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Abstract We present a sharing-oriented service selection
and scheduling approach capable of finding a trade-off
between requirement satisfaction degree, service utilization
rate and service sharing cost for limited quantities and capac-
ities of available services. In traditional service selection
approaches, each customer requirement is independently
satisfied by optimally selecting a set of candidate service
resources. However, in real-life service scenarios, it is usual
for multiple customers to raise their requirements simulta-
neously, and available services need to be allocated between
them. Especially, when available services are limited in both
quantity and capacity, a traditional “first-come-first-serve”
strategy would lead to a low service utilization rate, and some
requirements cannot be satisfied at all (i.e., a low requirement
satisfaction degree). Our approach makes use of the feature
that some services can be shared by several customer require-
ments. Specifically, a virtualized service resource consisting
of multiple candidate services is constructed and scheduled to
satisfy multiple customer requirements simultaneously. Our
approach searches for the global optimization on require-
ment satisfaction degree, service utilization rate, and service
sharing cost. We build a mathematical model for this multi-
objective optimization problem and propose a nested genetic
algorithm mixed with a greedy strategy. Experiments in an
ocean transportation service setting are conducted and our
approach is compared with traditional approaches to validate
its effectiveness.
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1 Introduction

With the development and prosperity of the IT-enabled
service industry (for example, e-Business, production ser-
vices, and the “Internet of Things”), there has been an increas-
ing number of e-services in the form of web services, business
processes, information portals, and so on [1,2]. In e-service,
real-world services are virtualized and provided online, and
providers and customers then collaborate through a com-
bination of online and real-life interactions to complete the
service process. Such a process is composed of a set of behav-
iors, and various service resources are used to fulfill these
behaviors.

From business model’s point of view, in the face of the
growing number of customers and e-service providers, bilat-
eral resource integration services (BIRIS) [3] have become
one of the predominant patterns in today’s service industry.
An emphasis of BIRIS is that the demand-supply relationship
is established through an intermediary broker between cus-
tomers and providers, and the complex requirements raised
by customers are to be satisfied by a set of distributed ser-
vice resources provided by multiple providers [4]. Typical
examples include Alibaba.com (a B2B broker), Taobao.com
(a C2C broker), and Ctrip.com (a tourist service broker).

In BIRIS-oriented services, a key feature referred to as
multi-requirement (or the requirement queue) is the mas-
sive requirements continually raised by multiple customers.
The intermediary broker faces the important issue of how
to fully use the currently available resources to ensure that
these demands are fulfilled as much as possible, while also
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ensuring the maximum use of resources so as to reduce both
idleness and waste. In summary, resources provided by dif-
ferent enterprises need to be dynamically bundled and con-
figured on demand to satisfy a set of complex needs [4].

Taking tourism services as an example, multiple cus-
tomers make travel requests (including flight and hotel
bookings, tourist bus bookings, tourist attraction ticket book-
ings, and so on). To consider each individual demand is
unrealistic (for example, it is impossible to arrange a bus
for one customer) but multiple demands should be taken
into consideration simultaneously, thus efficiently using the
service resources (that is, a bus is allocated to 20 customers).
The same scenario occurs in logistics services. Suppose one
customer requests that half a container of goods be trans-
ported and another that one and a half containers of goods be
transported. If the demands are considered separately, three
containers are required, but if they are bundled, then two
containers are sufficient [5].

This scenario abounds in real-world services and is of
interest not only to a single provider who owns limited
resources but also to intermediaries who match customer
requirements (CRs) to what is offered by various providers
in their catalogs [6].

From the point of view of research, this problem can be
considered in one of three ways:

1. A service selection and composition problem [7], that
is, service components (usually behavior-oriented func-
tions) are selected and composed together to satisfy the
requirements;

2. A service bundling problem [8], that is, multiple service
products (resources or behaviors) are bundled and holis-
tically provided to customers; or

3. A scheduling problem [9], that is, service resources are
allocated to multiple requirements with the specified
quantities and scheduling.

However, most service composition and service bundling
approaches only consider a single demand raised by a specific
customer or aggregated from a group of similar customers.
Thus, the “sharable” feature of services is not considered
and the service utilization rate (SUR) is not regarded as an
optimization objective.

As a consequence, in the face of multiple requirements,
the one-requirement-oriented service composition/bundling
method has to be repeatedly applied for each requirement.
This leads to a situation where the resource utilization rate
remains low and the continuity of CR satisfaction is poor.
This approach is shown schematically in Fig. 1, where each
cri (i = 1, 2, . . ., n) is a CR and each sr j ( j = 1, 2, . . ., m)

is an available service resource. If sr1 and sr2 are selected to
satisfy cr1, they will not be considered for other requirements
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One-Requirement-Oriented
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Fig. 1 Traditional service composition approach for satisfying
multiple requirements

any longer, even though cr1 might not occupy their full
capacity.

If we observe that there are similarities between many
requirements and that some resources can be used in a
shared manner between multiple requirements, then we
could consider all requirements simultaneously when allo-
cating/scheduling resources to them, thus improving both
the extent to which the requirements are satisfied and the
utilization rate of the available resources.

Another issue is that when considering the constituent ele-
ments of service bundling/composition, the current research
concerns mainly those services that are accessed completely
through the Internet without any human participation, such
as Internet connection services, telephone services, informa-
tion/database services, and web services. The composition
of such services is comparatively easy because QoS optimi-
zation is the principal objective and the only sharing mecha-
nism between them is “concurrency”. However, in real-world
services, there are many resources that cannot be simulta-
neously accessed, examples being physical resources and
human resources. These resources can be virtualized and
publicized on the Internet in the form of WS-HumanTask,
WS-Resource, and so on, but their use and execution are still
in the real world. The scheduling and use of these resources
differs from traditional e-services because of the time- and
space-sharing characteristics that have seldom been consid-
ered before.

This paper considers the following scenario. For multi-
ple demands C R = {cr1, cr2, . . . , crn} raised by multiple
customers and a set of available service resources S R =
{sr1, sr2, . . . , srm}, we construct a virtualized service
resource (VSR) and a corresponding resource scheduling
scheme to allocate m resources in SR among n requirements
in CR. The optimization objectives include (1) maximizing
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Fig. 2 Our VSR-based service composition approach for satisfying
multiple requirements

the number of satisfied customer requirements, (2) maxi-
mizing the utilization rate of resources, and (3) minimiz-
ing the cost incurred by the resource sharing. The approach
is depicted in Fig. 2. For example, V S R1 consists of three
resources {sr1, sr2, sr4} and they jointly satisfy four require-
ments {cr1, cr2, cr3, cr4}.

This paper is organized as follows. Section 2 summarizes
related research. Section 3 gives the necessary preliminaries,
including the descriptions of customer requirements (CR),
service resources (SR), and the virtualized service resource
(VSR). Section 4 evaluates VSR and its scheduling using
three metrics. Section 5 presents the VSR construction and
scheduling methods. Experiments and comparisons are con-
ducted in Sect. 6. The conclusions and suggestions for future
work are presented in Sect. 7.

2 Related work

Multi-requirement-oriented resource selection and schedul-
ing is actually a combination of service selection/composi-
tion, service bundling, and service resource scheduling. This
section briefly reviews the current approaches in these three
areas.

Service selection/composition is a topic of interest in ser-
vices computing research, and numerous methods have been
presented in the literature (see surveys such as [7,10,11]).
The dominant approach is semantics-based dynamic compo-
sition. That is, customer requirements and candidate service
resources are described by formal modeling languages, and
various semantics-matching techniques or artificial-intelli-
gence-based planning techniques are adopted to search for an
optimized composition solution. The current research aims
are: (1) to facilitate the transformation from manual compo-

sition to full-automatic composition by adopting semantics
reasoning and artificial intelligence so as to improve effi-
ciency and accuracy; and (2) to facilitate the transformation
from static composition to dynamic composition and realize
dynamic adaptation by adopting context and QoS-awareness
so as to improve agility.

Note that only a few papers concern the “multi-require-
ment” scenario. Cardellini et al. [12] presented a method in
which multiple requirements arriving at the same moment or
in the same time interval are grouped together and handled in
batch processing. However, the objective of this approach is
to improve the efficiency instead of maximizing the resource
utilization rate. Wang et al. [13,14] proposed an equilibrium-
oriented service composition approach with the objective of
preserving the equilibrium between the satisfaction degrees
of multiple demands with limited available services. Again,
the service sharing feature is not considered.

There have been many research outcomes from service
bundling studies. Research first began with product bun-
dling and extended to service bundling (for example, tele-
communication services and software services), and then
further to product-service mixed bundling. Service bundling
has received wide attention regarding price discrimination,
increasing sales, promoting customer lock-in and creating
entry barriers [15].

A service bundle, also called a service module [16] or
complex service [17], is a package of independent elemen-
tary products or services offered by different decentralized
providers [4,8]. These elementary services are combined in
a network topology that is shaped by service configurations,
interrelations, and dependencies [17]. Research on service
bundling has included work on the principles and objectives
of service bundling [18], the description and modeling of ser-
vice bundles [15,19], including typical relationships between
multiple elementary services, pricing of the service bundle
[17,18], methods and processes of service bundling [4,18–
20], and quality evaluation of service bundling [8].

Resource allocation and scheduling is a very classi-
cal problem in many areas of research, such as operation
research, grid computing, and cloud computing. Concerning
the job-shop scheduling in manufacturing domain where a
finite set of jobs is to be allocated to specific time intervals
on a finite set of machines (equipment resources), optimi-
zation techniques like genetic algorithms, tabu search, rein-
forcement learning, artificial neural networks (see survey in
[21]) are employed to find a schedule of minimum length.

In grid computing and cloud computing, resource sched-
uling looks for a set of computing resources (CPU, stor-
age, software, etc) for each client’s request and ensures an
appropriate level of QoS [22], with the help of protocols
like the Globus Resource Allocation Manager (GRAM) and
schedulers like PBS (Portable Batch System). GRAM allows
users to run jobs remotely, providing an API for submitting,
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monitoring, and terminating the jobs [23]. PBS is a batch job
and computer resource management and scheduler consist-
ing of one Job Server, one or more Job Schedulers, and one
or more execution servers [24]. It accepts batch jobs, allo-
cate the job to the proper computing resources, preserve and
protect the job until it is run, run the job, and deliver out-
put back to the submitter. Each physical resource is defined
as a “node”, and the node consisting of one or more virtual
processors are defined as a “cluster node”. A set of nodes
could be assigned exclusively to a job for the duration of
that job (such nodes are called “exclusive node”), or their
virtual processors are temporarily shared by multiple jobs,
i.e., to allow multiple jobs to run concurrently on one node
(called “temporarily shared nodes”) [25]. PBS job scheduler
adopts load balance policy to look for a distribution of jobs
across multiple exclusive and time-shared nodes to pursue
optimized performance, throughput, and scalability.

Compared with GRAM and PBS, our scenario looks
wider, i.e., it does not consider pure computing resources but
transfers to real-life physical and software resources. Besides
the exclusive and time-sharing scheduling strategies, we con-
sider other new sharing mechanisms (e.g., concurrent sharing
and space sharing). In addition, the resource availability and
QoS are more dynamic.

3 Preliminaries

3.1 Service

We assume that all customers request the same service S
which requires p types of service resources {T1, T2, . . .,

Tp}. For example, ocean transportation services (OTS)
include four primary types of resources, namely ship cabins,
vehicles, containers, and customs declaration e-services.

3.2 Customer requirements

Without loss of generality, we define a customer requirement
(cr) to be

cr = (C, R R, RT, E ST, L ST )

where

1. C is the customer;
2. R R = {rri } is a set of detailed requirements on the con-

crete service resources: rri = 〈T, Q R, P, QoS, L ST,

D〉 where

• T : the requested resource type;
• Q R : requested quantity;

• P = [L P, H P]: the expected price range with low-
est and highest price;

• QoS = [L Q, H Q]: the expected range of integrated
quality metrics aggregated from a set of expected
QoS parameters (availability, reliability, and so on);

• LST: the latest start time for using the required
resources; and

• D: the duration for which the resources are required;

3. RT is the time that cr was submitted; and
4. EST and LST are the earliest and latest time when cr

should be satisfied.

An OTS example might be a consigner C01 who requests
four types of resources, container (rr1), vehicle (rr2), ship
cabin (rr3), and customs service (rr4), each with specific
quantities, price ranges, and QoS ranges. The requirement is
submitted at 3:00 pm, January 30, and transportation of the
goods is expected to start on or after January 31 but not later
than February 2.

3.3 Requirement segmentation

Multiple requirements raised in a specific period of time
form a requirement queue C Q = (cr1, cr2, . . .). Because
all requirements have a specified time frame, it is necessary
to partition the queue into segments, each of which is to be
processed simultaneously.

We present here a simple partitioning method:

1. at time t , the first requirement that has not yet been dealt
with in the queue, cr0, is added to current segment;

2. each cri in the queue is checked; if cri . E ST ≤
cr0. L ST , then add cri to current segment; otherwise,
cri will be considered in the next segment.

The issue of how to preserve the equilibrium between the
current segment and the upcoming requirements (that is, pre-
serving limited resources for future requirements) is consid-
ered in detail in [13]. In the remainder of this paper, we
investigate the service selection and scheduling issues for a
single segment in a specific time scope.

3.4 Candidate service resources

A service resource is generally defined as a virtual or phys-
ical entity that can provide specific capacities and behav-
iors. Products, equipment, environment, people, software,
and information are all typical service resources.

Service resources are categorized according to the behav-
iors that they can deliver (the attribute T mentioned in
Sect. 3.2). To satisfy a customer’s requirements (for example,
two 40-feet containers are requested), concrete resources are
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to be selected from the available resource pool (two 40-feet
containers—No. 0232A and 0237K—are selected).

A concrete service resource is defined by sr = (ID,

Provider, T, ShareType, P, QoS, MC, M AP, M SU ),
where ID, Provider, and T are the unique identity, the owner,
and the type of sr, respectively; ShareType is the manner in
which sr is to be shared by multiple requirements; P is the
unit price; QoS is the value of the integrated quality metrics
attached to sr; and MC, MAP, and MSU are sharing-related
attributes that will be discussed in the next section.

3.5 Sharing types for service resources

The four types of resource sharing we consider are concur-
rent sharing (CS), time sharing (TS), space sharing (SS), and
exclusive sharing (ES). Detailed information about these and
their related attributes is shown in Table 1.

3.6 Virtualized service resource (VSR)

In our approach, a number of customer requirements CR can
be jointly completed by a number of service resources from
multiple providers. We introduce a new term, virtualized ser-
vice resource (VSR), to describe this many-to-many relation-
ship between CR and SR.

A VSR does not exist permanently, and only when new
requirements are raised does it come into being according
to specified criteria. After the requirements are fulfilled, it is
dismissed. VSR is quite similar to “virtual enterprise” in the
manufacturing industry [26].

A VSR is defined by V S R = (C R, S R, Scheduling),
where C R is the set of requirements, SR is the set of concrete
resources, and for arbitrary cri ∈ C R, cri is satisfied by the
scheduling of resources in SR. The scheduling information is
described by Scheduling, which includes whether and when
each sr j is to be used for cri , the quantity of sr j to be allo-
cated to cri , and the duration for which cri will occupy sr j .
Scheduling is detailed in the next section.

3.7 Scheduling of virtualized service resource

We write Scheduling (V S R, C R) = {AS} to denote the
scheduling schema composed of a set of atomic schedules
AS = (rr, sr, QS, ST, D). This means that for rr, we allo-
cate the resource sr with quantity QS from the time point ST
for duration D. QS = 1 indicates that sr is allocated entirely
to rr, and 0 < QS < 1 indicates the proportion of sr is
allocated to rr.

This scheduling schema can be presented graphically as
a resource allocation diagram. Figure 3 shows a schematic
example, in which sr1 will be shared by rr1 to rr5, sr2 is to
be shared by rr6 to rr8, and srn is used exclusively by rr9.

When resources in VSR are scheduled, it is necessary to
consider the sharing type for each resource. There are four
categories of scheduling:

• Concurrency-based scheduling

For a concurrent-sharing resource sr j , multiple requirements
are allowed to use sr j at the same time, but the number of

Table 1 Classification of resource sharing types

Sharing type Descriptions Examples Parameters

Concurrent sharing (CS) A resource can be simultaneously
accessed by multiple customers
and there is no interplay between
them. The concurrency number
should not exceed the maximal
concurrency number (MC)

Software resources (e.g., web
services), Information resources

Maximal concurrency number
(MC)—MC is defined as a
positive integer. If MC = 1, this
resource is degenerated into an
exclusive sharing one

Time sharing (TS) A resource can be used by multiple
customers in different periods in
a lockstep style during the
maximal available period (MAP)

Human resources, physical
equipment (e.g., vehicles)

Maximal available period
(MAP)—MAP is defined as a
time interval with an earliest and
a latest time. Outside the interval,
this resource cannot be allocated

Space sharing (SS) A resource provides space capacity
that is to be shared by multiple
customers. Each customer
occupies part of space that
should be any multiple of the
minimal sharing unit (MSU)

Containers, packages, tour groups Minimal sharing unit
(MSU)—MSU is a decimal, e.g.,
MSU = 0.2 means that the
minimal space allocated to one
requirement is 20% of the whole
available space

Exclusive sharing (ES) A resource cannot be shared at any
dimension but is to be used in an
exclusive way, that is, it can serve
only one single requirement
during the whole service process

Ship cabins, tangible products N/A
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Fig. 3 VSR scheduling
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requirements with simultaneous access at any time should
not exceed the maximal concurrency number. That is, at all
times t, |{AS |AS ∈ W ∧ t ∈ [AS.ST, AS.ST + AS.D]}| ≤
sr j . MC , where W = {AS|AS ∈ Scheduling ∧ AS.sr =
sr j }.

• Space-based scheduling

For a space-sharing resource sr j , sr j is allocated to multiple
requirements, each of which occupies a part of the avail-
able space. The total allocated space should not exceed the
maximum space of sr j , and each requirement should be allo-
cated a multiple of the minimal sharing unit (MSU) of sr j to.
That is,

∑
AS∈W AS.QS ≤ 1 and AS.QS = K × sr j . MSU

(K is an integer). For instance, if a container “0232A” (with
M SU = 0.2) is shared by two consigners’ requirements
(rr1 and rr2) with quantities 0.4 and 0.42, respectively, then
there are two scheduling: < rr1, “0232A”, 0.4, ST, D > and
< rr2, “0232A”, 0.6, ST, D >.

• Time-based scheduling

For a time-sharing resource sr j , the available time for
sr j is allocated to multiple requirements with no over-
laps. That is, for AS1, AS2 ∈ W , if AS1. sr = AS2. sr ,
then [AS1.ST, AS1. ST + AS1.D] ∩ [AS2. ST, AS2. ST +
AS2.D] = Ø. For instance, if vehicle H53172 is arranged to
pick up goods from two consigners (rr1 and rr2), then there
are two scheduling: < rr1, “H53172”, 1, 15:00, 30min >

and < rr2, “H53172”, 1, 15:30, 72min > meaning that the
vehicle serves rr1 from 15:00 to 15:30 and then serves rr2

from 15:30 to 16:42.

• Exclusion-based scheduling

For an exclusive-sharing resource sr j , sr j is allocated to
a single requirement without sharing. That is, for arbitrary
AS1, AS2 ∈ W, AS1.rr �= AS2.rr .

4 Evaluation of VSR and its scheduling

For specified SR and CR, there might be a number of pos-
sible scheduling schemas, each of which has a different
performance. In this section, we use three indicators to eval-
uate the performance of VSR and its scheduling.

4.1 Requirement satisfaction degree (RSD)

The degree to which the requirements in CR are satisfied by
the scheduling of VSR is denoted by requirement satisfac-
tion degree RSD(VSR). This is an important metric used in
traditional service selection and composition approaches.

We use the ratio between the number of requirements sat-
isfied by the VSR scheduling and the total number of require-
ments in CR as our measure of RSD:

RSD(V S R) =
∣
∣
∣
⋃

AS∈Scheduling AS.cr
∣
∣
∣

|C R|
Thus, RSD takes a value in the interval [0,1].

Note there is a pre-condition that, if {sr1, . . . , srk} are
allocated to satisfy the requirement cr, then all resources in
{sr1, . . ., srk} could satisfy cr’s QoS and price expectations.
This is ensured during the resource selection and scheduling
algorithms in the next section but is not considered in the
measurement of RSD.
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Fig. 4 An example of TS-type scheduling

4.2 Service utilization rate (SUR)

SUR(VSR) measures the average utilization rate of the
resources contained in VSR.

We first give a definition of SUR according to sharing type.
For a given sr j ∈ S R, we let W = {AS|AS ∈ Scheduling∧
AS.sr = sr j } as all the scheduling of the resource sr j .

If sr j . ShareT ype = TS, the utilization rate is measured
by the ratio between the length of the period occupied purely
by the scheduling and the total duration that sr j is occupied:

SUR
(
sr j

) =
∑

ASi ∈W ASi .D

max {ASi .ST + ASi .D} − min {ASi .ST } .
For example, in Fig. 4, there are three requirements allocated
to one TS-type resource. The total period is 10 hours and the
period occupied by the scheduling is (3−0)+(7−4)+(10−
8) = 8, and during the period [3,4] and [7,8], the resource is
free. So SUR = 8/10 = 0.8.

If sr j . ShareT ype = SS, the utilization rate is measured
by the ratio between the total space occupied by the sched-
uling and the total available space:

SUR
(
sr j

) =
∑

ASi ∈W ASi .QS

|W |
If sr j . ShareT ype = ES, there is no any sharing or waste,
so SUR(sr j ) = 1.

If sr j . ShareT ype = CS, the measurement is a little more
complex because at different time points, there might be
different numbers of requirements concurrently using sr j .
Let T M = ⋃

ASi ∈W {ASi .ST, ASi .ST + ASi .D} be the set
of all start and end time points in the scheduling of sr j .
Suppose that there are a total of p elements {t1, t2, . . . , tp} in
TM and that they are sorted in ascending order. Then, SUR is
measured for different time periods and synthesized together
as a proportional sum weighted by the length of each time
period:

SUR
(
sr j

)

=
p−1∑

i=1

(|{AS |AS ∈W ∧ AS. ST ≤ ti ∧(AS.ST + AS.D)≥ ti+1}|
sr j .MC

× ti+1 − ti
max T M − min T M

)

.

Taking Fig. 5 as an example, suppose that s j is assigned to
five requirements and that there are eight time points in T .

T

rr1

rr2

rr3

rr4

rr5

t1 t2 t3 t4 t5 t6 t7 t8

0 2 3 5 8 10 11 13

Fig. 5 An example of CS-type scheduling

Suppose the maximal concurrency number (MC) of s j is 3,
so SUR

(
sr j

) = 1
3 × 2

13 + 3
3 × 1

13 + 2
3 × 2

13 + 0
3 × 3

13 + 1
3 ×

2
13 + 2

3 × 1
13 + 1

3 × 2
13 ≈ 0.385. The first 1

3 means that during
t1and t2, there is only one requirement (rr1) occupying the
resource, so the resource utilization is 1/3. The second 2

13
means that the ratio of the period [t1, t2] in the whole service
duration is (2-0)/(13-0). The meanings of other fractions are
similar.

Combining the SUR of all the resources, SUR (V S R) =
∑

sr j ∈S R SUR(sr j)

|S R| is the average of all the resources’ SUR
and lies in the interval [0,1].

4.3 Service sharing cost (SSC)

As has already been discussed, the resource utilization rate
can be improved by sharing of service resources. However,
this also increases the cost of coordination between multiple
requirements that use the same resource. During resource
selection and scheduling, it is necessary to consider the shar-
ing cost as an optimization objective, which we denote by
service sharing cost SSC(VSR).

Different sharing types lead to different definitions of
SSC. For a given sr j ∈ V S R. S R, we let W = {AS|AS ∈
Scheduling ∧ AS.sr = sr j }.

• If sr j . ShareT ype = ES, there is no sharing, so
SSC(sr j ) = 0.

• If sr j . ShareT ype = CS, although multiple require-
ments might share sr j at some time, they are concurrently
satisfied by sr j and there are no any coordination between
these requirements, so SSC(sr j ) = 0.

• If sr j . ShareT ype = TS, sr j will be switched between
multiple requirements over the time period, which may
take extra time (for example, a vehicle moving from one
customer’s location to another’s), so the more require-
ments that sr j is allocated to, the greater the poten-
tial cost incurred. For simplicity, we use the number of
requirements that sr j is allocated to as our measure of
SSC, that is, SSC(sr j ) = |W |.
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• If sr j . ShareT ype = SS, the situation is the same as for
TS, and so SSC(sr j ) = |W |.

The total SSC is the calculated as SSC (C R, V S R) =∑
sr j ∈S R SSC(C R,sr j)

|S R| being an integer.

5 A sharing-based service selection and scheduling
approach

5.1 Optimization objectives, variables and process

Given a set of requirements C R = {cr1, . . . , crn} and a set
of available resources S R = {sr1, . . . , srm}, we select sev-
eral resources from SR and allocate them to requirements or
parts of requirements in CR, thereby constructing a schema
V S R = (C R, S R, Scheduling).

As mentioned above, there are three optimization objec-
tives for such sharing-based service selection and scheduling:

Max RSD(C R, V S R),

Max SUR(C R, V S R), and

Min SSC(C R, V S R).

This is a typical multi-objective optimization problem [27].
The solution to the problem is quite complex and involves

the allocation of resources to requirements specified accord-
ing to both time and quantity. To simplify the complexity of
solving the problem, we use the combination of the following
four decision variables to represent a feasible solution:

1. xi = 0/1 (i = 1, . . . , n) indicates whether or not the i th
requirement is satisfied;

2. yi j = 0/1 (i = 1, . . . , n, j = 1, . . . , m) indicates
whether the i th requirement is satisfied by the j th
resource; for each i , there may be multiple j with yi j =1,
i.e., multiple resources could be allocated to one require-
ment;

3. pi j = [STi j , Di j ] gives the start time and duration that
the j th resource is used to satisfy the i th requirement. It
is a representation of resource allocation over time;

4. zi j = 1 or a decimal fraction indicates the proportion of
the j th resource that is allocated to the i th requirement.
It is a representation of resource allocation over quantity.

Different resource sharing types use different combinations
of these decision variables to represent a feasible schedule
and to evaluate the three optimization objectives, as shown
in Table 2.

For example, for ES-type resources, the scheduling is not
related to time and quantity, so the decision variables are only
{xi }, {yi j }; for SS-type resources, the scheduling is solely
related to quantity but not related to time, so the decision

Table 2 Relationships between decision variables and optimization
objectives

Sharing
type

Variables for representing
a schedule

Variables for calculating the
optimization objectives

RSD SSC SUR

ES {xi }, {yi j } {xi } 0 1

CS {xi }, {yi j }, {pi j } {xi } 0 {yi j }, {pi j }
SS {xi }, {yi j }, {zi j } {xi } {yi j } {zi j }
TS {xi }, {yi j }, {pi j } {xi } {yi j } {pi j }

variables are {xi }, {yi j }, {zi j }. The right part of Table 2 sum-
marizes the variables for calculating the three optimization
objectives (RSD, SSC, and SUR) aiming at different sharing
types, and based on the discussions in Sect. 4, readers can
easily get such results.

A basic constraint on scheduling is that, when there are
multiple resource requirements (rr) in a cr, either all of these
should be satisfied in a feasible VSR or else none of should
be satisfied. That is, a cr must be considered in its entirety.

It is clear that the search space for this problem is quite
big and that it is an NP problem. We use a genetic algorithm
(GA) to search for the optimal solution, and to simplify the
operations in the GA algorithm we adopt a three-level nested
algorithm to optimize the four decision variables. Specif-
ically, the first level deals with optimizing {xi }, the second
level deals with optimizing {yi j } and the third level deals with
optimizing {zi j } or {pi j }. The algorithm is briefly described
in Fig. 6.

Firstly, the 1st-level algorithm deals with {xi }, i.e., to ran-
domly select a set of requirements that will be satisfied, calcu-
late the RSD according to {xi } (from Table 2 we see that RSD
is only related to {xi }), then enter the 2nd-level’s optimiza-
tion. Based on the results returned by the 2nd-level algorithm,
it calculates RSD*SUR/SSC, checks whether the exit condi-
tion is satisfied. If it is not satisfied, it enters the next loop
and looks for better result and finally returns the optimized
scheduling result. The process of the 2nd-level algorithm is
quite similar as the 1st-level one, except that it deals with
{yi j }(to select a set of resources for each requirement that
should be satisfied) and calculates SSC according to {yi j },
then enters the 3rd-level’s optimization. The 3rd-level algo-
rithm deals with {zi j } or {pi j }, i.e., to specify the time and
space allocation between the selected resources (represented
by {yi j }) and the selected requirements (represented by {xi }),
calculates and optimizes SUR, then returns the optimized
scheduling having maximal SUR back to the 2nd-level algo-
rithm, which further returns the optimized scheduling have
maximal SUR/SSC to the 1st-level algorithm. Finally, the
scheduling with maximal (RSD*SUR/SSC) is found. The
arrows in Fig. 6 show the execution steps between the three
levels of algorithms.
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Specify {zij}
Specify {pij}

Specify {yij}

Specify {xi}

SUR

SSC

RSD
1-level

2-level

3-level

Max (SUR/SSC)

Max (SUR)

Max (RSD*SUR/SSC)

do
{

Select a set of requirements to be satisfied;       // {xi}
Calculate RSD;
Enter 2nd level and

return optimized scheduling with Max(SUR/SSC);
Calculate RSD*SUR/SSC;

}
until

Max(RSD*SUR/SSC) is found

do
{

Select resources for each selected req;              // {yij}
Calculate SSC;
Enter 3rd level and 

return optimized scheduling with Max(SUR);
Calculate SUR/SSC;

}
until

Max(SUR/SSC) is found

do
{

Specify time and space allocation between
selected resources and selected requirements; 

// {zij}, {pij}
Calculate SUR;

}
until

Max(SUR) is found

Fig. 6 Basic process of the three-level nested algorithm

5.2 Global Genetic Algorithm (GGA)

We first give the first level of the algorithm, called the Global
Genetic Algorithm (GGA).

GGA (Global Genetic Algorithm)
Input: CR, SR
Output: V SR = 〈C R, SR, Scheduling〉
Step 1: Specify the population size NP, the maximum number of gen-
erations NG, crossover probability pc and mutation probabilitypm , and
set g=1 to be the number of the population.
Step 2: Randomly generate an initial population Pg(X) in which each
chromosome is represented by X = [x1, x2, . . ., xn], xi = 0/1, n =
|C R|.
Step 3: For each X ∈ Pg(X), repeat Steps 4 ∼ 6.
{

Step 4: C R = {cri |xi = 1}, R R = ∪cri ∈C Rcri .R R.

Step 5: Group the elements in R R according to the required
resource type (that is, rr.T ), with R Rk representing the set of
resource requirements of type Tk(k=1, 2, …, p). Also, group the
resources in SR according to their type, with the resources in SRk
being the candidates for satisfying the requirements in R Rk .
Step 6: For each R Rk and the corresponding SRk :
{

Switch(The sharing type of the required resources in R Rk)

Case “ES”: invoke algorithm ESA(R Rk , SRk);

Case “CS”: invoke algorithm CSA(R Rk , SRk);

Case “SS”: invoke algorithm SSA(R Rk , SRk);

Case “TS”: invoke algorithm TSA(R Rk , SRk);

Each algorithm above returns a set of scheduling schemas,
denoted by Scheduling(R Rk , SRk). If there exists at least
one k that makes Scheduling(R Rk , SRk) = Ø, then the
chromosome X chosen in Step 3 is invalid because there
is no possible feasible scheduling that could satisfy X . In
this case, set X’s fitness to be F(X) = 0, return Step 3 and
choose another chromosome.

}

If Scheduling (R Rk , SRk) �= Ø for all k, then X’s final schedul-
ing schema is

⋃p
k=1 Scheduling

(
R Rk , SRk

)
.

For
⋃p

k=1 Scheduling
(
R Rk , SRk

)
, calculate the fitness of X to

be F(X) = RSD×SU R
SSC .

}
Step 7: Find the optimal chromosome X* that has the maximal fitness
over the current and all previous generations.
Step 8: If g + 1 > N G, go to Step 10, otherwise go to Step 9.
Step 9: g = g+1; perform the selection, crossover, and mutation to
generate the next population Pk+1(X), then go to Step 3.
Step 10: Output X* and its corresponding scheduling schema.

In GGA, a chromosome X represents a specific schedul-
ing schema indicating what requirements are to be satisfied,
but only if the second-level algorithm (Step 6) returns a valid
scheduling, is X valid. RSD is calculated from X itself, while
SUR and SSC are calculated from the valid scheduling for
X. X’s fitness is then calculated by RSD×SU R

SSC .
In Step 9, we use the roulette wheel selection scheme to

determine which chromosomes should be inherited by the
next generation, the one-cut-point strategy for crossover and
a simple mutation strategy for mutation.
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5.3 Exclusive-Sharing-Oriented Algorithm (ESA)

ESA (Exclusive-Sharing-Oriented Algorithm)
Input: RR, SR
Output: Scheduling(RR, SR)
Step 1: For each rri ∈ R R
{

Invoke algorithm RSA(rri , SR) to select a candidate service
resource set SRi in which each sr satisfies the QoS and price
constraints in rri .
If SRi = Ø, then there are no available resources that satisfy rri .
Set Scheduling (R R, SR) = Ø and exit this algorithm.

}
Step 2: There might exist i, j that make SRi ∩ SR j �= ∅, i.e., some
resources could satisfy both rri and rr j . Because resources in SR are
all exclusive sharing (i.e., each rri must be allocated one resource
to), | ⋃rri ∈R R SRi | < |R R| indicates that there are not enough
candidate resources to satisfy all the requirements. Set Scheduling
(R R, SR) = Ø and exit. Otherwise go to Step 3.
Step 3: For exclusive-sharing resources, SUR and SSC are not related
to Scheduling(RR, SR) (from Table 2, we see that SUR=1 and SSC=0
always), so the problem is transformed into: for each rri ∈ R R, select
one sr j from SRi that gives the most cost-effective solution.
The optimization objective is

max
n∑

i=1

m∑

j=1

(

yi j × sr j .QoS

sr j .P

)

such that:

• yi j = 0/1 indicates whether or not the j th resource (sr j ) is allocated
to satisfying the i th requirement (rri );

• if yi j = 1, then sr j ∈ SRi : the selected resource must satisfy the
QoS and price constraints for the requirement;

• for all i,
∑m

j=1 yi j = 1: one and only one resource is allocated to a
requirement;

• for all j,
∑n

i=1 yi j ≤ 1: a resource is allocated to at most one
requirement.

The 0–1 integer linear programming approach is adopted to solve this
problem and obtain Scheduling(RR, SR). We do not give details of this
sub-algorithm here.
Note that it is not necessary to enter the 3rd-level algorithm to schedule
the time and allocate the quantity because the scheduling of exclusive-
sharing resources is not related to either of them.

5.4 Concurrent-Sharing-Oriented Algorithm (CSA)

CSA (Concurrent-Sharing-Oriented Algorithm)
Input: RR, SR
Output: Scheduling(RR, SR)
Step 1: For each rri ∈ R R
{

Invoke the algorithm RSA(rri , SR) to select a candidate service
resource set SRi in which each sr satisfies the QoS and price
constraints for rri .

If SRi = Ø, then there are no feasible resources that satisfy rri ,
so set Scheduling (R R, SR) = Ø and exit this algorithm.

}

Step 2: Specify NP, NG, pc, and pm for the second-level GA.
Step 3: Let g=1 be the number of current generation. Randomly
generate an initial population Pg(Y ) in which a chromosome is repre-

sented by Y=

⎡

⎢
⎢
⎢
⎣

y11 · · · y1m
y21 y2m
.
.
.

.

.

.

yn1 · · · ynm

⎤

⎥
⎥
⎥
⎦

(n = |C R|, m = |SR|), where yi j =0/1

indicates whether or not rri is satisfied by sr j in the corresponding
schedule.
A chromosome is valid only if the following constraints are satisfied:

• if yi j =1, then sr j ∈ SRi : the selected resource must satisfy the
QoS and price constraints in the requirement;

• for arbitrary i,
∑m

j=1 yi j = 1: one and only one resource is allocated
to a requirement.

Step 4: For each Y ∈ Pg(Y )

{

Step 5: For each resource sr j ∈ SR
{

Step 6: For each rri that satisfies yi j =1
{

Calculate K = |{AS|AS ∈ Scheduling(R R, SR)∧AS.sr =
sr j ∧ [AS.ST, AS.ST + AS.D] ∩ [rri .L ST, rri . LST +
rri .D] �= Ø}| be the total number of requirements that sr j
has been allocated to in the expected period of rri .
If K < sr j .MC (indicating that sr j has not yet reached its
maximal concurrency number), then construct a schedule
ASi = [rri , sr j , 1, rri . L ST, rri .D] and add it to Sched-
uling(RR, SR).
Else if K ≥ sr j .MC, rri cannot be satisfied by sr j and hence
Y is invalid. Exit from Step 5 and 6, go to Step 4 and choose
another chromosome.

}

}

Step 7: According to Scheduling(RR, SR), calculate the fitness of
each chromosome Y by F(Y )=SUR.

}
Step 8: Find the optimal chromosome Y* that has the maximum fitness
over the current and all previous generations.
Step 9: If g+ > N G, go to Step 11, otherwise go to Step 10.
Step 10: g = g + 1; perform the selection, crossover, and mutation to
generate the next population Pg+1(Y), then go to Step 4.
Step 11: Output Y* and the corresponding scheduling schema.

Step 1 uses RSA to compress the search space for each
requirement rr. Steps 2 to 11 are the second-level opti-
mization process. Step 3 constructs the population, where
each chromosome being a matrix represents a resource-
requirement allocation schema (a many-to-many relation-
ship). For each allocation schema, Steps 5 and 6 allocate each
requirement to a selected resource one at a time, ensuring that
the total number of requirements allocated to one resource
does not exceed the resource’s maximal concurrency num-
ber Steps 7 and 8 look for the optimal allocation solution by
calculating and comparing the fitness of each chromosome.

In Step 10, the roulette wheel selection scheme is used
to determine which chromosomes should be inherited by the
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next generation. The one-cut-point strategy is used for cross-
over, that is, each chromosome is partitioned into two parts
(k and m − k), and these parts are re-matched to form two
new chromosomes. This is shown in Fig. 7.

For the mutation, we use a swap mutation strategy. That
is, we randomly select two genes (yi j and yik) from the same
row and swap the values of yi j and yik , with the constraint
that sr j and srk should both belong to S Ri .

Note that the crossover operation may produce invalid
chromosomes (that is, ∃i,

∑m
j=1 yi j = 0 or

∑m
j=1 yi j > 1),

and these need to be repaired. The repairing process is:

• if
∑m

j=1 yi j = 0, randomly select one sr j from S Ri and
set yi j =1;

• if
∑m

j=1 yi j > 1, randomly select one sr from {sr j |yi j =
1} and set yi j =0 for each sr j ∈ {sr j |yi j = 1∧ sr j �= sr}.

5.5 Space-Sharing-Oriented Algorithm (SSA)

SSA (Space-Sharing-Oriented Algorithm)
Input: RR, SR
Output: Scheduling(RR, SR)
Step 1: For each rri ∈ R R
{

Invoke the algorithm RSA(rri , SR) to select a candidate service
resource set SRi in which each sr satisfies the QoS and price
constraints in rri .
If SRi = Ø, then there are no feasible resources that satisfy rri .
Set Scheduling (R R, SR) = Ø and exit this algorithm.

}
Step 2: For each SRi , |SRi | < �rri .Q R� indicates the quantity of
required resources in rri that cannot be satisfied by SRi . Set Sched-
uling(R R, SR) = Ø and exit. Otherwise go to Step 3.
Step 3: Sort the elements in R R = {rri } in ascending order according
to rri .QoS

rri .Price . This is to ensure that the requirements that could be most
easily satisfied are dealt with earlier in the following steps.
Step 4: For each rri
{

Sort the elements in SRi in ascending order according to
sr j .QoS

sr j .Price .

If
∣
∣SRi

∣
∣ <

⌊
rri .Q R

⌋
, then let Scheduling (R R, SR) = Ø and

exit this algorithm.
Select the first �rri .Q R� resources (denoted by SR(I P)

i ) from
SRi and allocate them to rri . For each selected resource, con-
struct the corresponding scheduling and add it to Scheduling(RR,
SR).
For each rrk ∈ R R with k �= i , update SRk by SRk =
SRk\SR(I P)

i .

}
Step 5: Denote R R(D P) = {rri |rri ∈ R R∧(rri .Q R −�rri .Q R�) > 0}.
For each rri ∈ R R(D P), if SRi = Ø then set Scheduling (R R, SR) =
Ø and exit this algorithm.
Step 6: Specify NP, NG, pc and pm for the second-level GA.
Let g=1 be the number of the current generation. Randomly generate
an initial population Pg(Y ) in which each chromosome is represented

by Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y11 · · · y1m
y21 y2m
.
.
.

.

.

.

yn1 · · · ynm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. yi j =0/1 indicates whether or not rri is satis-

fied by sr j . n = |R R(D P)|, m =
∣
∣
∣
⋃

rri ∈R R(D P) SRi

∣
∣
∣, so that the length

of a chromosome is n × m.

A chromosome is valid only if the following constraints are
satisfied:

• for each i,
∑m

j=1 yi j ≥ 1 and
(
rri .Q R − ⌊

rri .Q R
⌋) ≥

∑
yi j =1 sr j .M SU : there is at least one resource allocated to each

requirement, and if there are multiple resources allocated to one
requirement, each of them should have the chance of contributing
at least its MSU (minimal sharing unit)’s space to satisfying the
requirement;
• if yi j =1, then sr j ∈ SRi : the selected resource must satisfy
the QoS and price constraints for the requirement;
• for each j , if

∑n
i=1 yi j ≥ 1, then

∑n
i=1 yi j ≤ 1

sr j .M SU : the
number of requirements satisfied by each resource should not
exceed the maximal number 1

sr j .M SU .

Step 7: For each Y ∈ Pg(Y )

{

Under the resource allocation scheme defined by Y, the
problem of searching for the optimal quantity allocation is
described by: for each rri ∈ R R(D P), select sr j (with quan-
tity zi j ) from SRi that gives the most cost-effective final solution.

The optimization objective is

max
n∑

i=1

m∑

j=1

(

zi j × sr j .QoS

sr j .P

)

,

such that:

• 0≤ zi j ≤1 indicates the quantity of the j th resource (sr j )

that is allocated to satisfying the i th requirement (rri );
• if yi j =1, then zi j = L × sr j .M SU (L ≥ 1 is an integer):
the quantity of a resource allocated to each requirement
should be multiple of its minimal sharing unit;
• for each j,

∑
yi j =1 zi j ≤ 1: the total allocation of each

resource should not exceed 1;
• for each i,

∑
yi j =1 zi j = ri j .Q R : the total quantity of

resources to which a requirement is allocated should be
equal to the requested quantity.

A linear programming approach is adopted for solving this prob-
lem to obtain Scheduling(RR, SR). If Scheduling (R R, SR) = Ø,
then Y is invalid, go back to Step 7 and choose another chromo-
some. Otherwise, calculate the fitness of Y by F(Y )=SUR/SSC.

}
Step 8: For the current optimal solution, choose Y* with the maximum
fitness and whose scheduling schema is not empty from the current and
all previous generations.
Step 9: If g + 1 > N G, go to Step 11, otherwise go to Step 10.
Step 10: g = g+1; perform the selection, crossover and mutation to
generate the next population Pg+1(Y), then go to Step 7.
Step 11: Output Y* and the corresponding Scheduling(RR, SR).
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Fig. 7 One-cut-point crossover strategy

Step 1 of SSA is the same as CSA, designed to reduce
the search space. Steps 2 to 4 deal with the integer part
of the quantity of requested resources for each requirement
using a greedy policy. Steps 5 to 11 are the second-level
optimization process for allocating resources to the deci-
mal part of each requirement. Step 5 checks whether the
quantity of the remaining candidate resources is sufficient
for the requirements. Step 6 constructs the population,
where each chromosome represents a resource-require-
ment allocation schema. For the allocation schema defined
by each chromosome, Step 7 is the third-level optimiza-
tion for obtaining the concrete allocation quantity of each
resource.

In Step 7, the fitness of Y is calculated as F(Y )=SUR/SSC.
It is more complex in calculating SUR and SCC of space-
sharing resources because the integer and decimal part
of each requirement should be jointly considered. Spe-

cifically, SSC=
∑m

j=1
∑n

i=1 yi j

|{ j|∃i,yi j =1 }|+∑n
i=1 �rri .Q R� where

∑n
i=1 yi j

in the numerator calculates the SSC of resource sr j and
∑m

j=1
∑n

i=1 yi j is the sum of SSC for all the resources,
and

∣
∣
{

j
∣
∣∃i, yi j = 1

}∣
∣ in the denominator calculates the total

number of resources in the scheduling of the decimal part
of requirements and

∑n
i=1

⌊
rri .Q R

⌋
is the total number of

resources in the scheduling of the integer part of require-

ments. SUR=
∑n

i=1 rri .Q R

|{ j|∃i,yi j =1 }|+∑n
i=1 �rri .Q R� , where the numer-

ator is the sum of the resource quantity requested in each
requirement (also the sum of SUR for all allocated resources
in the scheduling represented by Y) and the denominator is
the total available space (calculated by the total number of
allocated resources in the scheduling represented by Y).

5.6 Time-Sharing-Oriented Algorithm (TSA)

TSA is quite similar to CSA, i.e., both are to allocate one
resource to multiple requirements along the time. Actually, a

time-sharing service resource may be regarded as a concur-
rent sharing one whose maximal concurrency number (MC)
is 1. Besides, the optimization objective will be SUR/SCC
instead of pure SUR.

Therefore, we do not give the full TSA here but to make
a minor revision on CSA. The modifications are emphasized
by the bold font below.

Line 2 of Step 6: If K= 0 (indicating that srj

has not yet been occupied during the expected
period of rri), then construct the scheduling ASi =
[rri , sr j , 1, rri . L ST, rri .D] and add it to Sched-
uling(RR, SR).
Step 7: According to Scheduling(RR, SR), calcu-
late the fitness of each chromosome Y as F(Y) =
SUR/SSC;

5.7 Resource Selection Algorithm (RSA)

In the four algorithms detailed above is the common
sub-algorithm RSA(rr, S R). This algorithm checks each
resource in SR whether it could satisfy rr’s QoS and price
expectations, then returns all the qualified resources.

RSA(Resource Selection Algorithm)
Input: rr, SR
Output: SR
Let SR = ∅;
For each sr ∈ SR
{

If (sr.P >= rr.LP and sr.P <= rr.HP and sr.QoS >= rr.LQ
and sr.QoS <= rr.HQ)
Then SR = SR ∪ {sr};

}

This algorithm is not the focus of this paper, so it keeps sim-
ple and the resource selection criteria keep quite strict, i.e.,
only if the actual QoS and price of a resource fall in the
expectation scope of the customer requirement, could it be
selected as a candidate.

6 Experiments and comparisons

6.1 Experiment settings

In this section, we use several experiments to compare our
approach with the traditional non-sharing service selection
approach. A real-world ocean transportation service [4] is
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Table 3 Typical resource types in OTS

Resource
type

Mode of
existence

Services Sharing
type

Ship cabins Physical entities Container loading ES

Vehicles Physical entities Land transportation TS

Containers Physical entities Goods loading SS

Customs
declaration
service

Web services Customs declaration CS

used as the experiment background in which a service broker
obtains service resources from multiple service providers
(shipping companies, container agencies, truck companies
and dock fields) and provides an integrated service to the
consigners. The resources employed in this service are listed
in Table 3.

Ship cabins are the space for storing containers in the
ship during transportation. If a cabin is occupied by a
container from a specific consigner, then it cannot be
allocated to other consigners for the duration of trans-
portation and this is thus a case of exclusive sharing.
Vehicles are used for transporting containers from ware-
houses to the dock and can be time-share allocated to
multiple customers. Containers are of course space-shar-
ing resources. Customs declaration services are web ser-
vices for receiving the customs declaration applications
and sending inspection results to the applicants and thus
are concurrent-shared with a maximal concurrency number
constraint.

Firstly, we briefly introduce the non-sharing service selec-
tion approach. As discussed in Sect. 1 and shown in Fig. 1,
the non-sharing approach deals with requirements one by one
without considering any sharing between multiple require-
ments. No matter what sharing type a service resource has, it
is always scheduled by an exclusive-usage way. For each
resource requirement rri , the algorithm RSA(rri , S R) is
simply invoked to select a candidate service resource set
S Ri (

∣
∣S Ri

∣
∣ = �rri .Q R�) in which each sr satisfies the QoS

and price constraints in rri . If no enough S Ri could be
found, the customer requirement cr that rri belongs to can-
not be satisfied. After all the customer requirements have
been repeatedly dealt with and the scheduling result has
been obtained, the method in Sect. 4 is applied to eval-
uate requirement satisfaction degree (RSD), service shar-
ing cost (SSC), and service utilization rate (SUR) of the
scheduling.

We conducted three experiments for comparison. An
outline of the experiments is shown in Table 4, includ-
ing the experiment settings, purpose, data preparation,
comparison plan, and the metrics used for analysis and
comparison.

6.2 Experiment 1

In the first experiment, 40 instances of the above-men-
tioned four types of resources were randomly generated. The
resource price is in the range between 20 and 30, and the
QoS value is in the range between 0 and 1. For customs dec-
laration services, their maximal concurrency number (MC)
is between 5 and 10; for containers, their minimal sharing
unit (MSU) is 0.1; and for vehicles, their maximal available
period is between 8 am and 8 pm every day.

We further generated different numbers of customer
requirements (n = 10, 20, . . ., 80). Their QoS value is in the
range between 0.3 and 0.9, and their price expectation is in the
range between 21 and 29; therefore, some of them cannot be
satisfied by the available resources. For the resource require-
ments requesting containers, the requested quantity is in the
range of 0.2–4 and is a multiple of 0.2. For those requesting
vehicles and customs declaration services, the expected latest
start time (LST) is in the range between 8 am and 17 pm and
the duration might be 1, 2, or 3 h. Each customer requirement
contains four resource requirements which request the four
types of resources in Table 3, respectively.

Note that the pre-defined ranges of related parameters
attached to both service resources and customer require-
ments are approximately extracted from the real-world ocean
transportation services, but the specific values of each con-
crete resource and requirement are randomly generated and
distributed in the pre-defined ranges.

We use both GGA and the traditional service selection
algorithm (denoted as TA) to deal with the resource selec-
tion and scheduling and determine requirement satisfaction
degree (RSD), service sharing cost (SSC), and service utili-
zation rate (SUR) and then use TP = RSD × SUD/SSC to
indicate the global performance. The comparison results are
shown in Fig. 8.

From these figures, we see that in GGA the service utili-
zation rate (SUR) is continuously improved and reaches to a
maximum value as |CR| increases. This is because resource
sharing has been maximized and no more requirements can
be satisfied by the sharing mechanism. Similarly, service
sharing cost (SSC) also increases as |CR| increases until
it becomes stable. Requirement satisfaction degree (RSD)
decreases as |CR| increases. Initially, this decrease is slow
because the available resources are relatively plentiful com-
pared with the number of requirements, but once service
utilization rate reaches its maximum, service sharing cost
drops sharply. The global performance shows a similar trend.

Because the traditional approach does not allow for
resource sharing, the service sharing cost is always 0 and
service utilization rate is always low, leading also to low
values for requirement satisfaction degree. The reason that
service utilization rate is not 0 is that customs services can
be shared in a concurrent manner.
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6.3 Experiment 2

In the second experiment, we generated 20 requirements
for which the quantity requested and the QoS and price
constraints were same as in the first experiment. We then
generated different numbers of available resources (m =
10, 20, . . ., 80) with the same QoS and price setup as in
the first experiment. A comparison between GGA and TA
is shown in Fig. 9.

From the figures we have the following observations. In
GGA, the requirement satisfaction degree (RSD) increases
as the number of available resources increases. Once the
requirements that cannot be satisfied initially are satisfied
by the increased number of resources, requirement satis-
faction degree reaches a maximum. Service utilization rate
(SUR) maintains a high level and is stable with slight fluc-
tuations. Once requirement satisfaction degree reaches its
maximum, service utilization rate remains stable because
newly introduced resources no longer participate in satisfy-
ing the requirements. Service sharing cost (SSC) gradually
decreases until it reaches a stable level. Overall, the global
performance of GGA increases gradually until it reaches a
maximum.

Although requirement satisfaction degree increases with
the increase in resources in TA also, the rate of increase is
significantly lower than in GGA because there is no shar-
ing between requirements. In comparison with GGA, more
resources are needed to satisfy the same number of require-
ments.

Another conclusion from the experiments is that when the
available resources are sufficient relative to the number of
requirements, requirement satisfaction degree remains high
while service utilization rate and service sharing cost are both
relatively low. On the contrary, when the available resources
are insufficient, requirement satisfaction degree is low while
both service utilization rate and service sharing cost are rel-
atively high.

Note that in both the first and second experiments, the
execution time for GGA is longer than for TA. The reason
for this is that bundling multiple requirements and resource
sharing increase the computation time. We do not show the
figures here.

6.4 Experiment 3

In the third experiment, we consider the distribution of
incoming requirements. We generate two groups of require-
ments with the same quantity and QoS and price constraints.
As shown in Fig. 10 where the vertical axis is the number
of arrival customer requirements at a specific time, the first
group is uniformly distributed throughout the period between
8 am and 8 pm (i.e., every hour there are 3 arrival require-
ments), and the second one is more concentrated in the period
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between 11 am and 2 pm (i.e., the number of arrival require-
ments are 7, 8, 8, and 7).

The results and comparison are shown in Fig. 11. From
the figure, we see that, compared with temporally balanced
requirement queue, the violent fluctuations of the require-
ment queue lead to significantly lower requirement satisfac-
tion degree (RSD) and the global performance, but service
utilization rate (SUR) and service sharing cost (SSC) remain
about the same.

7 Conclusions and future work

In consideration of a typical scenario where large amounts
of requirements are raised concurrently in an e-service envi-
ronment, we suggest an approach to resource selection and
scheduling based on requirement bundling and resource shar-
ing. Resources are classified into four categories (exclusive-,
time-, space-, and concurrent sharing) according to distinct
features in the sharing patterns, and a nested three-level
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algorithm is proposed to search for the optimal resource
selection and scheduling solution for these multiple require-
ments. The effectiveness of this method is partially validated
through a set of experiments.

Our approach will be of significance to typical mod-
ern service industries, such as production services, logistics
services, travel services, and more specifically, the popu-
lar O2O(online-to-offline) e-business services where people
reserve services from the website but access to the service in
the real world. In these services, the resources are not only
online softwarized ones but most of them are offline physical
ones. Elaborate allocation and scheduling of these resources
are quite required. Especially in the peak season, when many
customer demands are raised at the same time, our approach
ensures an improved tradeoff between requirement satisfac-
tion degree (RSD), service utilization rate (SUR), and service
sharing cost (SSC), thereby helping service providers make
better decisions.

Applying our method to a specific service domain is not
quite difficult. Most of the required data (including the basic
information of resources and customer requirements) have
already existed, and extra necessary data only include the
sharing type of each type of resource and their corresponding
minimal sharing unit, maximal available period, and maxi-
mal concurrency number.

Future research should consider the following points.

1. The three-level nested genetic algorithm adopted in our
method is computationally expensive and might not
obtain the global optimal solution because of the large
search space and the random search policy. Improve-
ments to this algorithm need to strike a balance between
the time complexity and the optimality of the solution.

2. Resources that have features of several sharing patterns
need a combined strategy for selection and scheduling.

3. The description models of both service requirement and
service resource need further extension to be more in
accord with real-life service scenarios, e.g., to refine the
integrated QoS metrics into a set of fine-grained quality
parameters, to define more complex but flexible expec-
tations on QoS and price of service resources.
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