‖e2) \ (PREF(0 : ō)) ∪ ((0 : ō)++TOP(e′)) by Definition 3(iii)

Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. Then, e = e1‖e2. Oth-
erwise it would be e[o] = ⊥ or TOP(e) ∩ PREF(1 : ō) = ∅.
The case is proven analogously to Case 2.2

(ii) For the case o = [], it always holds TOP(e)∩PREF([]) =
TOP(e) �= ∅. Similarly, if o = 0 : ō for a ō ∈ {0, 1}∗ and for
e = e1 ◦ e2, ◦ ∈ {. ‖} it holds TOP(e) ⊇ 0 : TOP(e1) �= ∅.
If e = e1‖e2, it holds TOP(e) ⊇ 1 : TOP(e2) �= ∅. Hence, it
remains e = e1.e2 and o = 1 : ō for a ō ∈ {0, 1}∗. Then, it
holds

TOP((e1.e2)[e′/1 : ō]) = TOP(e1.e2[ō]) by Definition 2(iii)
= 0 : TOP(e1) by Definition 3(iii)
= TOP(e1.e2) by Definition 3(iii)

(iii) Suppose e[o] �∈ Q for a o ∈ TOP(e). Then, e = e1.e2

or e = e1‖e2. We prove by induction on o that o �∈ TOP(e).

Case 1: o = []: Then, e[o] = e.
Case 1.1: e = e1.e2. Then, TOP(e) = 0 : TOP(e1) �� [].
Case 1.2: e = e1‖e2. Then, TOP(e) = (0 : TOP(e1)) ∪
(1 : TOP(e2) �� [].
Case 2: o = 0 : ō for a ō ∈ {0, 1}∗.
Case 2.1: e = e1.e2. Then, e[o] = e1[ō]. By induction
hypothesis ō �∈ TOP(e1). Hence, 0 : ō �∈ 0 : TOP(e1) =
TOP(e1.e2)

Case 2.2: e = e1 ‖ e2. By induction hypothesis ō �∈
TOP(e1). Hence, it is 0 : ō �∈ (0 : TOP(e1)) ∪
(1 : TOP(e2)) = TOP(e1.e2)

Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. Hence,
1 : ō �∈ 0 : TOP(e1) = TOP(e1.e2)

Case 3.1: e = e1.e2. Hence, 1 : ō �∈ 0 : TOP(e1) =
TOP(e1.e2)

Case 3.2: e = e1‖e2. The proof is analogous to the proof
of Case 2.2.

(iv) By (iii), e[o] �= ⊥ for a o ∈ TOP(e). Hence, by Defini-
tion 1(i), e[o′] �= ⊥ for each prefix o′ � o.
(v) Let o � o′ for a o′ ∈ TOP(e). By (iii): e[o′] ∈ Q. Hence,
by Definition 1(ii) e[o] �∈ Q is a composed expression. ��

The following Lemma states that the application of a
process rewrite rule l → r to a process-algebraic expres-

sion replaces l by r at an occurrence o where e[o] contains
TOP-of-stack elements.

Lemma 1 (Application of Process Rewrite Rules) Let Π �
(Σ, Q,→, q0, F) be a process rewrite system, e ∈ PEX(Q)

be a process-algebraic expression, l
a→r be a process

rewrite rule, and o ∈ {0, 1}∗ be an occurrence with
TOP(e) ∩ PREF(o) �= ∅ and e[o] = l. Then, it holds
e

a⇒e[r/o].

Proof The proof is an induction on o.

Case 1: o = []. Then,

e[[]] = l by assumption
a⇒r by inference rule (R)
= e[r/[]] by Definition 2(i)

Case 2: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e = e1 ◦ e2

for a ◦ ∈ {., ‖}. Then, it holds

e1[ō] = e[0 : ō] by Definition 1(iii)
= l by assumption

Hence, by induction hypothesis, it is

e1
a⇒e1[r/ō] (3)

Case 2.1: e = e1.e2. Then,

e1.e2
a⇒e1[r/ō].e2 by (3) and inference rule (S)
= (e1.e2)[r/0 : o] by Definition 2(ii)

Case 2.2: e = e1‖e2. Then,

e1‖e2
a⇒e1[r/ō]‖e2 by (3) and inference rule (P1)
= (e1‖e2)[r/0 : o] by Definition 2(ii)

Case 3: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e = e1‖e2

since TOP(e) ∩ PREF(o) = ∅ for e = e1.e2. The proof
for this case is analogous to Case 2.2. ��
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Appendix 1.2 Properties of the combined abstraction

Throughout this subsection, let Us � (Σs, Q,→, q0, F) be
a process rewrite system specifying an abstraction for the
use of service s, Rs � (Σs, Rs,→s, qs

o, F̄s) be a finite state
machine without λ-transitions specifying an (inverted) pro-
tocol for s, and K � (Σs, QK ,→K , q K

0 , FK ) be the Com-
bined Abstraction of Us and Rs as defined in Sect. 4.

Definition 4 (Stripping Protocol States and Protocol States
on Top of Stacks) Let e ∈ PEX(QK ) a process-algebraic
expression over the atomic processes of the Combined
Abstraction. The stripping of protocol state from e is a
process-algebraic expression π(e) ∈ PEX(Q) over the
atomic processes of Us , inductively defined by:

(i) π(ε) � ε and π((r, q)) � q
(ii) π(e1 ◦ e2) � π(e1) ◦ π(e2) for ◦ ∈ {., ‖}

The set TOS(e) � {r : there is ao ∈ TOP(e) and q ∈ Q
such that e[o] = (r, q)} is the set of top-of-stack protocol
states of e ∈ PEX(QK ). The process-algebraic expression e
is inconsistent with r iff TOP(e) �= {r}.

The cactus stack corresponding to π(e) has the same shape
as the cactus stack corresponding e, and if a stack element of
e contains (r, q) then the stack element of π(e) contains q.
The top-of-stack protocol states is the set of protocol states on
the top-of-stack elements of the cactus stack corresponding
to e.

Example 8 Let e � ((r1, q1)‖(r2, q2)).(r3.q3).
Then,

π(e) = (q1‖q2).q3

TOS(e) = {r1, r2}

(r3 3),q

(r2 2),q

(r1 1),q

Cactus Stack of a
Combined Abstraction

1q
2q

3q

Stripped Cactus Stack

The following proposition states some properties on π .
The first one states that stripping and navigation by occur-
rences can be interchanged. The second states that stripping a
replacement can be interchanged by stripping the expression
and the replacing expression. The third property states that
the set of top-of-stack occurrences are not affected by strip-
ping. The fourth proposition and fifth property are technical
ones. They relate replacements on a stripped expression to
stripping a replacement. The fifth property is a generaliza-
tion of the fourth as it considers the states at the top-of-stack
occurrences.

Proposition 3 (Stripping Protocol States) Let e′, e′′, e′′′ ∈
PEX(QK ) process-algebraic expressions over the atomic
processes of the Combined Abstraction of Us and Rs, e, e1,

e2 ∈ PEX(Q) be process-algebraic expressions over the
atomic states of Us, and o ∈ {0, 1}∗ be an occurrence such
that e′[o] �= ⊥ (and e[o] �= ⊥). Then, it holds:

(i) π(e′[o]) = π(e)[o]
(ii) π(e′[e′′/o]) = π(e′)[π(e′′)/o]

(iii) TOP(π(e′)) = TOP(e′)
(iv) If e[o] = e1, π(e′′) = e[e2/o], π(e′′′) = e1, and

e′ = e′′[e′′′/o], then π(e′) = e
(v) Let o1, . . . , ok ∈ TOP(e), o �∈ {o1, . . . , ok} and

qi � e[oi ], i = 1, . . . , k. Then, it holds for any
protocol states r1, . . . , rk ∈ Rs: If e[o] = e1,

π(e′′) = e[e2/o], π(e′′′) = e1, and
e′ = e′′[(r1, q1)/o1] · · · [(rk, qk)/ok][e′′′/o], then
π(e′) = e

Proof (i) The proof is an induction on o.

Case 1: o = []. Then, by Definition 1(ii), it holds

π(e′[[]]) = π(e′) = π(e′)[[]].

Case 2: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e′ = ē1 ◦ ē2

for a ◦ ∈ {., ‖}. Hence,

π((ē1 ◦ ē2)[0 : ō])
= π(ē1[ō]) by Definition 1(iii)
= π(ē1)[ō] by induction hypothesis
= (π(ē1) ◦ π(ē2))[0 : ō] by Definition 1(iii)
= π(ē1 ◦ ē2)[0 : ō] by Definition 4(ii)

Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. The proof is
analogous to Case 2.

(ii) The proof is an induction on o.

Case 1: o = []. Then, by Definition 2(i), it holds

π(e′[e′′/[]]) = π(e′′) = π(e′)[π(e′′)/[]].

Case 2: o = 0 : ō for a ō ∈ {0, 1}∗. Then, e′ = ē1 ◦ ē2

for a ◦ ∈ {., ‖}. Hence,

π((ē1 ◦ ē2)[e′′/0 : ō])
= (π(ē1) ◦ π(ē2))[e′′/0 : ō] by Definition 4(ii)
= π(ē1)[e′′/ō] ◦ π(ē2) by Definition 2(ii)
= π(ē1)[π(e′′)/ō] ◦ π(ē2) by induction hypothesis
= (π(ē1) ◦ π(ē2))[π(e′′)/0 : ō] by Definition 2(ii)
= π(ē1 ◦ ē2)[π(e′′)/0 : ō] by Definition 4(ii)
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Case 3: o = 1 : ō for a ō ∈ {0, 1}∗. The proof is
analogous to Case 2.

(iii) The proof is by induction on e′.

Case 1: e′ = ε or e′ = (r, q). Then, (iii) follows directly
from Definition 4(i) and Definition 3(i), (ii).
Case 2: e′ = ē1.ē2. Then,

TOP(π(ē1.ē2))

= TOP(π(ē1).π(ē2)) by Definition 4(ii)
= TOP(π(ē1)) by Definition 3(iii)
= TOP(e1) by induction hypothesis
= TOP(e1.e2) by Definition 3(iii)

Case 3: e′ = ē1‖ē2. Then,

TOP(π(ē1‖ē2))

= TOP(π(ē1)‖π(ē2)) by Definition 4(ii)
= TOP(π(ē1)) ∪ TOP(π(ē2)) by Definition 3(iv)
= TOP(e1) ∪ TOP(e2) by induction hypothesis
= TOP(e1‖e2) by Definition 3(iv)

(v)
π(e′) = π(e′′[e′′′/o]) since e′ = e′′[e′′′/o]

= π(e′′)[π(e′′′)/o] by (i)
= e[e2/o][e1/o] since π(e′′) = e[e2/o] and π(e′′′) = e1

= e[e1/o] by Proposition 1(ii)
= e by Proposition 1(iii) and e[o] = e1

(iv)

π(e′)
= π(e′′[(r1, q1)/o1] · · · [(rk , qk )/ok ][e′′′/o]) by assumption on e′
= π(e′′)[q1/o1] · · · [qk/ok ][π(e′′′)/o] by (i)
=e[e2/o][q1/o1] · · · [qk/ok ][e1/o] since π(e′′)=e[e2/o] and π(e′′′)=e1

=e[q1/o1] · · · [qk/ok ][e2/o][e1/o] by Proposition 1(v)
=e[e2/o][e1/o] by Proposition 1(iii) and e[oi ]=qi

=e[e1/o] by Proposition 1(ii)
=e by Proposition 1(iii) and e[o]=e1

��
The following properties for the top-of-stack protocol

states are direct consequence of Proposition 2. The first
property states that an atomic process of the Combined
Abstraction can be deduced from the top-of-stack elements
and the stripped process-algebraic expression. The second
states that a protocol state is a top-of-stack protocol state in
e[e′/o] ∈ PEX(QK ) if it is a top-of-stack protocol state out-
side of o or it is a top-of-stack protocol state of e′. The third
and fourth property are special cases of the second.

Proposition 4 (Top-Of-Stack Protocol States) Let e, e′ ∈
PEX(QK ) be process-algebraic expressions over the atomic
processes of the Combined Abstraction, o ∈ {0, 1}∗
be an occurrence with e[o] �= ⊥, and o1, . . . , ok ∈ {0, 1}∗
be occurrence such that TOP(e) \ PREF(e) = {o1, . . . , ok}.
Then,

(i) If TOS(e) = r, o ∈ TOP(e) then e[o] = (r, q) where
q = π(e)[o] ∈ Q.

(ii) Let be (ri , qi ) � e[oi ], i = 1, . . . , k. Then,
TOS(e[e′/o]) = {r1, . . . , rk} ∪ TOS(e′).

(iii) If there is a r ∈ Rs and q1, . . . , qk ∈ Q such that
e[oi ] = (r, qi ), i = 1, . . . , k and TOS(e′) = {r} then
TOS(e[e′/o]) = {r}.

(iv) If TOS(e′) = {r} then TOS(e[(r, q1)/o1] · · · [(r, qk)/

ok][e′/o]) = {r} for all q1, . . . , qk ∈ Q.

Proof (i) follows directly from Definitions 3 and 4. Proposi-
tion 2(i) and Definition 4 directly imply (ii). (iii) and (iv) are
special cases of (ii) (just choosing ri = r for i = 1, . . . , k ��

Appendix 1.3 Proof of the main theorem

For this subsection, let Us � (Σs, Q,→, q0, F) be a process
rewrite system specifying an abstraction for the use of service
s, Rs � (Σs, Rs,→s, qs

o, F̄s) be a finite state machine with-
out λ-transitions specifying an (inverted) protocol for s, and
K � (Σs, QK ,→K , q K

0 , FK ) be the Combined Abstraction
of Us and Rs as defined in Sect. 4.

The application of process rewrite rule in T11 ∪ T1S ∪
TS1∪T1P ∪TP1 to a consistent e ∈ PEX(QK ) may change the
protocol state on a top-of-stack element from a protocol state
r to r ′. Thus, if e

a⇒K e′ then TOS(e′) = {r, r ′} is possible,
i.e., e′ is inconsistent. With following lemma it is possible to
rewrite e′ into e′′ with the same shape and TOP(e′′) = {r ′}.
Lemma 2 (Construction of Consistent Process-Algebraic
Expressions) Let be e ∈ PEX(QK ), o ∈ TOP(e),

e[o] = (r, q). If r
a→sr ′ then e

λ⇒K e[(r ′, q)/o].

Proof Since r
a→sr ′, it is (r, q)

λ→K (r, q ′) ∈ T0. Thus,

Lemma 1 implies e
λ⇒K e[(r ′, q)/o]. ��

The following Theorem is the same as Theorem 1 where (i)
and (ii) are rephrased using Definition 4

Theorem 1 Let be e ∈ PEX(QK ) be a process-algebraic
expression over Q and r ∈ Rs a protocol state, and x ∈ Σ∗

s

such that there is a f ∈ F and r̄ ∈ F̄s with e
x⇒ f and r

x⇒s r̄ .
Then, there is a e′ ∈ PEX(QK ) and a fk ∈ FK such that the
following properties are satisfied:

(i) π(e′) = e
(ii) TOP(e′) = {r}

(iii) e′ x⇒K fk

Proof The proof is by induction on the number of applica-
tions of process rewrite rule → of PRS Us in e

x⇒ f .
Base Case:: No PRS-rule is being applied. Then, e = f

and r = r̄ because Rs doesn’t contain rules r
λ→sr ′.Thus
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r � r̄
λ⇒s r̄ . By definition of the combined abstraction, it

holds fk � (r̄ , f ) ∈ F . Define e′ � fk . Then, π(e′) =
f (= e) by Definition 4(i), TOS(e′) = {r̄}(= {r}), and e′ =
fk

λ⇒K fk , i.e., it holds (i), (ii), and (iii) if no PRS-rule has
been applied.
Inductive Case: Let lhs

a→rhs be the first PRS-rule being
applied in e

x⇒ f . Let o ∈ {0, 1}∗ be the occurrence where it
is applied. Hence, by Lemma 1 it holds:

e[o] = lhs (4)

e
a⇒e[rhs/o] y⇒ f (5)

r
a⇒sr ′ y⇒r̄ (6)

r ′ �
{

r if a = λ

r̂ if r
a→s r̂

(7)

x = ay (8)

By induction hypothesis, there is a e′′ ∈ PEX(QK ) such
that

π(e′′) = e[rhs/o] (9)

e′′ y⇒K fk for a fk ∈ FK (10)

TOP(e′′) =
{ {r} if a = λ

{r̂} if a ∈ Σs
(11)

Case 1: q
λ→q ′ has been applied, i.e. lhs = q, rhs = q ′,

and a = λ. Define

e′ � e′′[(r, q)/o] (12)

Then, π(e′) = e by Proposition 3(iv) and TOS(e) = {r} by
Proposition 4(iii) and (11). It holds:

π(e′′[o]) = π(e′′)[o] by Proposition 3(i)
= e[q ′/o][o] by (9)
= q by Proposition 1(i)

Together with (11), Proposition 4(i) implies

e′′[o] = (r, q ′) (13)

By definition of the combined abstraction, it is

(r, q)
λ→K (r, q ′) ∈ T11 (14)

Hence,

e′ λ⇒K e′[(r, q ′)/o] by Lemma 1 and (14)
= e′′[(r, q)/o][(r, q ′)/o] by (12)
= e′′[(r, q ′)/o] by Proposition 1(ii)
= e′′ by Proposition 1(iii) and (13)
x⇒K fk by (10), a = λ, and (8)

Thus (i), (ii), and (iii) hold for Case 1
Case 2: q

a→q ′, a ∈ Σs , has been applied, i.e. lhs = q and
rhs = q ′. Let o1, . . . , ok be the top-of-stack occurrences in
e outside of o, i.e.

TOP(e) \ PREF(o) = {o1, . . . , ok} (15)

qi = e[oi ], i = 1, . . . , k, and (16)

e′ � e′′[(r, q1)/o1] · · · [(r, qk)/ok][(r, q)/o] (17)

Then, π(e′) = e by Proposition 3(v) and TOS(e) = {r} by
Proposition 4(iv), (11), and (16). Furthermore, by definition
of the combined abstraction it is

(r, q)
a→K (r̂ , q ′) ∈ T11 (18)

By Proposition 1(i), it is e[q ′/o][o] = q ′. Together with (11)
and Proposition 4(i), this implies

e′′[o] = (r̂ , q ′) (19)

Similarly, (11), (16), and Proposition 4(i) imply

e′′[oi ] = (r̂ , qi ), (20)

i = 1, . . . , k. Hence,

e′ a⇒K e′[(r̂ , q ′)/o] by Lemma 1 and (14)
= e′′[(r, q1)/o1] · · · [(r, qk )/ok ][(r, q)/o][(r̂ , q ′)/o] by (17)
= e′′[(r, q1)/o1] · · · [(r, qk )/ok ][(r̂ , q ′)/o] by Proposition 1(ii)
λ⇒K e′′[(r̂ , q1)/o1] · · · [(r̂ , qk )/ok ][(r̂ , q ′)/o] by Lemma 2
= e′′ by Proposition 1(iii), (19), and (20)
y⇒K fk by (10)

Hence, (i), (ii), and (iii) hold also for Case 2.

Case 3: q
λ→q ′.q ′′ has been applied, i.e. lhs = q,

rhs = q ′.q ′′, and a = λ. By (9) and Proposition 3(i) there is
r ′′ ∈ Rs such that

e′′[o] = (r, q ′), (r ′′.q ′′) (21)

Define e′ as in Case 1, i.e. by (12). Then, π(e′) = e by
Proposition 3(iv) and TOS(e) = {r} by Proposition 4(iii)
and (11). By definition of the combined abstraction, it is

(r, q)
λ→K (r, q ′).(r ′′, q ′′) ∈ T1S (22)

Hence,

e′ λ⇒K e′[(r, q ′).(r ′′, q ′′)/o] by Lemma 1 and (22)
= e′′[(r, q)/o][(r, q ′).(r ′′, q ′′)/o] by (12)
= e′′[(r, q ′).(r ′′, q ′′)/o] by Proposition 1(ii)
= e′′ by Proposition 1(iii), (8)
x⇒K fk by (10), a = λ, and (8)

Thus, (i), (ii), (iii) is also satisfied for Case 3.
Case 4: q

a→q ′.q ′′, a ∈ Σs , has been applied, i.e. lhs = q
and rhs = q ′.q ′′. Let o1, . . . , ok be the top-of-stack occur-
rences in e outside of o, i.e. (15) is satisfied, q1, . . . , qk be
defined by (16) (cf. Case 2), and

e′ � e′′[(r, q1)/o1] · · · [(r, qk)/ok][(r, q)/o] (23)

Then, π(e′) = e by Proposition 3(v) and TOS(e) = {r} by
Proposition 4(iv), (11), and (16). Furthermore, by definition
of the combined abstraction it is

(r, q)
a→K (r̂ , q ′).(r ′′, q ′′) ∈ T1S (24)
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The same arguments as in Case 3 show that (21) is satis-
fied. The same arguments as in Case 2 show that (20) holds.
Hence,

e′ a⇒K e′ [(r̂ , q ′).(r ′′, q ′′)/o] by Lemma 1 and (24)
= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r, q)/o][(r̂ , q ′).(r ′′, q ′′)/o] by (23)
= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r̂ , q ′)(r ′′, q ′′)/o] by Proposition 1(ii)
λ⇒K e′′ [(r̂ , q1)/o1] · · · [(r̂ , qk )/ok ][(r̂ , q ′).(r ′′, q ′′)/o] by Lemma 2
= e′′ by Proposition 1(iii), (20), and (21)
y⇒K fk by (10)

Hence, (i), (ii), and (iii) hold also for Case 4. Case 5:

q.q ′ λ→q ′′ has been applied, i.e. lhs = q.q ′, rhs = q ′′, and
a = λ. Then, analogous to Case 1, it holds

e′′[o] = (r, q ′′) (25)

Define for any r ′′ ∈ Rs :

e′ � e′′[(r, q).(r ′′, q ′)/o] (26)

Then, π(e′) = e by Proposition 3(iv) and TOS(e) = {r} by
Proposition 4(iii) and (11). By definition of the combined
abstraction, it is

(r, q)(r ′′, q ′) λ→K (r, q ′′) ∈ TS1 (27)

Then,

e′ λ⇒K e′[(r, q ′′)/o] by Lemma 1 and (27)
= e′′[(r, q).(r ′′, q ′)/o][(r, q ′′)/o] by (26)
= e′′[(r, q ′′)/o] by Proposition 1(ii)
= e′′ by Proposition 1(iii) and (25)
x⇒K fk by (10), a = λ, and (8)

Thus, (i), (ii), (iii) is also satisfied for Case 5.
Case 6: q.q ′ a→q ′′, a ∈ Σs , has been applied, i.e. lhs = q.q ′
and rhs = q ′′. Let o1, . . . , ok be the top-of-stack occurrences
in e outside of o, i.e. (15) is satisfied, q1, . . . , qk be defined
by (16) (cf. Case 2), and for any r ′′ ∈ Rs be

e′ � e′′[(r, q1)/o1] · · · [(r, qk)/ok][(r, q).(r ′′, q ′))/o] (28)

Then, π(e′) = e by Proposition 3(v) and TOS(e) = {r} by

Proposition 4(iv), (11), and (16). Furthermore, by definition
of the combined abstraction it is

(r, q).(r ′′, q ′) a→K (r̂ , q ′′) ∈ TS1 (29)

The same arguments as in Case 5 show that (25) is satisfied.
The same arguments as in Case 2 and Case 4 show that (20)
holds. Hence,
e′ a⇒K e′ [(r̂ , q ′′)/o] by Lemma 1 and (29)

= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r, q).(r ′′, q ′)/o][(r̂ , q ′′)/o] by (28)
= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r̂ , q ′′)/o] by Proposition 1(ii)
λ⇒K e′′ [(r̂ , q1)/o1] · · · [(r̂ , qk )/ok ][(r̂ , q ′′)/o] by Lemma 2
= e′′ by Proposition 1(iii), (20), and (21)
y⇒K fk by (10)

Thus, (i), (ii), (iii) is also satisfied for Case 6.

Case 7: q
λ→q ′. ‖ q ′′ has been applied, i.e. lhs = q,

rhs = q ′ ‖q ′′, and a = λ. By (9) and Proposition 3(i) it
holds

e′′[o] = (r, q ′)‖(r, q ′′) (30)

Define e′ as in Case 1 and Case 3, i.e. by (12). Then, π(e′) = e
by Proposition 3(iv) and TOS(e) = {r} by Proposition 4(iii)
and (11). By definition of the combined abstraction, it is

(r, q)
λ→K (r, q ′)‖(r, q ′′) ∈ T1P (31)

Hence,

e′ λ⇒K e′[(r, q ′)‖(r ′′, q ′′)/o] by Lemma 1 and (31)
= e′′[(r, q)/o][(r, q ′)‖(r, q ′′)/o] by (12)
= e′′[(r, q ′)‖(r, q ′′)/o] by Proposition 1(ii)
= e′′ by Proposition 1(iii) and (21)
x⇒K fk by (10), a = λ, and (8)

Thus, (i), (ii), (iii) is also satisfied for Case 7.
Case 8: q

a→q ′‖q ′′, a ∈ Σs , has been applied, i.e. lhs = q
and rhs = q ′‖q ′′. Let o1, . . . , ok be the top-of-stack occur-
rences in e outside of o, i.e. (15) is satisfied, q1, . . . , qk be
defined by (16) (cf. Case 2), and e′ be defined by (17) (as
in Case 2 and 4). Then, π(e′) = e by Proposition 3(v) and
TOS(e) = {r} by Proposition 4(iv), (11), and (16). Further-
more, by definition of the combined abstraction it is

(r, q)
a→K (r̂ , q ′)‖(r̂ , q ′′) ∈ T1P (32)

The same arguments as in Case 3 show that (21) is satisfied.
The same arguments as in Case 2 show that (20) holds.Hence,
e′ a⇒K e′ [(r̂ , q ′)‖(r̂ , q ′′)/o] by Lemma 1 and (32)

= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r, q)/o][(r̂ , q ′)‖(r̂ , q ′′)/o] by (17)
= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r̂ , q ′)(r̂ , q ′′)/o] by Proposition 1(ii)
λ⇒K e′′ [(r̂ , q1)/o1] · · · [(r̂ , qk )/ok ][(r̂ , q ′)‖(r̂ , q ′′)/o] by Lemma 2
= e′′ by Proposition 1(iii), (20), and (21)
y⇒K fk by (10)

Hence, (i), (ii), and (iii) hold also for Case 8.

Case 9: q ‖ q ′ λ→q ′′ has been applied, i.e. lhs = q ‖ q ′,
rhs = q ′′, and a = λ. Then, it holds (25) analogous to Case
5. Define

e′ � e′′[(r, q)‖(r, q ′)/o] (33)

Then, π(e′) = e by Proposition 3(iv) and TOS(e) = {r} by
Proposition 4(iii) and (11). By definition of the combined
abstraction, it is

(r, q)‖(r, q ′) λ→K (r, q ′′) ∈ TP1 (34)

Then,

e′ λ⇒K e′[(r, q ′′)/o] by Lemma 1 and (34)
= e′′[(r, q)‖(r ′′, q ′)/o][(r, q ′′)/o] by (33)
= e′′[(r, q ′′)/o] by Proposition 1(ii)
= e′′ by Proposition 1(iii) and (25)
x⇒K fk by (10), a = λ, and (8)

Thus, (i), (ii), (iii) is also satisfied for Case 9.
Case 10: q ‖ q ′ a→q ′′, a ∈ Σs , has been applied, i.e.
lhs = q‖q ′ and rhs = q ′′. Let o1, . . . , ok be the top-of-stack
occurrences in e outside of o, i.e. (15) is satisfied, q1, . . . , qk

be defined by (16) (cf. Case 2), and e′ be defined by

e′ � e′′[(r, q1)/o1] · · · [(r, qk)/ok][(r, q)‖(r, q ′ = /o] (35)
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Then, π(e′) = e by Proposition 3(v) and TOS(e) = {r} by
Proposition 4(iv), (11), and (16). Furthermore, by definition
of the combined abstraction it is

(r, q)‖(r ′′, q ′) a→K (r̂ , q ′′) ∈ TP1 (36)

The same arguments as in Case 5, 6, and 9 show that (25) is
satisfied. The same arguments as in Case 2, 4, 6, and 8 show
that (20) holds. Hence,
e′ a⇒K e′ [(r̂ , q ′′)/o] by Lemma 1 and (36)

= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r, q)‖(r, q ′)/o][(r̂ , q ′′)/o] by (25)
= e′′ [(r, q1)/o1] · · · [(r, qk )/ok ][(r̂ , q ′′)/o] by Proposition 1(ii)
λ⇒K e′′ [(r̂ , q1)/o1] · · · [(r̂ , qk )/ok ][(r̂ , q ′′)/o] by Lemma 2
= e′′ by Proposition 1(iii), (20), and (21)
y⇒K fk by (10)

Thus, (i), (ii), (iii) is also satisfied for Case 10.
With Case 1–10 all possibilities are considered, and for

each case (i), (ii), (iii) are satisfied. This completes the proof
��
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