
SOCA (2014) 8:239–257
DOI 10.1007/s11761-013-0136-4

ORIGINAL RESEARCH PAPER

Towards a framework for the development of adaptable
service-based applications

Stephen Lane · Qing Gu · Patricia Lago ·
Ita Richardson

Received: 19 April 2011 / Revised: 11 May 2013 / Accepted: 20 June 2013 / Published online: 14 July 2013
© Springer-Verlag London 2013

Abstract Service-oriented computing is a promising com-
puting paradigm which facilitates the composition of loosely
coupled and adaptable applications. Unfortunately, this new
paradigm does not lend itself easily to traditional software
engineering methods and principles due to the decentralised
nature of software services. The goal of this paper is to iden-
tify a set of engineering activities that can be used to develop
adaptable service-based applications. Rather than focusing
on the entire service-based application development life-
cycle, this paper will focus on adaptation-specific processes
and activities and map them to an existing high-level service-
based application development life-cycle. Existing software
engineering literature as well as research results from ser-
vice engineering research is reviewed for relevant activi-
ties. The result is an adaptation framework that can guide
software engineers in developing adaptable service-based
applications.

Keywords Service-based application life-cycle ·
Service-based application adaptation · Maintenance process ·
Software process

S. Lane (B) · I. Richardson
Lero, the Irish Software Engineering Research Centre,
University of Limerick, Limerick, Ireland
e-mail: stephen.lane@lero.ie

I. Richardson
e-mail: ita.richardson@lero.ie

Q. Gu · P. Lago
Department of Computer Science, VU University Amsterdam,
Amsterdam, The Netherlands
e-mail: q.gu@vu.nl

P. Lago
e-mail: p.lago@vu.nl

1 Introduction

Service-based applications (SBAs) are software applications
which are composed of software services and those services
may be owned by the application developers or by a third
party. The ability of SBAs to adapt in order to choose more
suitable services is a desirable attribute. When services are
provided by a third party, there is often no guarantee that
they will be available when required. Another concern is that
their functional or non-functional parameters such as cost or
quality may change without notice. SBAs may be required
to adapt for many reasons such as business agility or failure
recovery. When adapting, it may be desirable to replace or
reconfigure services within an SBA through self-adaptation
or through manual adaptation.

In order for SBAs to be adaptable, there are both techni-
cal and software process challenges. The technical challenges
relate to the implementation of adaptation mechanisms, while
the software process challenges relate to the development
methods required for adaptable SBAs. The focus of this
paper is the software process challenges. There are several
approaches that address the aspects of SBA development [1–
3]. However, these approaches do not specifically facilitate
adaptation.

We address the process challenges by eliciting adaptation-
related activities from existing service literature and elicit
adaptation support activities from the software maintenance
literature. The maintenance process was chosen as a source
of activities because of the similarities that can be drawn
between software adaptation and software maintenance.

Since we are only focusing on adaptation-related activi-
ties in this paper, they will need to be used in conjunction
with a life-cycle model that addresses the remaining areas of
the SBA development life-cycle. The life-cycle model that
we will use is the S-Cube [4] reference life-cycle. S-Cube is

123



240 SOCA (2014) 8:239–257

Fig. 1 Life-cycle of adaptable SBAs

a European consortium that conducts research on software
services and systems of which the authors of this paper are
contributors. One of the aims of the S-Cube consortium is to
develop a life-cycle for the development of adaptable SBAs.
The S-Cube reference life-cycle is a skeleton life-cycle model
that will be populated with tools, techniques and methods
by S-Cube participants. This paper is one such contribution
relating specifically to adaptation activities for the develop-
ment of adaptable SBAs.

The S-Cube life-cycle consists of two cycles (see Fig. 1).
In the evolution cycle, shown on the right-hand side of the fig-
ure, the software engineer concentrates on the development
of the SBA through the traditional stages of requirements
engineering, design, construction and deployment, while also
focusing on quality assurance. However, as adaptation is a
desirable feature in SBAs, the software engineer must also
consider how the application will adapt during its lifetime.
The adaptation cycle, shown on the left-hand side, ensures
that the software engineer follows the following processes:
Identify adaptation needs, Identify adaptation strategy and
Enact adaptation. Within the complete life-cycle, there must
also be a focus on Operation and management and Deploy-
ment and provisioning.

The S-Cube life-cycle as presented here is a conceptual
framework, and it presents the processes that need to be fol-
lowed in order to develop adaptable SBAs. It does not, how-
ever, present the activities that need to be followed within
each of the processes when developing SBAs. The activities
required for many of the processes within the evolution cycle
of the life-cycle are currently being investigated by partici-
pants of the S-Cube project [5]. The aim of this paper is to
develop the adaptation-related activities for the life-cycle.
The adaptation cycle is the major difference between this
life-cycle and standard software engineering life-cycles such
as waterfall [6] or spiral [7] life-cycle models.

Adaptation of SBAs is different from maintenance in tra-
ditional software engineering in that it is a less expensive
process that usually involves the substitution of component

services compared to expensive maintenance which usually
involves rewriting parts of an application. However, because
at a basic level both adaptation and maintenance involve
the modification of an application, similarities can be drawn
between the two.

Once a set of activities has been developed for each of
the processes of the S-Cube life-cycle, it will provide a use-
ful guide for software engineers intending to build adapt-
able SBAs. In order to contribute to this life-cycle model, we
elicit adaptation activities from existing service-based devel-
opment approaches. We also elicit activities from software
maintenance literature that can support SBA adaptation. The
maintenance process was chosen as a source of practices as
it bears resemblance to the SBA adaptation process. By tak-
ing this approach, existing engineering practices are reused
in a novel way to fulfil the adaptation cycle of the S-Cube
life-cycle. The use of engineering practices from the main-
tenance process ensures that a level of quality assurance is
built into the life-cycle.

In related work, Oreizy et al. [8] propose a development
life-cycle for adaptable component-based applications with
both development time and run-time cycles. This paper pro-
poses a development process and a supporting application
architecture. However, since this approach is not specifically
focused on service-oriented computing and is not entirely
process focused, the S-Cube life-cycle was chosen as a basis
for this paper.

Gu and Lago [9] have previously evaluated several
service-oriented software engineering methodologies. They
have evaluated them to determine whether they are truly
service-oriented and which areas of the development life-
cycle they apply. This evaluation illustrates methodologies
that can provide input into this study.

This paper is organised as follows: Sect. 2 describes the
motivation for carrying out this work, followed by Sect. 3
which provides some background information on SBA adap-
tation and service engineering process models. Section 4
describes our research methodology. The remainder of the
paper contains the body of the work in Sects. 5 and 6. A case
demonstrating an application of the framework is presented
in Sect. 8. Section 7 presents a set of metrics that can be
used to evaluate the process, followed by the conclusions in
Sect. 9.

2 Motivation

The adaptation of SBAs is important because they are meant
to operate in open-world contexts. Services are dynamically
integrated in larger service compositions and/or SBAs, whose
structure, features, location and qualities are unknown when
they are developed. Their execution environments are distrib-
uted, non-deterministic, unpredictable, heterogeneous and

123



SOCA (2014) 8:239–257 241

highly dynamic. All these variables demand that SBAs be
highly adaptable and that they are developed using a soft-
ware development process that accommodates their adap-
tation requirements. Implementing a best practice software
development process ensures quality through the optimisa-
tion of the engineering processes and methods during the
development life-cycle.

Service-oriented computing (SOC) promises companies
the ability to conduct ad hoc business collaborations that are
supported by software services that can be orchestrated to
meet the business requirements of each participating com-
pany. Software-supported ad hoc business collaborations are
not new, but SOC promises to provide greater power and flex-
ibility than predecessors such as electronic data interchange,
distributed components and e-mail. The benefit of SOC is that
it is platform and technology neutral with the lowest common
denominators usually XML and HTTP capabilities. In order
to realise the benefits of SOC, it is important for SBAs to be
able to adapt to meet changing business needs and service
quality characteristics as previously mentioned.

The problem with existing development approaches is
that they do not suit development SBA that are composed
of distributed services with run-time adaptation capabilities.
Existing development approaches usually do not have any
processes to support run-time adaptation. The closest engi-
neering process to adaptation is the maintenance process.
Although the maintenance process can provide some level
of support to adaptation, it is clear that specific adaptation
processes and activities are necessary.

A key benefit of adaptation is that it facilitates agility,
reliability and resilience of applications. These attributes
are particularly important for applications operating within
critical domains. Therefore, a framework that can facilitate
adaptation is valuable for developing applications within
these domains. In their Evolving Critical Systems White
paper [10], Lero researchers discuss four types of criti-
cality: safety-critical, mission-critical, business-critical and
security-critical. Failure of safety-critical systems can cause
serious injury or even death to individuals. Such cases
normally come under the auspices of regulation bodies.
These include the medical device, automotive and financial
domains, where software is becoming more prevalent and
regulations are inherent within the domain. For example,
development of software for medical devices is governed
in many jurisdictions by the U.S. Food and Drugs Admin-
istration (FDA). In Europe, major car companies—Audi,
BMW group, DaimlerChrysler, Porsche and Volkswagen—
have come together to form the Hersteller Initiative Software
(HIS) process assessment working group [11]. One of the
aims of this group is to achieve standardisation, and they
require that suppliers of software follow particular process
models. Another view of criticality to be considered is that
of business-critical. Of course, for organisations depending

on regulation, not achieving certification will result in the
company being prevented from entering or continuing in a
particular market. However, systems down-time can also be
business-critical. This would be the case, with a company
such as Amazon [12] which sells much of its product on the
web. In this case, the reliability of the service is important
because down-time could cause significant loss of business.

Given the growth and increased availability of services,
many SBAs are being used in these critical environments.
These systems are expected to be adaptable, and as soft-
ware engineers, we need to ensure that during the adaptation
cycle of the SBA, the software continues to be operationally
successful. To do this, software engineers need adaptation
activities to be defined.

3 Background

3.1 SBA adaptation definitions

Within the context of SBAs, adaptation is the modification
of an application in order to satisfy adaptation requirements
[13]. There are many adaptation requirements that can be
desirable in SBAs, for example, the facilitation of interoper-
ability amongst services [14], the optimisation of quality of
service (QoS) [15] or the implementation of failure recovery
[16]. SBA adaptation may involve the substitution, replace-
ment, reconfiguration or removal of component services from
a SBA. Once adaptation requirements have been determined,
it is then necessary to create an adaptation strategy. After the
adaptation strategy has been developed, it will then be pos-
sible to enact the adaptation.

This is in contrast to the evolution of SBAs which refers
to the initial requirements, design, implementation and oper-
ation of SBAs. In order to appropriately determine whether
or not adaptation is required, it is useful to monitor the exe-
cution of SBAs. Monitoring can be done automatically by
an application or can be achieved manually by reviewing
error logs. There have been many monitoring frameworks
proposed. Pistore et al. [17] propose a methodology for the
monitoring of web service-based applications, so they can
be adapted if an error occurs or if QoS requirements are not
met.

Adaptation strategies depend on many factors. One such
factor is whether adaptation will be dynamic or static. Sta-
tic adaptation involves the adaptation logic being hard coded
into the initial SBA implementation, while dynamic adapta-
tion allows adaptation logic to be introduced or altered at run-
time. Modifying the adaptation logic for an SBA with static
adaptation requires that the application code is changed dur-
ing a maintenance or evolution cycle. Dynamic adaptation,
on the other hand, allows the introduction of new adaptation
logic or the reconfiguration of existing adaptation logic at
run-time.

123



242 SOCA (2014) 8:239–257

Adaptation of an SBA can by partially or fully automatic.
A scenario where adaptation is partially automated is where
a service becomes unavailable requiring an actor to choose
from alternative services using functionality built into an
SBA. In a fully automatic SBA, this substitution could be
enacted automatically by the application based on the QoS
or availability of alternative services.

3.2 Software maintenance definitions

Many software engineering reference life-cycles and assess-
ment models do not make direct reference to software main-
tenance. We have observed that there is little or no coverage
of the maintenance process in the major assessment mod-
els despite the fact that software maintenance can take up
to 60 % of the time [18] and 70 % of the budget [19] of a
software project. April et al. [20] propose a Software Main-
tenance Maturity Model (SMMM) that can be used as an
add-on to the CMMI™. It takes best practice processes and
activities from a variety of sources such as ISO/IEC 14764,
IEEE 1219, ISO/IEC 12207, CMMI™ and SWEBOK [21]
in order to construct the model.

Software maintenance has a variety of definitions. How-
ever, most agree that it is the process of modifying software
after initial delivery. The following list outlines the five most
recognised types of software maintenance [22–24]:

– Perfective Maintenance is performed to improve perfor-
mance or maintainability.

– Corrective Maintenance is carried out in response to sys-
tem failures.

– Adaptive Maintenance is carried out in response to a
change in operating environment or in response to new
functionality requirements.

– Preventive Maintenance is maintenance carried out in a
system to detect future errors in a software product.

– Emergency Maintenance is an unplanned maintenance
that is carried out in order to keep a system operational.

3.2.1 Gap in traditional software engineering

When comparing the engineering of SBAs to the engineer-
ing of traditional software applications, the focus of engi-
neering SBAs is shifted to developing compositions of ser-
vices, the control of services is passed from their users to
their owners, and the ability of adapting to ever-changing
requirements becomes more important. Due to the different
focus and additional requirements, traditional software engi-
neering approaches are no longer sufficient for engineering
SBAs.

In particular, the ability to be self-adaptable is an impor-
tant research topic in the service development community.
We propose the following adaptation processes that are

missing from the software engineering literature; each of
the processes are based on similar software maintenance
processes:

– Perfective Adaptation aims at improving or optimising
the quality attributes of an SBA even it runs correctly.
This corresponds with Perfective Maintenance.

– Corrective Adaptation aims at removing any faults in the
behaviour of an SBA. This corresponds with Corrective
Maintenance.

– Adaptive Adaptation modifies an SBA when its execution
environment changes. This corresponds with Adaptive
Maintenance.

– Preventive Adaptation aims at preventing potential or
possible future faults before they occur. This corresponds
with Preventive Maintenance.

– Extending Adaptation extends an SBA by adding new
functionalities as required. To an extent, this corresponds
with Emergency Maintenance in that adding new func-
tionalities that are required during the execution of an
SBA can be seen as unplanned maintenance activities.

4 Research method

The aims of this paper are to determine the design and run-
time activities required for SBA adaptation and to iden-
tify suitable support activities that can be used to supple-
ment them. These activities are then mapped to the S-Cube
SBA development life-cycle at the point where they can be
enacted. As illustrated in Fig. 2, the work is divided into two
phases. The adaptation activities are identified in Phase I.
These activities are then mapped to the S-Cube life-cycle in
Phase II. The end result is a framework of adaptation activ-
ities that can be used to guide software practitioners in the
development of adaptable SBAs.

To determine the activities required for SBA adaptation,
we examined 16 service-oriented engineering approaches.
We found that 5 of these approaches supported adaptation in
one way or another. Even if the approaches did not specif-
ically support run-time adaptation, they were still searched
for activities that are implicit to adaptation. For example, in
self-adapting systems, monitoring needs to occur in order
to trigger adaptation. Although monitoring is not directly
related to adaptation, it is classified as an adaptation activity
because it is needed by the application to adapt. Activities
were classified as adaptation related if they could be related
to the adaptation processes defined in the reference life-cycle
proposed by the S-Cube consortium [4].

The set of disjointed adaptation activities identified
were grouped together into categories of related activ-
ities. These categories were based on high-level adap-
tation activities that were identified in several technical

123



SOCA (2014) 8:239–257 243

Fig. 2 Research methodology

reports from the S-Cube consortium (CD-JRA-1.1.2 [4],
CD-JRA-1.2.1 [13], CD-JRA-1.2.2 [25]).

In order to satisfy the second part of the research objective,
identification of adaptation support activities, we examined
relevant maintenance standards and process reference mod-
els. This established adaptation support activities that could
be used to supplement the core activities identified in the
previous step.

Once the activities were identified, they were mapped
to the skeleton SBA development life-cycle proposed by
S-Cube. This mapping shows the activities in context and
lays the foundations for a process model that can be used for
developing adaptable SBAs.

5 Phase I: Identifying adaptation activities

In this section, we present the activities that can be used
to develop adaptable SBAs which we identified in the soft-
ware and service engineering literature. The activities may
be involved directly in adaptation or they may be adaptation
supporting activities. The latter, while not essential for adap-
tation, provide for support activities, such as change man-
agement. These support activities add to the overall quality
of adaptable SBAs.

5.1 Adaptation activity categories

Table 1 lists high-level conceptual adaptation activities pro-
posed by the S-Cube consortium for the adaptation of adapt-
able SBAs. These activities were used to categorise the adap-
tation activities identified in the service engineering litera-
ture. The three S-Cube deliverables examined were:

– CD-JRA-1.1.2 Separate Design Knowledge Models for
Software Engineering and Service Based Computing [4]

– PO-JRA-1.2.1 State of the Art Report, Gap Analysis of
Knowledge on Principles, Techniques and Methodolo-
gies for Monitoring and Adaptation of SBAs [13]

– CD-JRA-1.2.2 Taxonomy of Adaptation Principles and
Mechanisms [25].

5.2 Adaptation activities from service-oriented engineering
approaches

There have been many software development processes
and life-cycles proposed for the development of SBAs as
well as their underlying services. Many of these proposed
approaches do not take the adaptation of SBAs into con-
sideration [4]. Several approaches such as those proposed

Table 1 Adaptation activities from S-cube deliverables

Activity Description

Define adaptation requirements Identify the aspects of the SBA model that are subject to change, and what the expected
outcome of the adaptation process is

Define requirements to the monitoring subject In order to satisfy the adaptation requirements, this practice focuses on specifying what
artefacts are expected to be monitored

Define monitored property Specify which properties of the monitoring subject should be monitored

Provide monitoring functionality Monitoring functionalities that satisfy the monitoring requirements are provided through
monitoring realisation mechanism

Collect monitoring results for adaptation Results of monitoring are collected and analysed

Trigger adaptation Evaluate the results from the monitoring analysis against adaptation requirements. If the
need for adaptation is identified, send a request to trigger adaptation process

Design adaptation strategy Design the ways through which the adaptation requirements are satisfied

Select adaptation strategy Decide which particular adaptation strategy to be chosen based on the specific
adaptation needs

Perform adaptation The actual adaptation process is performed through adaptation realisation mechanisms
based on the selected adaption strategy

123



244 SOCA (2014) 8:239–257

by Cortellessa et al. [26] or Adil kenzi et al. [27] include
adaptation as a primary concern when developing services.
However, these approaches are aimed at the development
of services rather than compositions of services required by
SBAs.

5.2.1 Service-oriented engineering approaches

For the research presented here, we analysed 16 SOA
approaches, and note that only five approaches explicitly
mentioned some activities or tasks that are related to adapta-
tion. These five approaches are presented in this section.

ASTRO [28] is a toolset that is made up from four
component tools: WS-gen, WS-mon, WS-console and
WS-animator. The aim of ASTRO is to support the auto-
mated composition of distributed business processes. Dis-
tributed business processes are represented as distributed
software services, and these services can automatically be
composed with the ASTRO tools to make a useful com-
bined business process. The WS-gen tool is used to generate
business process or service compositions by taking BPEL
as input and generating a composition based on the BPEL
specification. BPEL is a Business Process Execution Lan-
guage tailored to meet the needs of Web Services. WS-mon
is a monitoring tool that is used to implement and deploy
monitors to monitor the composed business processes. The
WS-console tool is a front end which displays the status of
the monitors deployed by the WS-mon tool, and the final tool
WS-animator is a graphical tool that allows the execution of
the composed services/processes. ASTRO facilitates service
composition which makes it a suitable candidate to look at
for service adaptation activities.

The BEA reference life-cycle [29] outlines the activities
for each of the following SBA life-cycle processes: Require-
ments and Analysis, Design, Service Development and IT
Operations. For each of these processes, it looks at the con-
cerns such as actors, tools, deliverables, key considerations,
recommended processes and best practices. The life-cycle
also has a business dashboard which monitors the life-cycle
as it progresses. Along with the dashboard, the life-cycle
had a governance process that promotes interoperability, dis-
coverability and standardisation of service technologies. To
some extent, the BEA life-cycle caters for adaptability as it
provides service monitoring, run-time correctness analysis
and operational management activities.

Chang [30] proposes a process model that focuses on
developing highly adaptable web services. It follows the
sequence of steps specified in the SOAD [31] framework,
namely service identification, service specification and ser-
vice realisation. The process model contains six processes
each of which contain several activities. The processes are
analysing target services, defining unit services and composi-
tions, planning for acquiring service compositions, acquiring

service components, developing service adapters and verify-
ing service components. Each of the processes are targeted
at the end result of developing adaptable web services. Sim-
ilarly, each of the processes refer to one or more of the key
artefacts in SOAD. The process model, although concise,
addresses a lot of key concerns relating to adaptable services.

The Web Services Development Life-Cycle Methodol-
ogy (SLDC) [32] is influenced by several established life-
cycles such as RUP [33], CBD [34] and BPM [35]. The life-
cycle contains one preparatory planning process and eight
other incremental processes: analysis, design, construction,
testing, provisioning, deployment, execution and monitor-
ing. Along with the life-cycle, the methodology contains a
number of principles such as service coupling, service cohe-
sion and service granularity that aid in the development of
SBAs. The SLDC methodology contains adaptation-specific
activities such as quality of service (QoS) monitoring and
alerts for compliance failures.

The SeCSE methodology [36] is a set of functional areas
and processes that focus on service-centric engineering, ser-
vice engineering and service acquisition. The methodology
also provides practitioners with the information required
to adopt the various tools and methods developed by the
SeCSE consortium. The SeCSE methodology is conveniently
divided into two sections: design time processes and run-
time processes. Design time processes contain many of the
traditional software engineering processes such as analysis,
design and development, while the run-time processes con-
tain mostly service-centric processes such as service bind-
ing/rebinding, run-time service composition and recovery
management. Processes such as run-time service composi-
tion and service monitoring illustrate that the SeCSE method-
ology was designed with adaptation in mind.

5.2.2 Adaptation activities identified

Having reviewed these five approaches in detail, the activ-
ities encountered relating to adaptation or monitoring were
recorded. We included monitoring activities because adapta-
tion cannot take place without monitoring, so monitoring is a
sub-process of adaptation. The activities are summerised in
Table 2. They are categorised based on the activity categories
identified in Sect. 5.1. We include four activities in an evo-
lution activity category. These activities, while not directly
involved with run-time adaptation, need to be carried out dur-
ing SBA evolution in order to facilitate run-time adaptation.

The Astro toolset contains a monitoring tool that facili-
tates the two adaptation activities: Monitor message seque-
nces amongst services and its partners and Detect protocol
violations. The activity Monitor message sequences amongst
services and its partners monitors messages exchanged
between services and service consumers which could be used
as an adaptation trigger. Detect protocol violations monitors

123



SOCA (2014) 8:239–257 245

Table 2 Adaptation activities from service-oriented engineering approaches

Define adaptation requirements

Define requirements to the monitoring subject

SDLC: Set warning thresholds and alerts for compliance failures

SDLC: Gather QoS metrics on the basis of SLAs

Define monitored property

SeCSE: Specify monitoring rules according to the adopted SeCSE monitoring language (SECMOL)

Provide monitoring functionality

ASTRO: Monitor message sequences amongst services and its partners

BEA: Monitor service, application, middleware, OS, hardware and network

SDLC: Monitor workloads

SeCSE: Monitor services

Collect monitoring results for adaptation

ASTRO: Detect protocol violations

SDLC: Evaluate SLA QoS metrics

Trigger adaptation

SeCSE: Recovery management: identify, by looking at the monitoring data, the needs for a recovery action

Design adaptation strategy

Chang’s: Specifying Service Decision Model

Chang’s: Designing Service Adapters

Select adaptation strategy

Perform adaptation

SDLC: Readjust service weights for request queues

SeCSE: Run-time Service Discovery

Evolution Activities

BEA: Requirements and analysis stage—define KPIs and management policies

SeCSE: Requirements and analysis stage—identify the service properties to specify

SeCSE: Service deployment—insertion of monitoring rules and recovery actions in concrete parts of the service composition executable
description

SeCSE: Service deployment—deploy the monitoring rules and recovery policies within the monitoring system

whether service consumers behave as expected; if they do
not, the monitoring activity could also trigger adaptation.

The BEA life-cycle also contains monitoring-related
activities that could trigger adaptation, the Define KPIs and
management policies activity could be used to determine
which properties should be monitored, while Monitor ser-
vice, application, middleware, OS, hardware and network
describes the monitoring of services and other system com-
ponents.

Chang’s approach contains two adaptation-related activi-
ties: Specifying service decision model aims at specifying the
variability between available services and expected services.
Designing Service Adapters aims at bridging the variability
between service providers and consumers by allowing ser-
vices to be dynamically adapted.

SDLC defines five adaptation-related activities that
revolve around the monitoring of quality attributes and alert-
ing system users when they exceed predefined SLAs: Gather
QoS metrics on the basis of SLAs (Service Level Agreements)

refers to the collection of quality attribute data for monitor-
ing, Set warning thresholds and alerts for compliance fail-
ures refers to the setting of threshold values for the monitored
quality attributes, and Monitor workloads refers to the moni-
toring of system utilisation; if utilisation is high and response
times are affected, then the service provider may have to take
the appropriate actions to ensure that SLAs are met. Readjust
service weights for request queues refers to the re-evaluation
of SLAs if they are not being met due to high demand or util-
isation. Evaluate SLA QoS metrics involves the comparison
of QoS metrics to predefined SLAs.

The SeCSE approach contains many detailed activities
relating to the monitoring (Monitor services, Specify mon-
itoring rules according to the adopted SeCSE monitoring
language) and run-time adaptation (Runtime Service Discov-
ery) of SBAs. It contains two activities that support correc-
tive adaptation: Service deployment: insertion of monitoring
rules and recovery actions in concrete parts of the service
composition executable description refers to the implemen-

123



246 SOCA (2014) 8:239–257

tation of monitoring mechanisms, while Recovery manage-
ment: identify, by looking at the monitoring data, the needs
for a recovery action refers to the run-time corrective adap-
tation of an SBA. Service specification: identify the service
properties to specify states that the service properties to be
monitored are determined during the service specification
phase of development. Finally, Service deployment: deploy
the monitoring rules and recovery policies within the moni-
toring system states that the appropriate monitoring mecha-
nism is deployed during the deployment phase.

5.3 Adaptation activities from maintenance process models

We also identified activities from the software maintenance
process as useful for the adaptation of SBAs. There are many
software maintenance processes, definitions, models and
standards encountered in the literature. However, ISO/IEC
14764 was the only source that contained detailed activities.
In the next Sect. 5.3.1, we review ISO/IEC 14764 as well as
the other ISO/IEC standards from which it inherits some of
its attributes.

5.3.1 ISO/IEC 14764

ISO/IEC-15504 also known as the Software Process Impro-
vement and Capability Determination (SPICE) model con-
tains a detailed reference process model that covers most
of the process areas in software engineering. The reference
process model from ISO/IEC 15504 is also published as
the separate standard ISO/IEC 12207. ISO/IEC 12207 was
first published in 1994 and contained descriptions for sub-
processes from the software maintenance process. ISO/IEC
12207 contains the following sub-processes: Process Imple-
mentation, Problem and Modification Analysis, Modification
Implementation, Maintenance Review/Acceptance, Migra-
tion and Retirement.

The standard was updated in 2008 to include a purpose
and outcome for the software maintenance process. The refer-
ence life-cycle from ISO/IEC 15504 has descriptions for each
process in the software engineering life-cycle. They need
to be relatively concise. Otherwise, completing a capability
assessment would become too labour intensive. Generally,
there are more detailed ISO/IEC standards for the individual
process areas from the software engineering life-cycle. In the
case of the maintenance process, there is a separate standard
ISO/IEC 14764, which contains more detail than the process
description from ISO/IEC 15504 or ISO/IEC 12207. It speci-
fies the details of the inputs, tasks, controls, supports and out-
puts for each of the sub-process for the maintenance process.
Processes and their associated tasks in ISO/IEC 14764 are
summarised here. Each process also has inputs, controls, sup-
ports and outputs which are not discussed.

Process Implementation requires maintenance plans and
procedures to be created. The maintenance plan should
document the plan for carrying out maintenance, while
the maintenance procedures should contain more specific
details for implementing this maintenance. Modification
request/problem report procedures are also listed. Procedures
need to be put in place for receiving, recording and tracking
modification requests and problem reports. A Configuration
management process also needs to be put in place to track
the modification of an existing system.

Problem and Modification Analysis requires modifica-
tion request and problem report analysis before deciding on
how to proceed with changes. This may involve scoping
the maintenance, documenting possible solutions and doc-
umenting impact on existing systems. Similarly, the main-
tainer will need to verify or replicate the problem or issue.
The maintainer needs to develop options for implementing
the modification. Options to be developed include alternative
work-arounds or solutions. Finally, the maintainer needs to
document and ensure approval of the modification request or
problem report, the analysis and potential solutions.

Modification Implementation requires the maintainer to
carry out analysis in order to determine which documents and
software versions need to be modified. After the analysis, the
required software changes should be implemented during the
development process.

Maintenance Review/Acceptance is a process that
involves the maintainer carrying out reviews to ensure the
integrity of the modified system. Following this task, the
maintainer seeks approval from the appropriate authority that
the maintenance has been completed satisfactorily.

Migration begins with the identification of all software
or data that is modified if migration from an old platform to
a new platform is performed. If migration is going to occur,
it is necessary to create and document a migration plan and
then execute the migration according to the plan. Prior to
migration, a notification of intent should be provided to all
system users before migration occurs. Following migration,
the old and new environments should be run in parallel while
providing training to end users in order to ensure a smooth
transition. Once migration has been completed, notification
of completion needs to be sent to the appropriate stakehold-
ers. Post-migration review should be conducted after migra-
tion in order to assess the impact of the migration. Finally,
all of the data associated with the old environment should be
achieved in accordance with the appropriate data protection
and audit policies.

Software retirement takes place once a decision has been
made to retire an active software product. A retirement plan
should be developed and documented by the system main-
tainer. After deciding to retire software, a notification of
retirement intent should be sent to the appropriate software
product stakeholders. During retirement, a parallel operation

123



SOCA (2014) 8:239–257 247

Table 3 Adaptation support activities from ISO/IEC 14764

Define adaptation requirements

14764: Problem and Modification Analysis: MR/PR analysis

14764: Migration: Migration

Define requirements to the monitoring subject

14764: Modification Implementation: Analysis

Define monitored property

Provide monitoring functionality

14764: Process Implementation: MR/PR procedures

Collect monitoring results for adaptation

14764: Problem and Modification Analysis: Verification

14764: Maintenance Review/Acceptance: Reviews

14764: Migration: Post-operation review

14764: Maintenance Review/Acceptance: Approval

Trigger adaptation

Design adaptation strategy

14764: Process Implementation: Maintenance plans and procedures

14764: Problem and Modification Analysis: Options

14764: Migration: Migration plan

Select adaptation strategy

14764: Problem and Modification Analysis: Approval

Perform adaptation

14764: Process Implementation: Configuration management

14767: Modification Implementation: Development process

of new and retiring software software should be carried out
along with the training of end users. Once complete, noti-
fication should be sent to the appropriate stakeholders, and
finally, data relating to the retiring product should be archived
should it be required at a later date.

5.3.2 Activities identified

In total, there were 19 maintenance practices identified from
ISO/IEC 14764. They are categorised in Table 3 according to
the processes they come from in ISO/IEC 14764, and repre-
sent the complete set of activities that need to be carried out
to implement a maintenance process. The first set of activi-
ties refer to the actual implementation of the required process
guidelines, while the other activities detail the execution of
those guidelines.

6 Phase II: Mapping adaptation activities

6.1 Adaptation activities mapped to the S-Cube life-cycle

Table 4 shows each of the adaptation activities that were iden-
tified in Sect. 5.2.2 mapped to the appropriate phases of the
S-Cube life-cycle. Where possible, the activities are grouped
in related categories. The categories used are those identi-

fied from the S-Cube deliverables in Sect. 5.1. The activities
within each life-cycle phase are not in a specific order and
they can be executed as needed.

6.2 Observations on adaptation activities

Unfortunately, the adaptation activities identified from the
service-oriented engineering approaches do not form a com-
plete view of all the necessary activities required to enable
the adaptation of SBAs. This is due to the fact that the activ-
ities were identified from many different sources that do not
treat service adaptation as a primary concern. As we can see
from Table 4, many activities were in the process: Identify
adaptation needs, while only a few processes were identi-
fied in Identify adaptation strategy and Enact adaptation.
This implies that the state of the art of adaptation processes
focuses much more on gathering requirements and identify-
ing when adaption is needed. These are highly relevant to
what needs to be monitored. However, as soon as the need
for adaption is identified, little efforts have been put in to
defining, selecting and executing adaptation strategies.

Only two SOA approaches, SDLC and SeCSE, explicitly
describe the actual execution of adaptation. Indeed, in these
cases, the adaptation is limited to corrective adaptation—the
replacement of services when quality attributes do not meet
expectations. Other types of adaptation such as perfective
adaptation, adaptive adaptation, preventive adaptation and
extending adaptation are not supported.

None of the existing service-oriented engineering
approaches specifies how to select an adaptation strategy.
In the two approaches that actually describe the execution of
adaptation, the adaptation strategies are (implicitly) prede-
fined.

While adding these activities to the S-Cube life-cycle, we
noticed that some of them belong to the adaptation cycle,
while there are others which, while coming under adaptation
within service-oriented engineering approaches and S-Cube
life-cycle literature, actually belong to the evolution cycle of
the S-Cube life-cycle. For instance, KPIs and management
policies (from BEA) as well as service properties (from the
SeCSE methodology) are defined at the requirement engi-
neering process. They are not directly used by adaptation
practices but are relevant in that specifying these attributes
makes corresponding monitoring and assessment possible.

6.3 Adaptation support activities mapped to the S-Cube
life-cycle

Out of the 19 adaptation support activities identified from
ISO/IEC 14764, 13 of them were mapped to the S-Cube life-
cycle. Table 5 shows the cumulative mapping of the adapta-
tion as well as the adaptation support activities to the S-Cube
life-cycle.

123



248 SOCA (2014) 8:239–257

Table 4 Adaptation activities mapped to S-Cube life-cycle

Requirements engineering and design BEA: Define KPIs and management policies

SeCSE: Identify the service properties to specify

Construction

Deployment and provisioning SeCSE: Insertion of monitoring rules and recovery actions in concrete parts of the service
composition executable description

SeCSE: Deploy the monitoring rules and recovery policies within the monitoring system

Operation and management

Identify adaptation needs Define adaptation requirements

Define requirements to the monitoring subject

SDLC: Set warning thresholds and alerts for compliance failures

SDLC: Gather QoS metrics on the basis of SLAs

Define monitored property

SeCSE: Specify monitoring rules according to the adopted SeCSE monitoring language (SECMOL)

Provide monitoring functionality

ASTRO: Monitor message sequences amongst services and its partners

BEA: Monitor service, application, middleware, OS, hardware and network

SDLC: Monitor workloads

SeCSE: Monitor services

Collect monitoring results for adaptation

ASTRO: Detect protocol violations

SDLC: Evaluate SLA QoS metrics

Trigger adaptation

SeCSE: Recovery management: identify, by looking at the monitoring data, the needs
for a recovery action

Select adaptation strategy Design adaptation strategy

Chang’s: Specifying Service Decision Model

Chang’s: Designing Service Adapters

Select adaptation strategy

Enact adaptation Perform adaptation

SDLC: Readjust service weights for request queues

SeCSE: Run-time Service Discovery

Process Implementation The process implementation
process area from ISO/IEC 14764 has three activities: Main-
tenance plans and procedures, Problem reports/modification
requests (MR/PR) procedures and Configuration manage-
ment each of which were mapped to one of the high-level
adaptation activities of the S-Cube life-cycle from Phase I.
The implementation of MR/PR procedures was mapped to
Provide monitoring functionality in the life-cycle. The imple-
mentation of problem report procedures would allow appli-
cation engineers to receive and track problem reports which
would allow them to determine whether adaptation is nec-
essary. Similarly, a modification request procedure would
allow engineers to track modification requests and deter-
mine whether the modification request requires adaptation.
The Maintenance plans and procedures activity was mapped
to Define adaptation strategy in the S-Cube life-cycle. The
Define adaptation strategy activity refers to the definition of
plans and procedures for adapting a SBA, so it makes sense

that Maintenance plans and procedures could be used for
this activity given the commonalities between adaptation and
maintenance. Configuration management was mapped to the
Enact adaptation activity, because the resolution of problems
after applications adapt would be much easier if configuration
details of component services are recorded. Fang et al. [37]
illustrate how the configuration management process would
be beneficial to the adaptation of SBAs.

Problem and Modification Analysis The problem and
modification analysis process area contains four activi-
ties that are useful for SBA adaptation: Problem reports/
modification requests (MR/PR) analysis,Verification,Options
and Approval. In the context of software maintenance,
these activities are undertaken in order to analyse prob-
lem reports or modification requests and determine their
impact on the application (MR/PR analysis). If the reports
or modification requests are valid (Verification), potential
solutions are proposed (Options) and approval is sought to

123



SOCA (2014) 8:239–257 249

Table 5 Adaptation activities from ISO/IEC 14764 and service engineering literature mapped to S-Cube life-cycle

Requirements engineering and design BEA: Define KPIs and management policies

SeCSE: Identify the service properties to specify

Construction

Deployment and provisioning SeCSE: Insertion of monitoring rules and recovery actions in concrete parts of the service composition
executable description

SeCSE: Deploy the monitoring rules and recovery policies within the monitoring system

Operation and management

Identify adaptation needs Define adaptation requirements

14764: Problem and Modification Analysis: MR/PR analysis

14764: Migration: Migration

Define requirements to the monitoring subject

14764: Modification Implementation: Analysis

SDLC: Set warning thresholds and alerts for compliance failures

SDLC: Gather QoS metrics on the basis of SLAs

Define monitored property

SeCSE: Specify monitoring rules according to the adopted SeCSE monitoring language (SECMOL)

Provide monitoring functionality

14764: Process Implementation: MR/PR procedures

ASTRO: Monitor message sequences amongst services and its partners

BEA: Monitor service, application, middleware, OS, hardware and network

SDLC: Monitor workloads

SeCSE: Monitor services

Collect monitoring results for adaptation

14764: Problem and Modification Analysis: Verification

14764: Maintenance Review/Acceptance: Reviews

14764: Migration: Post-operation review

14764: Maintenance Review/Acceptance: Approval

ASTRO: Detect protocol violations

SDLC: Evaluate SLA QoS metrics

Trigger adaptation

SeCSE: Recovery management: identify, by looking at the monitoring data, the needs for a recovery
action

Select adaptation strategy Design adaptation strategy

14764: Process Implementation: Maintenance plans and procedures

14764: Problem and Modification Analysis: Options

14764: Migration: Migration plan

Chang’s: Specifying Service Decision Model

Chang’s: Designing Service Adapters

Select adaptation strategy

14764: Problem and Modification Analysis: Approval

Enact adaptation Perform adaptation

14764: Process Implementation: Configuration management

14767: Modification Implementation: Development process

SDLC: Readjust service weights for request queues

SeCSE: Run-time Service Discovery

implement the required changes (Approval). The MR/PR
analysis activity is mapped to Define adaptation require-
ments in the S-Cube life-cycle. The analysis of mainte-

nance requests and problem reports could be altered to
the analysis of adaptation requests and problem reports to
suit the adaptation of SBAs. This analysis activity could

123



250 SOCA (2014) 8:239–257

provide valuable input which could be used to Define
adaptation requirements for a SBA. Verification is mapped
to the Collect monitoring results for adaptation activ-
ity because replicating or verifying the problem can be
seen as an analysis on the monitoring results. Options is
mapped to Design adaptation strategy because options for
implementing the modification can be seen as adaptation
strategy. Finally, Approval is mapped to Select adaptation
strategy because obtaining approval is part of adaptation
strategy selection in that it finalises the decision on the
selection.

Modification Implementation contains two activities
Analysis and Development which are mapped to Define adap-
tation requirements and Perform adaptation, respectively.
Analysis is usually carried out before any Development or
maintenance activity in order to determine which artefacts
need to be modified. This may also be useful during the
requirements gathering phase of SBA adaptation in order to
determine which parts of the application need to be changed.
In the context of traditional software engineering Develop-
ment means the modification of application code in order
to implement requirements, this activity could be tailored
to mean the modification of an applications configuration to
meet the adaptation requirements of a SBA.

Maintenance Review/Acceptance The Maintenance
Review/Acceptance process area contains two activities:
Reviews and Approval. In the context of software mainte-
nance, reviews are carried out to ensure that the maintenance
is carried out appropriately. In terms of adaptable SBAs,
reviews can be carried out to ensure that adaptation occurs
correctly. The analysis of collected monitoring results can be
used to perform a review of SBAs which is why the Reviews
activity was mapped to Collect monitoring results for adap-
tation. Following a Review, Approval status may be given to
an adaptation engineer on satisfactory adaptation of an appli-
cation. If adaptation occurs automatically, it is impossible to
grant approval to the work of an individual(s), so it may be
appropriate to grant approval to the adapted application.

Migration In the context of traditional software engineer-
ing, migration is the modification of a system, thus allowing it
to run in a new environment or context. Rather than migrate a
SBA, it may be possible for the application to adapt in order
to operate in a new environment. Therefore, the migration
process area may contain some useful activities that can help
a SBA adapt to context-specific parameters. The maintenance
process area has three activities that are useful to the adapta-
tion of SBAs: Migration, Migration plan and Post-operation
review. Migration was mapped to Define adaptation require-
ments because it is important to determine which software
artefacts or which data should be migrated (or adapted) dur-
ing the requirements gathering stage. Migration plan was
mapped to Design adaptation strategy because a migration
plan can be seen as an adaptation strategy in that it specifies

what tools are needed, how to convert software product and
data, and how to execute migration. Finally, Post-operation
review was mapped to Collect monitoring results for adapta-
tion because the impact of changing to the new environment
can be achieved by monitoring.

Other Mappings Many of the adaptation support activity
mappings are apparent, for example, Maintenance plans and
procedures to Design adaptation strategy or Modification
request/problem report procedures to Provide monitoring
functionality. Some of the other mappings, however, are not
so apparent, such as the “maintenance review/acceptance”
activity that maps to Collect monitoring results for
adaptation.

During our analysis, we discovered that some of the main-
tenance activities are also relevant to the evolution cycle
of the S-Cube life-cycle. However, those mappings were
excluded as we are focusing on adaptation in this paper. As
previously mentioned, five activities from ISO/IEC 14764
could not be mapped to adaptation activities because they
are too specific to the software maintenance process (see
Table 6): the Documentation activity and Migration activ-
ities. The Documentation activity from the maintenance
process does not get included or is paid very little attention
to in any of the adaptation activities covered in the literature.
The four migration activities mentioned in Table 6 are spe-
cific to the maintenance of traditional software and should
not be leveraged for service adaptation.

6.4 Observations on adaptation support activities

The maintenance activities identified in this section were
never previously identified in the service engineering litera-
ture as candidate activities for the adaptation of SBAs. Many
of the activities identified from the service engineering lit-
erature tend to deal with the technical details of adaptation
rather than focusing on process details. One of the strengths
of eliciting activities from a software process standard is that
there is a process focus with process details such as inputs,
tasks, controls, supports and outputs. The activities elicited
from the service literature tend to specify what needs to be
done in order to adapt SBAs, while the maintenance activ-

Table 6 Maintenance activities not mapped

Maintenance practices

2 Problem and modification analysis

Documentation

5 Migration

Notification of intent

Implement operations and training

Notification of completion

Data archival

123



SOCA (2014) 8:239–257 251

ities identified can be tailored to specify how to implement
the adaptation processes.

The suitability of maintenance activities for SBA adapta-
tion highlights the commonalities between SBA adaptation
and software maintenance. Both of these processes involve
the modification of software systems albeit in different con-
texts. Adaptation is a light weight process which may only
require the modification of simple configuration details to
facilitate adaptation, so it is important not to include main-
tenance activities which would add unnecessary overhead to
the process. The Documentation activity falls into this cat-
egory; Documentation would add a lot of overhead to the
process which is unnecessary due to ad hoc nature of SBA
adaptation during run-time.

Since we are reusing activities from a process model
designed for the maintenance process, we cannot be guar-
anteed that the activities we have chosen form the complete
set of activities required for adaptation. However, when com-
bined with the activities from the service literature, the resul-
tant set of activities are one step closer to the complete set of
activities required for SBA adaptation.

The activities identified from the maintenance literature
are designed for the maintenance process which involves
many manual activities, such as the analysis of problem
reports and the development of proposed changes. However,
the adaptation process may be a manual or automatic process.
If the adaptation is manual, many of the maintenance activ-
ities can be applied directly without modification. However,
if the adaptation is automatic, then many of the maintenance
activities may become obsolete or require reinterpretation.
For example, the Analysis of problem reports activity by def-
inition is a manual activity carried out by a system maintainer;

in the case of automatic adaptation, it becomes obsolete as the
application analyses problems through its monitoring mech-
anisms.

7 Measuring the performance of the process framework

7.1 Process metrics

When implementing a software process reference model or
framework, it is important to have the ability to measure the
performance of that new process. This allows the software
engineer to evaluate any improvement or disimprovement
that may have occurred. There are many quantitative met-
rics that can be used to measure the performance impact of
implementing a software process.

Reifer [38] proposes a comprehensive set of performance
metrics that can be used to measure a software organisation’s
performance. The set is illustrated in Table 7.

An improved software process promises to improve prod-
uct quality and organisational performance [39]. Improve-
ments in these metric categories should also have a cascad-
ing effect on higher-level metrics such as enterprise perfor-
mance. To measure the impact of the framework proposed
in this paper, metrics from the process performance, product
quality, personnel performance and orgainisational perfor-
mance categories of Table 7 are suggested. These categories
were chosen because process improvement should be readily
reflected by metrics from these categories. Table 8 illustrates
the framework developed in this paper. A column has been
added representing the metrics suggested for measuring the
impact of each process.

Table 7 Software Metrics [38]
Category Metrics Measurement unit

Project performance Budget performance Currency

Schedule performance Time

Earned value performance Time

Technical performance Time

Process performance Rework rate Quantity of Development Cycles

Defect rates Quantity of Bugs

Product quality Product complexity Days per Function Point

Defect density Bugs per Function Point

Personnel performance Personnel productivity Days per Function Point

Orgainisational performance Process maturity Process Level Determined by Auditor

Product quality Quantity of Bugs

Productivity Days per Function Point

Enterprise performance Profitability Currency

Return on equity Currency

Cost of sales Currency

Competitiveness Currency

123



252 SOCA (2014) 8:239–257

Table 8 Adaptation framework and assessment metrics

Process Activity Metrics

Requirements engineering and design BEA: Define KPIs and management policies Productivity, Personnel
productivity, Product
complexity

SeCSE: Identify the service properties to specify

Construction

Deployment and provisioning SeCSE: Insertion of monitoring rules and recovery actions in concrete
parts of the service composition executable description

Defect rates, Rework rate,
Defect density

SeCSE: Deploy the monitoring rules and recovery policies within the
monitoring system

Operation and management

Identify adaptation needs Define adaptation requirements Productivity, Personnel
productivity, Product
complexity

14764: Problem and Modification Analysis: MR/PR analysis

14764: Migration: Migration

Define requirements to the monitoring subject

14764: Modification Implementation: Analysis

SDLC: Set warning thresholds and alerts for compliance failures

SDLC: Gather QoS metrics on the basis of SLAs

Define monitored property

SeCSE: Specify monitoring rules according to the adopted SeCSE
monitoring language (SECMOL)

Provide monitoring functionality

14764: Process Implementation: MR/PR procedures

ASTRO: Monitor message sequences amongst services and
its partners

BEA: Monitor service, application, middleware, OS, hardware
and network

SDLC: Monitor workloads

SeCSE: Monitor services

Collect monitoring results for adaptation

14764: Problem and Modification Analysis: Verification

14764: Maintenance Review/Acceptance: Reviews

14764: Migration: Post-operation review

14764: Maintenance Review/Acceptance: Approval

ASTRO: Detect protocol violations

SDLC: Evaluate SLA QoS metrics

Trigger adaptation

SeCSE: Recovery management: identify by looking at the
monitoring data, the needs for a recovery action

Select adaptation strategy Design adaptation strategy Productivity, Personnel
productivity

14764: Process Implementation: Maintenance plans and procedures

14764: Problem and Modification Analysis: Options

14764: Migration: Migration plan

Chang’s: Specifying Service Decision Model

Chang’s: Designing Service Adapters

Select adaptation strategy

14764: Problem and Modification Analysis: Approval

123



SOCA (2014) 8:239–257 253

Table 8 continued

Process Activity Metrics

Enact adaptation Perform adaptation Rework rate, Defect rates, Defect density

14764: Process Implementation: Configuration management

14767: Modification Implementation: Development process

SDLC: Readjust service weights for request queues

SeCSE: Run-time Service Discovery

The productivity and complexity-related metrics were
suggested for the “Requirements engineering” process since
defect type metrics don’t apply this early in the life-cycle.
Defect type metrics were suggested for the “Deployment and
provisioning”, and the “Enact adaptation” processes because
it is expected that defects in adaptable SBAs may be iden-
tified at these points. Finally, organisational and personnel
productivity metrics are suggested for the “Identify adap-
tation needs” and “Select adaptation strategies” processes
because these processes are often manual.

8 Case study

In this section, we present a real-life case study that illustrates
how the activities identified during this research can aid in
the development of adaptable SBAs. The case documents
how a software company currently develops adaptable SBAs;
then, through an illustrated example, we will show how their
development process is improved upon with the results of
this research. In the following sub-sections, we will introduce
SBA solutions and their existing process for the development
of adaptable SBAs. Then, we will apply our framework to
their process illustrating its effectiveness.

8.1 Introduction to SBA solutions

SBA solutions is a large multinational software development
company with several off shore development groups, sales
and service centres. Their offshore development teams are
self-contained development units with the required skillets
to undertake complete development projects. For them, this
is an effective approach, as many Global Software Develop-
ment complexities are bypassed. Their main product makes
extensive use of services to exchange data and integrate
processes with different public sector departments.

8.2 Research within SBA solutions

Our research within SBA solutions was undertaken as part
of the S-Cube project [4]. We carried out interviews with a
lead architect, a developer who works within the construc-
tion process and a member of the sales department who pre-

viously worked within the company’s services organisation.
Interviews focused on their roles within the company, the
development of adaptable SBAs, the development process
and their approach to adaptation. They gave insight as to why
SBA solutions chose the SOA paradigm. Supporting docu-
mentation such as process models, development artefacts and
company presentations were made available. Interview tran-
scripts were analysed using Miles and Huberman’s content
analysis techniques [40].

8.3 Case study discussion

A key to the software process in SBA solutions is their
process model that breaks down each process into discrete
tasks. These are each assigned to relevant stakeholders. This
gives each member of the development team clear roles
and responsibilities and eliminates redundancy. Since they
employ GSD and their development is carried out iteratively,
development iterations can be carried out concurrently or
staggered to increase the development speed. This is a com-
plicated development process, so the process model is crucial
for them to effective management.

SBA solutions implement run-time adaptation in an inter-
esting way. They have an adaptation dashboard that is used
at run-time to make changes to the way that the application
executes. This allows the modification of business workflows
and the addition or removal of business rules to suit real-
time business requirements. Another interesting adaptation
feature of one of their key applications is that the execution
path of the application is dynamically determined based on
the parameters that are passed to the application. This is a
type of built-in static adaptation that is implemented using a
rule engine. These rules may also be subsequently adapted
using the adaptation dashboard.

In SBA, soft adaptation is first tried on a test system to
determine whether there are any unforeseen consequences.
If, after adaptation, the test system operates correctly, then
the adaptation configuration is transferred to the database of
the production application. The basic adaptation process for
SBA solutions can be seen in Fig. 3.

One of the downsides to how adaptation is enacted in the
products of SBA solutions is that, while they have a rigorous
development process model, run-time adaptation processes

123



254 SOCA (2014) 8:239–257

Fig. 3 SBA solutions
adaptation process

are ad hoc and vary depending on their customers require-
ments. While it is important to consider customer require-
ments for adaptation, it would also be beneficial to have
a process model to guide adaptation. This model could be
adapted to customers needs which would still allow flexibil-
ity in the process.

SBA solutions employ a variety of software engineering
tools to mange their software process. Key to the manage-
ment of their process are their issue tracking and configu-
ration management tools. They use version control software
called Perforce to manage their software configurations. Per-
force1 allows them to keep track of all of the changes made
to their source code facilitating traceability and recovery if
bugs are introduced. Code and configurations are deployed
from Perforce to their development, test and production envi-
ronments.

They also rely on a commercial software package called
Jira2 to manage the status of software deliverables such as
requirements specifications, software designs and code deliv-
erables. Jira also manages test incidents and bugs identified in
their software. A powerful feature of Jira is that it guides the
workflow of software deliverables ensuring that they follow
the correct process.

Along with Jira to manage their workflow and deliver-
ables, they use a content management system (CMS) to store
their software process documentation so that it is available
to all of their employees. The CMS is easily updated, so that

1 http://www.perforce.com/.
2 http://www.atlassian.com/software/jira.

improvements made to their process can be reflected in their
process documentation and made available immediately via
the web-based CMS.

8.4 Improved SBA adaptation process

In this section, we will illustrate how the adaptation process at
SBA Solutions can be enhanced by following the adaptation
activities identified in this paper. Table 9 illustrates SBA solu-
tion’s development and adaptation processes mapped to the
adaptation framework previously shown in Table 5. These
processes have replaced the sample processes from the S-
Cube reference life-cycle.

These mapping shows how SBA solution’s ad hoc adapta-
tion process can be greatly enhanced by adding more detailed
adaptation as well as adaptation support activities. It may be
the case that all activities are not needed depending on project
requirements, but these redundant activities can simply be
excluded from implementation.

9 Conclusion

In this paper, we identified activities and support activities
which should be considered when carrying out the adapta-
tion of SBAs. This has been done through the identifica-
tion of activities within service-oriented development mod-
els and the software engineering maintenance process. The
importance of this work is that while consolidating existing
work for service-oriented development into a SBA develop-
ment life-cycle, it enhances this with support activities from
mature software engineering process standards. The result
is an adaptation framework that can be used to guide practi-
tioners in the development of adaptable SBAs. This point has
been illustrated through the documentation of a case where
the framework has been mapped to the existing development
processes of a company that develops adaptable SBAs.

We have observed that, in isolation, the service-oriented
development approaches that we reviewed do not adequately
facilitate adaptation. We have also observed that, when com-
bined, the adaptation activities identified may not cover every
aspect of adaptation. They do, however, present a set of activ-
ities that can be combined into a useful framework for devel-
oping adaptable SBAs. In addition to the core adaptation
activities, we identified a set of adaptation support activities
that add a level of governance and control to the adaptation
process. While not directly involved with adaptation, these
best practice support activities increase the quality of the
adaptable applications being developed.

We have also observed that adaptation and maintenance,
while separate processes, share common attributes. Mainte-
nance involves the modification of an application’s source
code, while adaptation allows an application to adapt with-

123

http://www.perforce.com/
http://www.atlassian.com/software/jira


SOCA (2014) 8:239–257 255

Table 9 Adaptation activities from ISO/IEC 14764 and service engineering literature mapped to SBA solutions life-cycle

Evolution Requirements Definition BEA: Define KPIs and management policies

Architecture and Design SeCSE: Identify the service properties to specify

Coding and Testing

Stabilisation and Release SeCSE: Insertion of monitoring rules and recovery actions in concrete
parts of the service composition executable description

SeCSE: Deploy the monitoring rules and recovery policies within the
monitoring system

Adaptation New business rules are identified Define adaptation requirements

14764: Problem and Modification Analysis: MR/PR analysis

14764: Migration: Migration

Define requirements to the monitoring subject

14764: Modification Implementation: Analysis

SDLC: Set warning thresholds and alerts for compliance failures

SDLC: Gather QoS metrics on the basis of SLAs

Define monitored property

SeCSE: Specify monitoring rules according to the adopted SeCSE
monitoring language (SECMOL)

Application testers make sure the
application behaves correctly

Provide monitoring functionality

14764: Process Implementation: MR/PR procedures

ASTRO: Monitor message sequences amongst services and its partners

BEA: Monitor service, application, middleware, OS, hardware, and network

SDLC: Monitor workloads

SeCSE: Monitor services

Collect monitoring results for adaptation

14764: Problem and Modification Analysis: Verification

14764: Maintenance Review/Acceptance: Reviews

14764: Migration: Post-operation review

14764: Maintenance Review/Acceptance: Approval

ASTRO: Detect protocol violations

SDLC: Evaluate SLA QoS metrics

Trigger adaptation

SeCSE: Recovery management: identify, by looking at the monitoring data,
the needs for a recovery action

Rules are added to the test system using the
adaptation dashboard

Design adaptation strategy

14764: Process Implementation: Maintenance plans and procedures

14764: Problem and Modification Analysis: Options

14764: Migration: Migration plan

Chang’s: Specifying Service Decision Model

Chang’s: Designing Service Adapters

Select adaptation strategy

14764: Problem and Modification Analysis: Approval

Adaptation configuration is migrated to the
development system

Perform adaptation

14764: Process Implementation: Configuration management

14767: Modification Implementation: Development process

SDLC: Readjust service weights for request queues

SeCSE: Run-time Service Discovery

out modifying its code. However, the similarities between the
two processes allow us to reuse many maintenance activities
as adaptation support activities.

During this research, we have seen how the SBA adapta-
tion cycle can be detailed using service-oriented development
and software engineering activities, based particularly on

123



256 SOCA (2014) 8:239–257

service development models and on the maintenance stan-
dard ISO/IEC 14764.

In addition, while we have identified the activities which
should be used during the adaptation cycle, we have also
demonstrated how these can be implemented within an indus-
trial case study. The next stage of this research project will
focus on identifying SBA adaptation practices from other
industrial case studies. These will be combined with the activ-
ities elicited from the literature to create an incremented ver-
sion of the model presented here. We then hope to run exper-
iments with the framework to evaluate its effectiveness and
determine the overhead of implementing it in real projects.

Acknowledgments The research leading to these results has received
funding from the European Community’s Seventh Framework Pro-
gramme FP7/2007–2013 under grant agreement 215483 (S-Cube) and
has been partially supported by Lero—the Irish Software Engineering
Research Centre, Science Foundation Ireland Grants No. 03/CE2/I303.1
& 10/CE/I1855.

References

1. Cai H, Bu F, Jiang L (2012) A business-driven methodology
for service-oriented information system development. In: Paral-
lel and distributed processing symposium workshops Ph.D. forum
(IPDPSW), 2012 IEEE 26th, international, pp 2292–2299

2. Retter R, Fehling C, Karastoyanova D, Leymann F, Schleicher
D (2012) Combining horizontal and vertical composition of
services. Serv Oriented Comput Appl 6:117–130. doi:10.1007/
s11761-011-0095-6

3. Xu B, Luo S, Yan Y, Sun K (2012) Towards efficiency of qos-
driven semantic web service composition for large-scale service-
oriented systems. Serv Oriented Comput Appl 6:1–13. doi:10.
1007/s11761-011-0085-8

4. Andrikopoulos V (2009) Separate design knowledge models for
software engineering and service based computing. S-Cube Con-
sortium, Deliverable CD-JRA-1.1.2

5. Richardson I, Lane S (2009) Coordinated design knowledge mod-
els for software engineering and service-based computing. S-Cube
Consortium, Deliverable CD-JRA-1.1.4

6. Royce W (1970) Managing the development of large software sys-
tems. Proc IEEE Wescon 26(1):9

7. Boehm B (1986) A spiral model of software development and
enhancement. ACM SIGSOFT Softw Eng Notes 11(4):14–24

8. Oreizy P, Gorlick MM, Taylor RN, Heimhigner D, Johnson G,
Medvidovic N, Quilici A, Rosenblum DS, Wolf AL (1999) An
architecture-based approach to self-adaptive software. IEEE Intell
Sys Appl 14(3):54–62

9. Gu Q, Lago P (2011) Guiding the selection of service-oriented
software engineering methodologies. Serv Oriented Comput Appl
5:203–223. doi:10.1007/s11761-011-0080-0

10. Hinchey M, Coyle L (2009) Evolving critical systems. Lero—
The Irish Software Engineering Research Centre, Technical Report
Lero-TR-2009-00

11. Herstellerinitiative software (his) process assessment work-
ing group. Available: http://portal.automotive-his.de/images/pdf/
ProcessAssessment/his-wg-assessments-v31-07-06-08.pdf

12. Amazon. Available: http://www.amazon.com/
13. Benbernou S (2008) State of the art report, gap analysis of knowl-

edge on principles, techniques and methodologies for monitoring

and adaptation of sbas. S-Cube Consortium, Deliverable PO-JRA-
1.2.1

14. Williams SK, Battle SA, Cuadrado JE (2006) Protocol mediation
for adaptation in semantic web services. In: The semantic web:
research and applications. ser. Lecture Notes in computer science,
vol 4011. Springer, Berlin, pp 635–649

15. Di Nitto E, Penta MD, Gambi A, Ripa G, Villani M (2009) Nego-
tiation of service level agreements: an architecture and a search-
based approach. In: Service-oriented computing ICSOC 2007. ser.
Lecture notes in computer science, vol 4749. Springer, Berlin,
pp 295–306

16. Pernici B (2007) Automatic learning of repair strategies for web
services. In: Fifth European conference on web services (ECOWS
’07). IEEE Computer Society, Halle, Germany, pp 119–128

17. Pistore M, Barbon F, Bertoli P, Shaparau D, Traverso P (2004)
Planning and monitoring web service composition. In: Artificial
intelligence: methodology, systems, and applications. ser. Lecture
notes in computer science. Springer, Berlin, pp 106–115

18. Conte SD, Dunsmore HE, Shen VY (1986) Software engineering
metrics and models. Benjamin-Cummings Publishing Co. Inc., CA

19. Lehman MM (1984) Program evolution. Info Proc Manag
20(1):19–36

20. April A, Hayes JH, Abran A, Dumke R (2005) Software mainte-
nance maturity model (smmm): the software maintenance process
model. J Softw Maint Evol Res Pract 17(3):197–223

21. Abran A, Bourque P, Dupuis R, Moore JW (2001) Guide to the
software engineering body of Knowledge-SWEBOK

22. Swanson EB (1976) The dimensions of maintenance. In: Proceed-
ings of the 2nd international conference on software engineering,
pp 492–497

23. IEEE, ISO, and IEC,(2006) Software engineering-software life
cycle processes-maintenance International standard. Institute of
Electrical and Electronics Engineers, New York

24. Sommerville I (2004) Software engineering, 7th edn. Addison
Wesley, Reading

25. Hielscher J, Metzger A, Kazhamiakin R (2009) Taxonomy of adap-
tation principles and mechanisms. S-Cube Consortium, Contrac-
tual Deliverable CD-JRA-1.2.2

26. Autili M, Berardinelli L, Cortellessa V, Marco AD, Ruscio DD,
Inverardi P, Tivoli M (2009) A development process for self-
adapting service oriented applications. In: Service-oriented com-
puting ICSOC 2007, ser. Lecture notes in computer science, vol
4749. Springer, Berlin, pp 442–448

27. kenzi A, Asri BE, Nassar M, Kriouile A,(2009) A model driven
framework for multiview service oriented system development.
In: ACS/IEEE international conference on computer systems and
applications. IEEE Computer Society, pp 404–411

28. Trainotti M, Pistore M, Calabrese G, Zacco G, Lucchese G, Barbon
F, Bertoli P, Traverso P (2005) Astro: Supporting composition and
execution of web services. In: Lecture notes in computer science,
vol 3826, p 495

29. Durvasula S et al (2007) Introduction to service lifecycle. SOA
practitioners guide. part 3

30. Chang SH (2007) A systematic analysis and design approach to
develop adaptable services in service oriented computing. In: IEEE
Congress on services, 2007, pp. 375–378

31. Arsanjani A (2004) Service-oriented modeling and architecture.
Available: http://www.ibm.com/developerworks/webservices/
library/ws-soa-design1/

32. Papazoglou MP, Heuvel WVD (2006) Service-oriented design
and development methodology. Int J Web Eng Technol 2(4):412–
442, Available: http://portal.acm.org/citation.cfm?id=1358575.
1358582

33. Kruchten P (2003) The rational unified process: an introduction,
3rd edn. Addison Wesley, Reading

123

http://dx.doi.org/10.1007/s11761-011-0095-6
http://dx.doi.org/10.1007/s11761-011-0095-6
http://dx.doi.org/10.1007/s11761-011-0085-8
http://dx.doi.org/10.1007/s11761-011-0085-8
http://dx.doi.org/10.1007/s11761-011-0080-0
http://portal.automotive-his.de/images/pdf/ProcessAssessment/his-wg-assessments-v31-07-06-08.pdf
http://portal.automotive-his.de/images/pdf/ProcessAssessment/his-wg-assessments-v31-07-06-08.pdf
http://www.amazon.com/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://portal.acm.org/citation.cfm?id=1358575.1358582
http://portal.acm.org/citation.cfm?id=1358575.1358582


SOCA (2014) 8:239–257 257

34. Herzum P, Sims O (2000) Business components factory: a compre-
hensive overview of component-based development for the enter-
prise. Wiley, New York

35. Harmon P (2003) Second generation business process methodolo-
gies. Bus Process Trends 1(5)

36. ATOS (2007) SeCSE methodology, version 3. Technical Report
37. Fang R, Chen Y, Fong L, Lam L, Frank D, Vignola C, Du N (2007)

A version-aware approach for web service client application. In:
10th IFIP/IEEE international symposium on integrated network
management, IM’07, pp 401–409

38. Reifer DJ (2006) Metrics and management: a primer. In: Reifer
DJ (ed) Software management, 7th edn. IEEE Computer Society,
Silver Spring, pp 397–401

39. Humphrey W (1987) A Method for assessing the software engineer-
ing capability of contractors: preliminary version. Addison Wesley,
Reading

40. Miles MB, Huberman AM (1994) Qualitative data analysis: an
expanded sourcebook. SAGE publications Inc., Beverley Hills

123


	Towards a framework for the development of adaptable service-based applications
	Abstract 
	1 Introduction
	2 Motivation
	3 Background
	3.1 SBA adaptation definitions
	3.2 Software maintenance definitions
	3.2.1 Gap in traditional software engineering


	4 Research method
	5 Phase I: Identifying adaptation activities
	5.1 Adaptation activity categories
	5.2 Adaptation activities from service-oriented engineering approaches
	5.2.1 Service-oriented engineering approaches
	5.2.2 Adaptation activities identified

	5.3 Adaptation activities from maintenance process models
	5.3.1 ISO/IEC 14764
	5.3.2 Activities identified


	6 Phase II: Mapping adaptation activities
	6.1 Adaptation activities mapped to the S-Cube life-cycle
	6.2 Observations on adaptation activities
	6.3 Adaptation support activities mapped to the S-Cube life-cycle
	6.4 Observations on adaptation support activities

	7 Measuring the performance of the process framework
	7.1 Process metrics

	8 Case study
	8.1 Introduction to SBA solutions
	8.2 Research within SBA solutions
	8.3 Case study discussion
	8.4 Improved SBA adaptation process

	9 Conclusion
	Acknowledgments
	References


