
SOCA (2012) 6:231–248
DOI 10.1007/s11761-012-0105-3

SPECIAL ISSUE PAPER

CRP: context-based reputation propagation in services
composition

Shiting Wen · Qing Li · Lihua Yue · An Liu ·
Chaogang Tang · Farong Zhong

Received: 30 March 2011 / Revised: 22 October 2011 / Accepted: 1 November 2011 / Published online: 6 May 2012
© Springer-Verlag London Limited 2012

Abstract For a number of services with similar functionality,
reputation has been regarded as one of the most important
methods to identify good ones from bad ones. However, a
composite service, which is composed of multiple compo-
nent services, obtains only one score (or feedback) after every
invocation. In order to compute the reputation of each compo-
nent service, it is necessary for the composite service to dis-
tribute this score to its component services. How to achieve
a fair distribution is a challenging issue, as each component

S. Wen (B) · L. Yue · A. Liu · C. Tang
Department of Computer Science and Technology,
University of Science and Technology of China, Hefei, China
e-mail: wst1029@mail.ustc.edu.cn

L. Yue
e-mail: llyue@ustc.edu.cn

A. Liu
e-mail: liuan@ustc.edu

C. Tang
e-mail: tcg@mail.ustc.edu.cn

S. Wen · Q. Li · L. Yue · A. Liu · C. Tang
Joint Research Lab of Excellence, CityU-USTC Advanced
Research Institute, Suzhou, China

Q. Li
e-mail: itqli@cityu.edu.hk

S. Wen · Q. Li · A. Liu · C. Tang
Department of Computer Science,
City University of Hong Kong, Hong Kong, China

A. Liu
State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China

F. Zhong
Department of Computer Science,
Zhejiang Normal University, Jinhua, Zhejiang, China
e-mail: zfr@zjnu.cn

service may perform differently in contributing to the success
or failure of the composite service. Although several efforts
have been made for this problem, they do not consider the
context of composition, which makes the distribution unfair.
Therefore, in this paper, we propose a fair score distribu-
tion framework which combines the context of component
services and their runtime performance. We distinguish two
aspects contexts of a component service: structure-related
importance and community-related replaceability, and adopt
graph theory and dominating relationship technique to com-
pute them, respectively. Experimental results show that our
approach can achieve a more reasonable and fair score dis-
tribution than other existing methods.

Keywords Web services · Reputation · Distribution

1 Introduction

Web services are an emerging and promising technology in
distributed applications. A web service, identified by a URI,
is a software application whose interface and bindings are
capable of being defined, described, and discovered by XML
artifacts, and support direct interactions with other software
applications using XML-based messages via Internet-based
protocols. Web service are self-contained, modular business
process applications that are based on the industry standards,
such as WSDL, (to describe), UDDI (to publish and discov-
ery), and SOAP (to communicate) [1]. In this new computing
paradigm, the functionality granularity of services should be
limited from a reusability point of view [2]. Thus, multiple
services need to be composed into a new value-added one,
resulting in a composite service, to fulfill users’ complex
requirements. Nowadays, this can be implemented in a quite
flexible and efficient way through WS-BPEL [3], which has
been approved as an OASIS standard in 2007.

123

232 SOCA (2012) 6:231–248

In web service environment, many services with identical
functionality but different non-functional properties are pro-
vided by different providers. The provider usually makes
a promise of quality about the provided service but may
fail partially or fully to deliver this promise (the provider
may exaggerate the capability of the provided service by
making a good promise, which is difficult to meet, for the
sake of attracting more requests), which will bring down the
quality of the whole composite service. Recently, there are
many trust and reputation models for web services, which
have been proposed to assist users to avoid interacting with
un-honest services, such as ([4–13]). However, only a few
solutions of them have considered that a service can play
two roles, where a service can either be invoked indepen-
dently by a terminal user (in the reminder of this paper, the
word of “user” expresses the same meaning as the word of
“terminal user”) or be invoked indirectly by a composite ser-
vice. When building a service’s reputation we should con-
sider both roles of the service seriously, since a service will
obtain a score by different ways due to their under differ-
ent roles. For example, if a service is invoked by a user, it
will obtain an independent score about the satisfaction of
this invocation obviously. However, if a service is invocated
indirectly by a composite service, it only obtains a distribut-
ing score from the composite service, rather than directly
from a user. As for the first case (a service is invocated
by a user), there have been many existing methods which
can be applied in our model [4,7]. As for the second case
(a service is indirectly invocated by a composite service), the
service reputation we try to build should consider the fair-
ness of the distributing method(s). In this paper, however,
we only focus on the second case, since it is a challenging
issue.

To the best of our knowledge, only two works [12,14] so
far focused on distributing the score of a composite service
to its component services. The method in [14] distributes
a composite service’s score only in terms of each compo-
nent service’s deviation between runtime performance and
its advertised value of QoS, which does not consider the
context of a service composition to reflect which component
services should be more important than others in contribut-
ing to the composite service successfully or unsuccessfully.
Even though the authors consider the context of composition
by assigning an importance value to each component ser-
vice, this technique in [12] is relatively simple, and besides
it is hard for the user-assigned value to reflect the actual
importance of a component service. In this paper, we propose
a distribution framework which combines context and run-
time performance of component services to distribute com-
posite service’s score to its component services to ensure
that our distribution technique is fairer than other existing
works. In our framework, the context includes “structure-
related importance” and “community-related replaceability”,

and both of them will be defined in Sect. 5. The main contri-
bution of this paper is threefold:

– We propose a context-based model, which consists of
structure-related importance and community-related
replaceability, as the basis of distributing composite ser-
vice’s feedback (score) to its component services.

– The distribution framework which combines the context
information (importance) and runtime performance of the
component service is used for distributing composite ser-
vice’s score to its component services. It can ensure the
fairness of our distributing model.

– The experiments are conducted to evaluate the effect
of component services, which have different structure-
related importance or community-related replaceability
value, to the performance of whole composite service.
A hybrid distributing method is also conducted to verify
that our framework can achieve fair reputation propaga-
tion.

The rest of the paper is organized as follows. Section 2
discusses some related works. Section 3 introduces some pre-
liminaries and a motivating example to be used throughout
the reminder of the paper. Section 4 presents a reputation
model in web service composition. Section 5 gives the details
of our distribution mechanism. Section 6 describes the exper-
iments to evaluate our approach. Finally, Sect. 7 concludes
the paper and sheds light on future research.

2 Related works

In this section, we review some related works on reputation
and trust mechanism and approaches. Trust and reputation
management are important for evaluating unknown parties.
The trust and reputation research do not limit to a single
field. Various of disciplines including economics, computer
science, marketing, politics, sociology, and psychology have
studied reputation in several aspects [15]. Recently, trust and
reputation research has gotten a great momentum in both
theories and applications in computer science field. In the
theoretical areas, reputation has been studied by game the-
ory, Bayesian network, social network and hidden Markov
models and so on. In the application areas, trust and reputa-
tion management systems have being used in e-commences,
p2p networks, grid networks, multi-agent systems, file-shar-
ing systems and so on. It is impossible for us to review all
representative works here due to the limitation of space. In
the following, we only focus on some literatures which are
related to our work. A good overview of reputation mecha-
nism in other disciplines can be found in [4].

To our best knowledge, [8] is the first piece of works on
web service reputation. The authors propose an approach to

123

SOCA (2012) 6:231–248 233

compute service reputation dynamically according to QoS
history and user preference for QoS parameters. Reputation
management prototype systems can be found in [9,10], where
the authors proposed a reputation management infrastructure
for composite web services. In [11], the authors proposed
a trust management method to assess services reputation,
but this method is quite simple because only the number of
positive feedbacks is compared to the total number of feed-
backs over a period of time.

A number of research works focus on establishing the
credibility of the rating with an assumption that the feedback
may be un-honestly. In [4] and [16], the authors introduce
a reputation assessment framework for trust establishment
among web services. The majority rating is proposed to
assess whether the feedback is honest or not. The main short-
coming of this work lies in that the factor of majority rating
is not always effective since some minority feedbacks may
actually be the true state of current execution. And multiple
malicious users may create a colluding to cheat for obtaining
a high credibility.

Trust issues in composite services have been tackled in
[12,14]. In [12], the authors introduce an approach which
enables a composite service to distribute the reputation value
to its sub-component services. Two main factors are consid-
ered in their method: (1) the importance of each component
service in a composite service; (2) the past experiences of
component services. However, the importance in this work is
assigned by users. In [14], the authors distribute the compos-
ite service’ utility deviation value to its component services
depending only on their performance, which is limited since
they do not consider the fact that each component service
may have different contributions to the composite service’s
success or failure. A method of using a vector to represent the
reputation of web service was presented in [13], where the
authors use three dimensions to represent the service trust.
However, all of those three dimensions are only obtained
by services’ history behaviors. In [11], the authors proposed
different scoring functions to calculate the reputation based
on the feedback data for customized trust evaluation; three
reputation scoring functions (eBay, PeerTrust, and Exponen-
tially Weighted Moving Average) have been designed for
their prototype system deployable in both LAN and WAN.
Unlike existing works on web service reputation evaluations,
our work derives services’ scores according to their context
information and the deviation of services between its actual
QoS values and advertised values in every invocation.

Reputation based systems have also been widely used in
social agent systems, peer-to-peer systems, and grid comput-
ing system. Regret [17] is a reputation system that adopts a
sociological approach for computing reputation in a multi-
agent societies in an e-commerce environment. Regret sys-
tem incorporates social network analysis in different points of
the model. It employs both individual and social components

of social evaluations where the social dimension refers to
the reputation inherited by individuals form the groups they
belong to. The system has a hierarchical ontology struc-
ture that allows to consider several types of reputation at
the same time. The combination of complementary meth-
ods that use different aspects of the interaction and social
relations, allows the agent to calculate reputation values at
different stages according to its knowledge of the society.
However, the proposed scheme requires a minimum num-
ber of interactions to make correct evaluations of reputation.
A certified Reputation (CR) [18] allows agent to actively
provide third-party references about previous performance
as a mean of building up the trust in terms of their potential
interaction partners. It can quickly establish trust with little
cost to involve parties. However, some inherited shortcom-
ings still exist, such as, unreliable information providing by
third-parities.

In PeerTrust [7] model, the authors propose a framework
to quantify and compare the trustworthiness of peers. It is
argued that peer uses similarity measures to weigh opinions
of those peers that have provided similar ratings for a com-
mon set of past partners. The EigenTrust [19] is proposed
to compute peers reputation based on power iteration. The
system computes each peer’s global trust value in terms of
a matrix of normalized local trust values, which takes into
consideration the entire system’s history with each single
peer. The main idea of this work is based on the notion of
transitive trust that a peer will has a high perception of peer
who have provided honest interaction with it since the peers
had honest it is more likely for the peers with honest inter-
actions to report their local trust value accurately. In [20],
the authors present a method through dynamically selecting
a few power nodes that are most reputable by using a dis-
tributed ranking mechanism to construct a robust and scal-
able trust modeling scheme. They use a Distributed Hash
Table (DHT) to implement the distributed ranking mecha-
nism which is the same as [7,19]. In [21], the authors present
a reputation evaluation technique based on Bayesian lean-
ing technique. In their work, the first-hand information is
exchanged frequently and the second-hand information is
merged, if it is compatible with the current reputation rat-
ing.

In [22], two types of reputation algorithms based on dis-
crete and Bayesian evaluation of ratings have been presented
to compute trust in a large distributed system. At the same
time, the discrete combination and the fuzzy logic combina-
tion are also proposed to combine direct trust and reputation.
In [23], the trust system uses reply consistent of values to
predict honest. It assumes that each peer has a set of trusted
allies, and obtains them by asking one or more trusted allies
to send recommendation request for the target peer to the
recommender. The source peer would compare the recom-
mendation it gets directly with the one received by the trusted

123

234 SOCA (2012) 6:231–248

allies. However, this method can not detect dishonest peers
that provide consistent nt replies.

In [24–26], the game theory-based techniques were
applied for online reputation systems. Most of the game the-
oretic models assume that stage game outcome is observable.
However, the feedback based reputation mechanisms rely on
private and subjective ratings of stage game outcomes. Thus
they need an incentive for submitting feedback and giving
a truthfulness of the rating for its interactive partners after
each transaction.

3 Preliminaries

In this section, we introduce web service model and its inter-
action model as a foundation of our work and use an applica-
tion scenario to motivate our work. The application scenario
illustrates the motivation of our work, where we distribute the
composite service’s score in a fair manner to reflect differ-
ent contribution of each component service to the composite
service’s execution quality.

3.1 Web service model

Typical interactions on the service include four entities: web
services, service providers, service registries and service con-
sumers. A web service is self-contained, modular business
process applications that based on the industry standards and
supports direct interaction with other software applications
using XML-messages via internet-based protocols. A ser-
vice provider is an entity that provides the services (i.e.,
makes it available to users). Meanwhile, a service can be
provided to one or more publicly known places. A service
registry is a place where services can be registered in it for
easily being discovered by users. The registry manages all of
registered services such as records services’ advertised QoS
capabilities.

We present several definitions below as the basis of our
model for building the reputation of web services.

Definition 1 (Service) A service j is a software module
which can fulfill a specific functionality with a set of non-
functionality attributes (i.e., QoS: Quality of Service), which
is denoted as vector Q j .

The QoS attributes have different taxonomies from dif-
ferent viewpoints. In [27], the authors distinguish two types
of QoS attributes: positive and negative. For a positive QoS
attribute, a higher value means a higher quality. For a neg-
ative QoS attribute, a higher value means a lower quality.
For example, availability and reliability are positive while
response time and price are negative. In [28], the authors
distinguish three types of QoS from an aggregation point of

view: additive, multiplicative, and aggregated by Min-opera-
tor. For an additive QoS attribute, the QoS of a composite ser-
vice is a sum of the QoS of its component services. Response
time and price are two examples. For simplicity, we consider
only negative and additive QoS attributes in this paper, but our
work can be easily extended to other types QoS attributes by
adopting the techniques introduced in [27,28]. Meanwhile,
multiple services, which can fulfill the same functionality,
may form a community for attracting more requests or com-
peting to others. Then we have the simple community defi-
nition as following;

Definition 2 (Community) A service community C can be
seen as a collection of web services with a common function-
ality although these web services have distinct non-functional
properties (QoS) [14].

We use function C(j) to get the community which the
service j belongs to. Note that a community contains not
only atomic services but also composite ones because both
of them expose only an interface described by WSDL files.
More details about community will be discussed in the next
section.

It is common to attach a utility function to a service to rep-
resent its value to users. Note that, this utility function may
be the financial gain from the completing services, or simply
a private utility value, as commonly used in decision the-
ory. For example, the authors propose in [29] the following
function for web services:

u(t)=

⎧
⎪⎨

⎪⎩

umax if t ≤ tmax

umax−δ(t−tmax) if tmax < t < tmax+umax/δ

0 if t ≥ tmax+umax/δ

(1)

Here, umax ≥ 0, tmax ≥ 0andδ> 0, According to this
function, a service earns a maximum utility umax if it com-
pletes within a given deadline tmax. If the service is delayed,
the utility decays linearly with a slope of δ until it equals 0.

The above function works well when the utility only
depends on the response time of services. In other words, it
offers a reasonable utility to a service with only one QoS attri-
bute. However, a service usually has multiple QoS param-
eters, each of which makes a different contribution to the
whole utility. To aggregate these contributions, we first need
to scale the utility in Eq. (2) as follows:

us = u(t)

umax
(2)

Based on the scaled utility of every QoS parameter, we
propose the following utility function:

Definition 3 (Utility function) The utility function that a user
k attaches to a service j is a weighted mean of scaled utilities

123

SOCA (2012) 6:231–248 235

Fig. 1 Example of a composite service

coming from |Q j | QoS parameters:

uk, j =
|Q j |∑

g=1

wg × us(Q j,g) (3)

Here, wg(0 ≤ wg ≤ 1,
∑|Q j |

g=1 wg = 1) is the weight
attached to the utility us(Q j,g) coming from the gth QoS
parameter. Note that these weights are assigned by user
according to their personal preferences to indicate the user’s
concerns on each QoS dimension.

A user k can assess the expected utility of a service j
according to the utility function and the expected average
QoS of the service. Formally, we have:

E(uk, j) =
|Q j |∑

g=1

wg × us(Qav
j,g) (4)

Here, Qav
j,g is the average expected value of Q j,g .

3.2 Application scenario

We present an example to explain why a composite service
needs to distribute its score to its component services and
how to distribute it so as to ensure the fairness. In this exam-
ple, we consider a composite service, namely travel process.
We use this example to explain the key concepts throughout
the paper.

The composite service is shown in Fig. 1. First, the user
k invokes the composite service Travel Process with a set of
initial inputs, such as the name or id of the user, the destina-
tion, and the departure and return date. Next, the composite
service invokes a component service (service s1) to receive
all of those input parameters. Then it concurrently invokes
booking hotel, booking airline and booking sights tickets ser-
vices. After reserving replies of flight tickets, hotel rooms
and sights tickets, the travel process selects the way to pay
for those tickets’ fees. Here there are two ways for the user to
pay the fees, paying either by a credit card or by bank trans-
fer. Finally the travel process invokes the invoice service to
send a receipt to the user.

Table 1 Execution time of component services

Service Exe. Service Exe.
name time (ms) name time (ms)

s1 200 s5 200

s2 700 s6 500

s3 200 s7 500

s4 300 s8 300

Figure 1 describes an execution process of the travel pro-
cess. In service-oriented paradigms, web services run on the
Internet which is a dynamic and open environment. Thus
travel process is susceptible to a wide variety of failures.
In the service runtime, some component services may vio-
late their advertised QoS quality. For the sake of simplicity,
we use execution time as an example to illustrate our concern.
Suppose that each component service has an expected aver-
age execution time when it is published. As shown in Table 1
we list all component services’ expected average execution
time.

Assume that the user selects the credit card to pay the
fee, and requires that the execution time of the travel pro-
cess should be replied within 1,900 ms. However, assume
the services s2 and s3 don’t complete within 700 and 200 ms,
respectively and both of them are delayed 200 ms, we can
clearly see that the travel process can not complete within
1,900 ms. After clear observation, we find that if service s2

can complete in 700 ms, the travel process can still fulfill
their deadline constraint reply within 1,900 ms even though
the service s3 is delayed 200 ms. However, if the service s3

completes within 200 ms, the travel process also violates their
deadline constraint while the service s2 delays 200 ms. We
can obviously conclude that the component services with dif-
ferent contributions to composite service performance even
though they may have the identical deviation of performance.
In other case, if s3 and s5 are all delayed 200 ms, we can
also observe that the travel process can not complete with
1,900 ms. Even though s3 and s5 have the same execution

123

236 SOCA (2012) 6:231–248

Table 2 Variables and their meanings

Notations Meanings

k/j/cs A user k/a component service j /a
composite service cs

Q j A vector of QoS parameters of service j

Scorek/cs, j A score of a service j obtains from user
k/cs after each
invocation

R j Indicates the reputation of service j

d/dR Degree centrality score/ extended degree
centrality score

Imp j Structure-related importance of service j

DisCtx j Distribution context of service j which
combines Imp j and Rep j

P(E Pm) Execution probability of mth execution
plan

time (200 ms), however, if s5 can complete in 200 ms, the
whole composite service can meet its deadline constraint,
but if s5 completes in 200 ms, the travel process still can not
meet its deadline.

After finishing the invocation, the user will give only
an feedback to the composite service (Travel Process) even
though the functionality of the composite service is fulfilled
by eight component services. The reason is that the user can
only see the front-end composite service, and s/he is unware
of the back-end component services. Thus, it is still nec-
essary to distribute composite service’s overall feedback to
every component service. However, how to distribute is a
challenge issue. From this case, we can easily see that even
though the services with the same expected QoS quality and
the identical delayed value, they may still have the different
contributions to the whole composite service’s performance
since they have different locations in the composite service.

4 Reputation model

In this section, we describe a model of reputation of web ser-
vices to provide a formal basis for our work. We further pro-
pose a distribution framework which can be used to illustrate
the process of distributing the score of a composite service
to its component services. A unique characteristic of our dis-
tribution framework is that we have considered the context
of component services in a composite service.

First, we list in Table 2 the variables to be used in subse-
quent sections.

According to Cambridge Online Dictionary [30], reputa-
tion is an opinion that people in general have about someone
or something based on past behavior or character. Thus, web
service reputation systems depend on their past behaviors

(a)

(b)

Fig. 2 Web services usage scenarios. a Invoke a simple service,
b invoke a composite service

to evaluate the services’ and their interacted partners’ rep-
utation. There are two service invocation patterns: simple
service invocation pattern and composite service invocation
pattern [31].

In the web service paradigm, a service can be a simple
service (the functionality is fulfilled by itself) or a compos-
ite service (the functionality is fulfilled by other services).
However, user can not distinguish these two types of ser-
vices, since the services only provide interface for invocation
and their implementation details are transparent to the users.
Figure 2 shows these two types of service invocations. The
first case is rather simple: a user selects a simple service
(not containing any sub-service) for invocation, and then it
obtains a feedback (score) about this invocation. After receiv-
ing the feedback from the user, the service does not need
to distribute the feedback to any other sub-services (actu-
ally, no sub-services exist). In the second case, a user selects
and invokes a composite service, which aggregates several
component services to fulfill its requirement. After receiv-
ing a feedback (score) from the user per each invocation,
the composite service needs to fairly propagate feedback
(score) of composite service to all of its component ser-
vices.

Then, we consider a single user’s opinion of whether it
is a simple service invocation pattern or a composite ser-
vice invocation pattern. A service j is usually invoked by a
user k on demand, and then after finishing (regardless of suc-
cessfully or un-successfully) the invocation v, the service j
will obtain a score about how satisfactory on this invocation
v. Specifically, if a service performs better than what it has
promised, it will bring more value or score to the user. Then
we have the following Score definition.

123

SOCA (2012) 6:231–248 237

Definition 4 (Score) When a service completes, its actual
runtime QoS value may deviate from the expected average
QoS value, so it may be different between the actual utility
and the expected average utility. Then, the score of a service
equals to the utility difference in invocation, as shown in the
following:

Scorek, j = uk, j − E(uk, j) (5)

It is a real number between −1 and 1. If actual utility is
larger than the expected utility, the user k is said to gain the
utility difference (Scorek, j has a positive value); otherwise,
the user k is said to lose the utility difference(Scorek, j has a
negative value).

Considering the fact that the user may invoke one service
multiple times, we have the following definition of general
score.

Definition 5 (General score) If a service j has been invoked
m times by a user k, then the general score that a user k has
towards the service j is a weighted mean of scores in the m
invocations:

GerScorek, j =
∑m

v=1 Scorev
k, j × λm−v

∑m
v=1 λm−v

(6)

Here, λ (λ ∈ (0, 1)) is the weight attached to the user k’s
score of service j in the invocation v (i.e., Scorev

k, j). In this
paper, Principle 1 (given below) is employed to determine
a weighted mean of scores in the m invocations, which is
adopted by many existing works such as [13,31].

Principle 1 The reputation value of a service is calculated
according to the service’s past experience performance in a
recent period, and higher weights should be assigned to later
data points.

If other users want to invoke this service, they first evalu-
ate its reputation in terms of the general score which has been
obtained by many pre-invoked users. Some existing prevalent
methods calculate the reputation of service j by a summation
of all of general scores which j obtains [c.f., Eq. (7)].

R j =
∑

k∈L

GerScorek, j

|L| (7)

Here, L �= Φ is a set of users who have interacted with
service j in the past (if L = Φ, it indicates that the service
j is a newcomer service that needs to be evaluated by some
bootstrapping techniques).

Meanwhile, a composite service, which is composed of
multiple component services, will also obtain a single score
after each invocation:

Scorek,cs = uk,cs − E(uk,cs) (8)

Formula (8) has the same meaning as Formula (5). And cs
indicates the composite service, of which composition detail

is opaque. Thus, after each invocation, the composite ser-
vice cs can only obtains a single score only. However, the
functionality of the composite service is implemented by all
of its component services. Therefore, the composite service
should distribute all of component services a score. We have
the following equation:

Scorek,cs =
|cs|∑

j=1

Scorecs, j (9)

Here, Scorev
k,cs is the score which the composite service

propagates to the component service j after an invocation.
And |cs| is number of component services in the composite
service cs. Since the component services may have different
contributions to the composite service’s performance, it is a
challenge issue to distribute the score of composite service
to its component services.

In the next section, we focus on how to distribute the com-
posite service’ score (Scorek,cs) to all of its component ser-
vices and each of them will obtain a score (Scorecs, j). We
propose a context-based technique to ensure the distributing
model more effective and fair than other existing approaches.

5 Distribution framework

In this section, we present a framework to distribute a
composite service’s score to its component services after
each invocation. The framework shown in Fig. 3 contains
four major modules. The first module parses the composite
service’s structure-related information and calculates each
component service’s centrality score. The second module
captures each component services’ community-related con-
text at the phase of each task binding to a concrete service.
The third module records the component service and its com-
ponent service’s runtime information such as runtime QoS
performance of each component services. The last module
implements our distribution function to propagate the score
of the composite service to each individual component ser-
vice.

Based on the discussion above, the composite service is
responsible for distributing its utility score to all of its com-
ponent services after each invocation. In our framework, we
consider two factors when the composite service distributes
its score to its component services. One factor is the context
(consisting of structure-related importance and community-
related replaceability) of a component service in the com-
posite service. The other factor is the runtime performance
of component services. The context of a component service,
which is the focus of this paper, includes two facets:

Definition 6 (Structure-related importance) The structure-
related importance indicates a component service’s structure
context information in a composite service.

123

238 SOCA (2012) 6:231–248

Fig. 3 Architecture of
reputation propagation

It can reflect the contribution of component services to
a composite service’s success or failure execution, whose
value can be calculated according to the “centrality” score
in a graph, which is a mature theory to evaluate a node’s
importance in graph.

Definition 7 (Community-related replaceability) The com-
munity-related replaceability indicates a component service’s
replaceable context information in a service community
which has the same functionality.

It can reflect the replaceable level of a component service
if it fail in a composite service execution, whose value can
be calculated according to the dominating relationship in a
“community”. The dominating relationship technique also
provides an intuitive way for evaluating the significance of
an object relative to others in a dataset, i.e., how many other
services it can “dominate (c.f. definition 9)” in a community.
Then we will detail how to distribute the score of a composite
service to its component services by a series of steps.

5.1 Structure-related importance

A composite service (through aggregating multiple other
atomic and composite services) can be seen as a workflow
(our distributing model solves composite service recursively
until to atomic service in terms of the requirement), which
interacts with each other according to a process model.

A workflow is composed of states and transitions. In
the proposed composition framework, the transitions of a
workflow are labeled with events, conditions and assign-
ment operations over process variables. State can be basic
or compound. Basic states are labeled with invocations to
web services operations. Compound states contain one or
several sub-workflows.

A simplified workflow specifies a composite service
Travel Process, which is illustrated in Sect. 2 (Application
Scenario), is depicted in Fig. 1. Following our previous work
[32], we use workflow patterns to describe the dependen-
cies among component services. Figure 4 shows six types of
workflow patterns considered in our current study: sequence,
AND-split, AND-join, loop, XOR-split, and XOR-join.
Specifically, AND-split means s2, . . . , sn could be executed
in parallel after s1 finishes execution. AND-join means s1 can
be executed only after all its predecessors s2, . . . , sn finish
execution. XOR-split means only one of s2, . . . , sn could
be executed after s1 finishes execution. XOR-join means
s1 can be executed only after the activated service (among
s2, . . . , sn) finishes its execution.

Since the composite service may contain XOR-split and
XOR-join patterns; the composite service may have multiple
alternative execution plans. We have the following definition.

Definition 8 (Execution plan) An execution plan represents
a sequence of services to complete a composite service exe-
cution.

Figure 1 gives an example of a composite service travel
process’s execution plans. In that example, since the travel
process has one XOR-split pattern after service s5, there are
two execution plans, called E P1 and E P2, respectively, as
shown in Fig. 5. In the execution plan E P1, service s6 is
executed after s5, while in execution plan E P2, service s7 is
executed after service s5.

For each execution plan, it can be represented as a directed
graph. And each component service and transition is repre-
sented as a node and an edge, respectively. In the graph theory,
centrality denotes the importance of a node in a graph after
computing specific scores [33]. Four types of centrality met-
rics, namely degree, closeness, between ness and eigenvec-
tor, are widely accepted. Computing the score of centrality

123

SOCA (2012) 6:231–248 239

Fig. 4 Workflow patterns.
a Sequence, b AND-split,
c AND-join, d loop,
e XOR-split, f XOR-join

(a) (b)

(d)(c)

(e) (f)

(a)

(b)

Fig. 5 Two execution plans of travel process. a Execution plan E P1,
b execution plan E P1

of a node considers the number of edges (incoming and out-
going) connecting to this node to other nodes in the graph.
The higher the score is, the higher the importance is. In this
work, we only use degree centrality metric to calculate the
centrality score of a node to represent its structure-related
importance.

The degree centrality of a node is defined as the number of
links that the node is connected to, and measures the involve-
ment of the node in the graph. As for each execution plan,
it is represented as a directed graph in which each compo-
nent service is represented as a node, we have the following
in-degree and out-degree formalized expressions:

din(j) =
∑N

s=1,s �= j xs, j

N − 1
(10)

dout(j) =
∑N

t=1,t �= j x j,t

N − 1
(11)

Here j represents a component service; s and t repre-
sent all other incoming and outgoing component services of
j , respectively. N (> 1) is the total number of component
services, and x is the adjacency matrix, in which the cell
xs, j/x j,t is defined as 1 if service s/j is connected to service
j/t , and 0 otherwise. The degree centrality analysis shows
the importance of a component service in a composite ser-
vice.

The degree centrality has been generally extended to the
sum of weights when analyzing weighted graphs. Here, the
labeled weight is the connected service’s reputation which
indicates the strength of service. This measure has been
formalized as follows:

d R
in(j) =

∑N
s=1,s �= j Rs × xs, j
∑N

s=1,s �= j Rs
(12)

d R
out(j) =

∑N
t=1,t �= j x j,t × Rt
∑N

t=1,t �= j Rt
(13)

Here, Rs/Rt is the reputation of service s/t . The extended
weighted degree is equal to the definition of degree if the
graph is binary, i.e., each service has a reputation of 1.
Conversely, in weighted graph, the outcomes of these two
measures are different. Since service strength takes into con-
sideration the reputation of connected services, which has
been the preferred measure for analyzing weighted graphs.
However, a service’s strength is a blunt measure as it only
takes into consideration a service’s total level of involvement
in the graph, instead of the number of other services to which
it connects.

Claim 1 The importance of a component service is influ-
enced by the reputation value of its connected component
services.

Proof Consider a simple composite service cs0, which con-
tains three component services s, j and t , as shown in Fig. 6,

123

240 SOCA (2012) 6:231–248

Fig. 6 A composite service
(cs0)

for example, if both s and t have higher reputation than
j , the performance of cs0 can be largely determined by j .
Instinctively, we think that service j has higher importance
to determine the performance of composite service cs0 in this
situation. Conversely, even though the service j performs
well, the composite service cs0 may still perform badly if
both services s and t have lower reputation than j . In this
case, we think that service j has low importance to deter-
mine the performance of cs0 in this situation. ��

In addition, it is clear from Formula (12) and (13) that
the higher reputations s and t have, the more importance j
has. Meanwhile, if s and t only one has a higher reputation
and the other one has a low reputation, we clear see that the
service j’s in-degree/out-degree importance is high or low,
respectively.

The similar analysis can be conducted when component
services j has multiple incoming services and outgoing ser-
vices. We omit the detailed proofs here due to space limita-
tion.

Since degree and strength can be both indicators of the
level of involvement of a node in the surrounding graph, it
is important to incorporate both measures when calculating
the centrality (importance) of a node.

In an attempt to combine both degree and strength, we
use a tuning parameter, which determines the relative impor-
tance of the number of links compared to link’s weights. We
formally propose the following measure:

d Rα
in (j) = din ×

(
d R

in

din

)α

= d(1−α)
in × (d R

in)α (14)

d Rα
out (j) = dout ×

(
d R

out

dout

)α

= d(1−α)
out × (d R

out)
α (15)

Here, α is a positive tuning parameter that can be set
according to users’ preference. If it is set below 0.5, then
a high degree is favorable; otherwise, a low degree is favor-
able.

We can aggregate in-degree and out-degree centrality to
obtain the centrality for each service. As shown in following:

d Rα(j) = ω × d Rα
in (j) + (2 − ω) × d Rα

out (j) (16)

As for the execution plan, the start service and end ser-
vice only have the out-degree and in-degree, respectively.
Thus, we set ω equal 0 and 2 for the first service and end ser-
vice respectively. ω for middle services will be set between 0
and 2. Here, for the sake of simplicity, we set ω to 1. This set-
ting implies that we have the same concern on the in-degree
and out-degree importance.

The structure-related importance of a component service
is calculated according to its centrality score [c.f. Eq. (16)].
We have a more formal definition in the following phase.

We have multiple execution plans of a composite service
if it contains XOR-split patterns. The probability of exe-
cution of each execution plan is different. We can easily
assess each execution plan’s probability of execution from
the composite service past execution experience. For exam-
ple, Fig. 3 shows that there are two execution plans in travel
process, and we assume that the composite service has been
executed 100 times in a past period including that E P1 has
been executed 80 times and E P2 has been executed 20 times.
We can obviously obtain that the probability that E P1 exe-
cutes is 0.8(80/100) and the probability that E P2 executes is
0.2(20/100).

Each component service may locate in one or multiple exe-
cution plan(s). We calculate the structure-related importance
of a component service based on discussed-above centrality
score. Given a component service j, E P(j) indicates the set
of execution plan(s) in which service j locates in a composite
service cs. The structure-related importance of service j can
be calculated as follows:

Imp j,cs =
|E P(j)|∑

m=1

d Rα(j) × P(E Pm) (17)

P(E Pm) = N (E Pm)

N (cs)
(18)

Here, P(E Pm) indicates the probability of mth execution
plan. The P(E Pm) can be calculated according to formula
(18), where N (E Pm) is the number of E Pm which is exe-
cuted and N (cs) is the number of cs which is executed in the
latest past time window.

5.2 Community-related importance

A service community (c.f. definition 2) C can be seen as a
collection of web service with a common functionality
although these web services have distinct non-functional
properties such as different QoS qualities [34]. A composite
service sends a request to a community C to invoke one of its
members. Then C will check all of its members and select the
member service j , which contents the requirement of request
to fulfill the request. Therefore, the more the services are,
which can fulfill a concrete request, the higher the replace-
ability of each is. We can use the number of services which j
dominates in the community C to indicate j’s Community-
related replaceability. Then, the dominating relationship is
given by the following definition.

Definition 9 (Dominating relationship) Consider a service
community C , and two service s, j ∈ C, Q represents a set
of QoS parameters of this service community C . s dominate
j , denote as s ≺ j , iff s is as good or better than j in all QoS
parameters in Q and better in at least one parameter in Q. (i.e.,
∀g ∈ [1, |Q|], Q j,g ≤ Qs,g , and ∃g ∈ [1, |Q|], Q j,g < Qs,g).
Here, we assume that all of QoS parameters are negative.

123

SOCA (2012) 6:231–248 241

Namely, smaller value is preferable to larger ones at all
dimensions. Further, if a service j ≺ s, and s ≺ t , then
j ≺ t . We use notation ≺ to indicate the dominating rela-
tionships between services.

According to definition 9, we can easily define the domi-
nating score of service j , as follows:

dom(j) = |{s ∈ C | j ≺ s}| (19)

Here, C is the community which service j and s belongs
to, Namely, j and s located in the same community. The
dom(j) is the number of services dominated by service j ,
and the following property holds for function dom:

∀ j, s ∈ C, j ≺ s ⇒ dom(j) > dom(s) (20)

Therefore, we can define a nature ordering of the services
in the same community, based on function of dom.

We can use the following formula (21) to calculate service
j’s community-related replaceability in view of the compos-
ite service cs, given by:

Rep j,C = |C | − dom(j)

|C | (21)

Here, |C | denotes the number of services in the commu-
nity C , and dom(j) indicates the dominating score of the
service j .

We can easily observe that if a service has higher dom-
inating score, the expected service performance is better
than other service in the identical community. If this service
fails, we can hardly replace it just another service without
degrading the whole composite service’s QoS constraints.
Otherwise, if a service with a lower dominating score in a
community, we can easily replace it when its fails. Note that,
we just discuss the replaceability of a service here not con-
sidering how to bind a workflow task with a selected service.

The meaning of Eq. (21) is that there are multiple services
in the community and service j’s community-related replace-
ability is the ratio of the number of un-dominated services
with the total number of services of community C . When
service j fails, the number of services which can replace j
without degrading the quality of the composite service is an
importance factor which will influence whether the compos-
ite service can successfully complete or not. For example,
there are two service s and t in the same community. If s
dominates t , it indicates that s is better than t , which can
surely reflect the importance of a component service. This
is because the more services which are dominated by t , the
larger dominating score it will be. However, once service
t fails, fewer other services can replace it without bringing
down the composite service’s performance just as we dis-
cussed before.

Then we aggregate two aspects distribution context
information (the aggregation is denoted as DisCtx for

distribution context): structure-related importance and com-
munity-related replaceability of a service j , as follows:

DisCtx j = (1 − ρ) × IMP j,cs + ρ × Rep j,C (22)

Here, ρ is a weight attached to the structure-related impor-
tance and community-related replaceability of service j to
indicate the significances. They are determined according to
user’s preferences.

If ρ = 0 indicates only the structure-related importance is
employed, otherwise if ρ = 1 indicates only the community-
related replaceability is employed, reversely. If 0 < ρ < 1
indicates that we combine structure-related importance and
community-related replaceability to distribute the score from
a composite service to its component services.

5.3 Distributing score

After invoking the composite service, the QoS deviation of
each component service(denoted as QΔ

j,g) can be calculated

during this invocation. Based on QΔ
j,g and distribution con-

text information, which is discussed above, of the compo-
nent service, its score can be obtained. In addition, some of
these component services are still composite services, so this
kind of distribution continues until all component services are
atomic.

The basic idea is that each component service obtains its
score according to its contribution to the quality deviation of
the composite service. Suppose s1, . . . , s|cs| are component
services of the composite service cs which is invoked by a
user k. From the gth QoS attribute point of view, we can
calculate the deviation of gth QoS parameter as follows:

QΔ
j,g = Qav

j,g − Q j,g (23)

Here, QΔ
j,g is the value of the difference between and Q j,g

and Qav
j,g . Assume that the gth QoS parameter is negative

(For the sake of simplicity, we only consider the negative
QoS parameter in this paper, and our model can be eas-
ily to extended to other type’s QoS parameters), If the gth
QoS parameter is better than its expected average value, then
QΔ

j,g > 0, otherwise, QΔ
j,g < 0. After calculating each devi-

ation of QoS parameters, we can easily aggregate service j’s
performance deviation as:

QΔ
j =

|Q j |∑

g=1

wg × (QΔ
j,g) (24)

Similarly, we can also calculate the performance deviation
of composite service cs as follows:

QΔ
cs =

|Q j |∑

g=1

wg × (QΔ
cs,g) (25)

123

242 SOCA (2012) 6:231–248

Here, QΔ
cs,g is the value of the difference between Qcs,g

and Qav
cs,g . The composite service’s score is distributed

according to component services’ contributions to compos-
ite service performance (either increase or decrease). Then
we can obtain the score of each component service thorough
following three steps:

Step1: Calculate each component service’s deviating score
according to the distribution context (DisCtx) of every
component service and the ratio of its performance devi-
ation with composite service’s performance deviation,
called deviation score, denoted as DeScore:

DeScorev
cs, j = Scorev

k,cs × QΔ
j

|QΔ
cs|

× DisCtx j
∑|cs|

j=1 DisCtx j

(26)

Step2: Calculate the reminder score of composite service
by adding each component service’s minus deviation score
and composite service’s score, called reminder score,
denoted as RScore:

RScorev
k,cs = Scorev

k,cs +
|cs|∑

j=1

(−DeScorev
cs, j) (27)

Step3: Obtain each component service’s score after each
invocation, as follows:

Scorev
cs, j = DeScorev

cs, j + DisCtx j
∑|cs|

j=1 DisCtx j

× RScorev
k,cs (28)

Here, Scorev
cs, j is indicate the score of composite service

cs distributing to its component service j in vth invocation.
The above procedure can distribute the score to every com-
ponent service in a fair manner, which is guaranteed by the
following claim.

Claim 2 The quality deviation and context based approach
can realized a fair score distribution.

Proof We first consider a basic case where all component
services have only one QoS parameter. As the services
perform better than user expected, it will obtain a posi-
tive DeScorev

cs, j . This indicates that a component service
is awarded for its good performance. As the services per-
form worse than user expected, it will obtain a negative
DeScorev

cs, j . This indicates that a component service is penal-
ized for its poor performance. As the services perform as user
expected, it will obtain a a zero DeScorev

cs, j . This indicates
that a component service neither awarded nor penalized. ��

In addition, it is clear from formula (26) that the bet-
ter/worse performance a service has, the higher/lower

DeScorev
cs, j it obtains. It is also clear from formula (26) and

(28) that the service should be awarded more if it has higher
context value while it performance as better as other services;
the service should be penalized more if it has higher context
value while its performance is as worse as other services.
Similarly, the service should be awarded less if it has lower
context value while its performance is as better as other ser-
vices; the service should be penalized less if it has lower con-
text value while its performance is as worse as other services.
The similar analysis can be conducted when component ser-
vice have multiple QoS parameters. We omit the detailed
proof here due to space limitation.

6 Experiments

In this section, we evaluate the effectiveness of our distrib-
uting approach by conducting extensive experiments. All
experiments are performed on a PC with 2.2 GHz Intel Pen-
tium Duo2 CPU, 2048M of RAM, Microsoft Windows XP
Operating System, J2SKD 1.6. In the section of related
works, we have introduced that there are two works which
focus on composite service’s feedback (utility score) distri-
bution. However, the work [12], which assigns each com-
ponent service an importance value by user, is too subject
and therefore it’s hard for us to compare the approach pro-
posed in [12] with our approaches (hard to assign importance
to component services to ensure fair comparison). Thus, we
compare our approach with the work 2PP method [14], which
distributes the utility score of component services based only
on their performance. The first one evaluates the structure-
related impact of a composite service. Namely, each com-
ponent service which has a variance location in a composite
service may perform different contributions to the perfor-
mance of the whole composite service’s performance. The
second one evaluates the community-related replaceability
impact of a composite service. Each component service has
different replaceability in its community, and the component
service’ replaceability value decides whether it can be eas-
ily replaced or not. Lastly, we use a hybrid method, which
combines the structured-related importance and community-
related replaceability, to distribute the component service’s
utility score to its component services to verify our he fair-
ness of our method and a series of performance evaluation
applies on this hybrid method is also given accordingly.

6.1 Impact of structure

Before considering the impact of structure-related impor-
tance on composite service’s score distribution, we vary
influence to the structure-related importance of component
services. We use application scenario as an example, and
assign each component service an initial reputation value by

123

SOCA (2012) 6:231–248 243

random manner. Each component service is given an ini-
tial reputation value (0.2, 0.8, 0.2, 0.4, 0.7, 0.4, 0.9, and 0.6).
The effects of the on the component service’ structure-related
importance is illustrated in Table 3. When α = 0 and α = 1,
we can see in the Table 3 that the hybrid importance [d Rα: c.f.
Eq. (16)]: combines centrality score of degree and strength)
value is equivalent to the degree only and strength only value,
respectively. By further observation, when 0 < α < 1, the
hybrid importance value is more than degree only value and
lower than strength only value. When α > 1,the hybrid
importance value is more than strength only value. For sim-
plicity and objectivity, in our next series of experiments, we
set α = 0.5 to split the difference of degree only value and
strength only value.

Then, we consider that the composite service (cs) has
fifteen component services, and all of them have the same
advertised QoS performance. We generate the composite ser-
vice by a random matrix and check whether it satisfies our
requirements. In the next two evaluation, we also use the
same method to generate composite services. We divide the
component services into three groups, namely, importance
high (IMP_H), importance middle (IMP_M), and importance
low (IMP_L), according to their structure importance value.
The IMP_H, IMP_M, and IMP_L indicate the hybrid struc-
ture-related importance of component services larger 0.8,
between 0.4 and 0.8, and smaller than 0.4, respectively. In
our experiment, we degrade or improve the performance of
those three types’ services 20, 50, and 80 % relative to their
advertised QoS performance value. Note that, considering
that web service run in a dynamic environment, 20, 50, and
80 % are approximate settings which indicate the fluctuations
are within 20, 50, and 80 %, respectively. Meanwhile, we also
set every service has a normal performance fluctuation within
5 %. Then we can plot its influences to the whole composite
service’s performance. The X-axis and Y-axis represent the
number of executions and average percentages of compo-
nent services degrading or improving the whole composite
service’s performance (IR: improvement ratio and DR: deg-
radation ratio).

Figure 7a, b show that the average performance of com-
ponent services improves and degrades 20 % relative to their
advertised performance. We can observe that the group of
component service which it’s IMP_H has higher influences
than the group of IMP_L. The remaining figures (Fig. 7c–f),
where average performance improves and degrades 50 and
80 %, respectively, show the same meanings as Fig. 7a, b.
From the Fig. 7, we can obviously see that the component
services which degrades or improves the higher value rela-
tive to their advertised values may cause higher influences on
the composite service cs. In addition, it is also shown that the
component services with larger runtime performance fluctua-
tion have the larger influence on the composite service quality
by comparing Fig. 7a, b, with Fig. 7c, d or e, f. Therefore, we

can safely conclude that the structure-related context should
be considered in process of score distribution from a compos-
ite service to its component services. This because of services
with different locations in a composite service have different
contributions to the composite service’s performance.

6.2 Impact of replaceability

In this part of the experiment, we study the replaceability
impact on the whole composite service’s execution. Assume
that the composite service cs consists of ten component
services, each of which belongs to their respective com-
munities, i.e., cs has ten communities. The replaceability
score of component services from the first to the tenth is
different values varying from 0.1 to 1, as 0.1 as one step,
respectively. Three different communities’ size are consid-
ered, which contain 100, 1,000, and 10,000 member services,
respectively. We consider the failure probability and success
replaceability ratio of services with different replaceability
scores in different communities. Here, the failure probability
indicates that the component services’ performance fluctu-
ation violates the composite service’s QoS constraints. And
the success replaceability ratio indicates that the component
service can success replace by other services which are in the
same community. We also assume that the services with high
replaceability score may have the larger fluctuation of per-
formance because of they can be dominated by more services
with the community (i.e., the rank of expected performance
is low than others). For simplicity, we set the performance
fluctuations of services is proportional to their replaceability
score. We execute 100 times as a round and calculate statistic
probability or ratio to plot in Fig. 8. Figure 8a shows that the
failure probability increases, while the component services
replaceability score changing from 0.1 to 1.0. The commu-
nity size meanwhile is also influencing the failure proba-
bility, where the community with a larger size can reduce
the failure probability but the range of reducing is limited.
Figure 8b shows that the services with lower replaceabil-
ity score can be easily replaced, corresponding with Fig. 8a.
We can conclude that the component service with higher
dominating score is more important than the one with lower
dominating score in a composite service. This is because if
a service with lower replaceability fails, it is hard to replace
it without violating the whole composite service’s QoS
constraints, and the higher replaceability services will be on
the contrary.

6.3 Hybrid distribution

We now apply our distribution framework to complex com-
posite service cs. The component services can be divided
into five groups (i.e., Consistently High, Consistently Low,

123

244 SOCA (2012) 6:231–248

Table 3 Impact of tuning
parameter on structure-related
importance

Service d d R d Ra when α =
0 0.5 1 1.5

s1 0.43 0.45 0.43 0.44 0.45 0.46

s2 0.29 0.36 0.29 0.32 0.36 0.40

s3 0.29 0.29 0.29 0.29 0.29 0.29

s4 0.29 0.31 0.29 0.30 0.31 0.32

s5 0.57 0.69 0.57 0.63 0.69 0.76

s6 0.22 0.35 0.22 0.29 0.35 0.45

s7 0.05 0.10 0.05 0.08 0.10 0.15

s8 0.14 0.18 0.14 0.16 0.18 0.21

Fig. 7 Impact of importance to
whole performance of cs.
a Improvement 20 %,
b degradation 20 %,
c improvement 50 %,
d degradation 50 %,
e improvement 80 %,
f degradation 80 %

(a) (b)

(c) (d)

(e) (f)

123

SOCA (2012) 6:231–248 245

Fig. 8 Impact of
community-related
replaceability. a Failure
probability, b success
replacement ratio

(a) (b)

Degrades from high to low, upgrades from low to high, and
fluctuation) according to their performance. And each group
has at least two component services, of which the importance
is high and low, respectively. Both of those two services
within the same group change their performance simulta-
neously and in the same extent. We use our approach to cal-
culate the score on each group to obtain two types of scores
(IMP_H and IMP_L), respectively. At the same time, the
2PP method can be used to calculate the score on those two
services. However, it will obtain the same score, because it
doesn’t consider the distribution context of component ser-
vice when distributing score from a composite service to
its component services. Component services with consis-
tently high performance always meet their advertised QoS
promises. However, component services with consistently
low performance always violate their advertised QoS prom-
ises. Component services with performance upgrading from
low to high (high to low) always change their performance
from bad to good (good to bad). Component services with
fluctuating performance have oscillatory performance over a
period of time.

Figure 9 shows the scores of component services when
different approaches are applied. The X-axis represents the
number of invocations of the composite service cs and the
Y-axis indicates the score (Fig. 9a indicates the score of
composite service cs) of the component service. Figure 9b
shows that the component service with high distribution con-
text value obtains high score than the component service
with low distribution context value even though they have
identical performance, since both of these two services have
consistently high behaviors, and the service with high dis-
tribution context value contributes more than the service
with low distribution context value. Meanwhile, in Fig. 9c,
the component service with low distribution context value
obtains a relative high score, since both of these two ser-
vices with consistently low behaviors, have smaller influ-
ences than the service with high distribution context value,
even though they have the same runtime performance. The

remaining figures in Fig. 9 also illustrate the same mean-
ing. We clearly conclude that the component service with
high distribution context value should high responsibilities
for composite service’s invocation. If the component service
has high distribution context value, it will get (lose) more due
to its better performance (worse performance). However, the
scores of component services obtained by the 2PP_N method
in each groups are between IMP_H and IMP_L. It is obvi-
ous that this kind of score can’t fairly reflect contribution
of a component service to the performance of the composite
service when both component services have the same perfor-
mance.

Based on the observed results above, it is safe to conclude
that our approach is better than 2PP_N in terms of the way of
distributing the score to component services. Since we have
considered the context of component services, our approach
is obviously fairer and more accurate compared to 2PP_N
method.

6.4 Performance evaluation

In the last part of experiments, we investigate the perfor-
mance of our distribution approach variance the number of
component services of the composite service and the size of
the community.

First, we vary the number of component services of the
composite service from 10 to 100, and the size of commu-
nity from 100 to 10,000 (ref. Fig. 10). Then we combine
two parts to assess the performance of our approach by set-
ting one dimension as constant and one dimension as vari-
able. Runtime overheads mainly involve the cost of calculat-
ing the centrality score, retrieving the dominating score and
time it takes to distribute the composite service utility score
to all of component services by the hybrid approach. The
parameter is set as the same in hybrid experiments above.
We design two cases to assess our runtime cost. We vary the
number of component services from 10 to 100, and investi-

123

246 SOCA (2012) 6:231–248

Fig. 9 Distributing the score
based on hybrid importance.
a Composite service,
b consistently high,
c consistently low, d degrade
from high to low, e upgrade
from low to high, f fluctuations

(a)

(c) (d)

(f)(e)

(b)

gate the community’s size are 100, 5000 and 10,000, respec-
tively in Fig. 10a and vary the size of community from 1,000
to 10,000, and investigate the number of component services
are 10, 50,100 in Fig. 10b, respectively. Figure 10 shows
that the overhead increases with the number of component
services and the size of community. Meanwhile, as shown
in Fig. 10a, even though the community size is 10,000 and
the number of component service is 100, the approach can
distribute the score within 150 ms. Secondly, we set the com-
munity size from 100 to 10,000 and investigate the runtime
cost when the number of component services is 10, 50 and
100, respectively. It has the same cost as the first case’s.
Therefore, we can conclude that our distribution approach is
indeed efficient.

7 Conclusions

In this paper, we have proposed an importance-based frame-
work to fairly distribute the score of a composite service to its
component services. Two facets of context have been intro-
duced to ensure the fairness of the distribution. One is struc-
ture-related importance which is computed by graph theory;
the other is community-related replaceability which is com-
puted via dominating relationships of a community. In sum-
mary, our approach achieves a fair score distribution, which
is significant for reputation computation in the context of
service composition.

In the future, we will investigate the effect of corpora-
tion of multiple component service to fulfill a requirement of

123

SOCA (2012) 6:231–248 247

(b)

(a)

Fig. 10 Performance evaluation. a Performance of structure-related,
b performance of community-related

the composite service. In addition, more context information
which can influence the fairness of the distribution will also
be considered continuously.

Acknowledgments This work has been supported by the Natural Sci-
ence Foundations of China with the projects 60873234, 61003044,
the Natural Science Foundation of Jiangsu Province under Grant
No. BK2010257, and State Key Laboratory of Software Engineering
(SKLSE).

References

1. Papazoglou MP, Georgakopoulos D (2003) Service-oriented com-
puting. Commun ACM 46(10):25–65

2. Haesen R, Snoeck M, Lemahieu W, Poelmans S (2008) On the
definition of service granularity and its architectural impact. In:
Proceedings of international conference on advanced information
systems engineering (CAiSE’08), pp 375–389

3. Web Services Business Process Execution Language Version 2.0,
OASIS Standard, 11, April, (2007). http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.html. Accessed 5 March 2011

4. Zaki M, Bouguettaya A (2009) RATEWeb: reputation assessment
for trust establishment among web services. VLDB J 18:885–911

5. Li Z, Wang S (2005) The foundation of E-commerce: social rep-
utation system-a comparison between American and China. In:
Proceedings of international conference on electronic commerce
(CEC’05), ACM Press, New York, pp 230–232

6. Chiu DKW, Leung H-F, Lam K-M (2009) On the making of ser-
vice recommendations: an action theory based on utility, reputation,
and risk attitude. Exp Syst Appl 36:3293–3301

7. Li X, Liu L (2004) PeerTrust: supporting reputation-based trust
for peer-to-peer electronic communities. IEEE Trans Knowl Eng
16(7):843–857

8. Maximilien EM, Singh MP (2002) Conceptual model of web ser-
vices reputation. SIGMOD Rec 31(4):36–41

9. Binder BW, Drago ML, Ghezzi C (2009) REMAN:a pro-active
reputation management infrastructure for composite web ser-
vice. In: IEEE international conference on software engineering
(ICSE’2009), May 16–24, pp 623–626

10. Binder BW, Drago ML, Ghezzi C (2008) Transparent reputation
management for composite web service. In: IEEE international
conference on web services (ICWS’2008), September 23–26,
pp 621–628

11. Conner W, Lyengar A, Mikalsen T (2009) A trust manage-
ment framework for service-oriented environments. In: Interna-
tional conference on world wide-web (WWW’2009), April 20–24,
pp 891–900

12. Nepal S, Malik Z, Bouguettaya A (2009) Reputation propagation
in composite services. In: IEEE international conference on web
services (ICWS’2009), September, pp 295–302

13. Li L, Wang Y (2008) A trust vector approach to service-oriented
application. In: IEEE international conference on web services
(ICWS’2008), September 23–26, pp 621–628

14. Liu A, Li Q, Huang L, Wen S, Tang C (2010) Reputation-driven rec-
ommendation of services with uncertain QoS. In: Proceedings of
IEEE Asia-Pacific services computing conference (APSCC’2010),
Hang Zhou, Dec., pp 6–10

15. Dellarocs C (2003) The digitalization of word-of-mouth: prom-
ise and challenges of online feedback mechanism. Manag Sci
49(10):1407–1424

16. Sing MP, Huhns MN (2005) Service-oriented computing. Wiley
Online Library, New York

17. Sabater J, Sierra C (2003) Reputation and social network analysis
in multi-agent systems. In: Proceedings of the first international
joint conference on autonomous agents and multiagent systems,
Bologna, Italy, pp 475–482

18. Huynh TD, Jennings NR, Shadbolt NR (2006) Certified reputation:
how an agent can trust a stranger. In: Proceedings of the fifth inter-
national joint conference on automomous agents and multiagent
systems, Japan, pp 1217–1224

19. Kamvar SD, Scholosser MT, Garcia-Molina H (2003) The Ei-
genTrsut algorithm for reputation management in P2P networks.
In: International conference on world wide web (WWW’03),
May 20–24

20. Zhou R, Hwang K (2007) PowerTrust: a robust and scalable reputa-
tion system for trusted peer-to-peer computing. IEEE Trans Parallel
Distrib Syst 18(4):472–560

21. Buchigger S, Boudec J-YL (2004) A robust reputation system for
P2P and mobile ad-hoc networks. In: Proceeding of second work-
shop economics of P2P systems

22. Brinklov M, Sharp R (2007) Incremental trust in grid computing.
In: Proceedings of the seventh IEEE international symposium on
cluster computing and the grid, pp 135–144

23. Azzedin F, Maheswaran M, Mitra A (2006) Trust brokering and
its use for resource matchmaking in public-resource grids. J Grid
Comput 4(3):247–263

24. Kreps DM, Wilson R (1982) Reputation and imperfect information.
J Econ Theory 27(2):253–279

25. Holmstrom B (1999) Managerial incentive problems: a dynamic
perspective. Rev Econ Stud 66(1):169–182

26. Huberman BA, Wu F (2004) The dynamics of reputation. J Stat
Mech Theory Exp 2004:P04006

27. Zeng L, Benatallsh B, Ngu AHH, Dumas M, Kalagnanam J, Chang
H (2004) QoS-aware middleware for web services composition.
IEEE Trans Softw Eng 30(5):311–327

123

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

248 SOCA (2012) 6:231–248

28. Berbner R, Spahn M, Repp N, Heckmann Q, Steinmetz R (2006)
Heuristics for QoS-aware web service composition. In: IEEE inter-
national conference on web services (ICWS), pp 72–82

29. Stein S, Payne TR, Jennings NR (2009) Flexible provisioning of
web service workflows. ACM Trans Internet Technol 9(1), Article
2, p 45

30. Cambridge Dictionary Online. http://dictionary.cambridge.org/
31. Wen S, Li Q, Yue L, Liu A, Tang C (2010) Towards fair reputa-

tion propagation from a composite service to its component ser-
vices. In: IEEE international conference on E-business engineering
(ICEBE’2010), Nov. 10–12

32. Liu A, Li Q, Huang L, Xiao M, Liu H (2008) QoS-aware schedul-
ing of web service. In: Proceedings of international conference on
web-based information management (WAIM’08), pp 171–178

33. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in
weighted networks: generalizing degree and shortest paths. Soc
Netw 32:245–251

34. Alonso G, Casati F, Kuno H, Machiraju V (2004) Web services:
concepts, architectures and applications. Springer, Berlin

123

http://dictionary.cambridge.org/

	CRP: context-based reputation propagation in services composition
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Web service model
	3.2 Application scenario

	4 Reputation model
	5 Distribution framework
	5.1 Structure-related importance
	5.2 Community-related importance
	5.3 Distributing score

	6 Experiments
	6.1 Impact of structure
	6.2 Impact of replaceability
	6.3 Hybrid distribution
	6.4 Performance evaluation

	7 Conclusions
	Acknowledgments
	References

