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Abstract Automatically composing Web services to form
processes in the context of service-oriented architectures
has attracted significant research. Prevalent approaches for
automatically composing Web services predominantly uti-
lize planning techniques to achieve the composition. How-
ever, classical planning based approaches face the following
challenges: (i) difficulty in modeling the uncertainty of Web
service invocations, (ii) inability to optimize the composi-
tion using non-functional parameters, and (iii) difficulty in
scaling efficiently to large compositions. In order to address
these issues, we present a hierarchical framework for log-
ically composing Web services, which we call Haley. In
comparison to classical planners, Haley utilizes decision-
theoretic planning that is able to model and reason with the
uncertainty inherent in Web service invocations and provides
an expected cost-based optimization. Haley uses symbolic
planning techniques that operate directly on first-order logic
based representations of the state space to obtain the com-
positions. Consequently, it supports automated elicitation
of the corresponding planning problem from Web service
descriptions and produces a domain representation that is
more compact than that of classical planners. Furthermore,
it promotes scalability by exploiting the natural hierarchy
found in real-world processes. Due to the limitations of the
existing approaches and the complexity of the Web service
composition problem, few implemented tools exist, although
many approaches have been proposed in the literature. We
have implemented Haley and provided a comprehensive tool
suite for composing Web services. The suite operates on Web
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services described using well-known languages such as
SAWSDL. It provides process designers with an intuitive
interface to specify composition requirements, goals and a
hierarchical decomposition if available, and automatically
generates BPEL compositions while hiding the complexity
of the planning and of BPEL from users.

Keywords Web service composition · Decision-theoretic
planning · First-order logic · Hierarchy · Probability

1 Introduction

Service-oriented architectures (SOA) [1] aim to provide a
loosely coupled integration of services residing on differ-
ent systems, written using different programming languages
and with other implementation disparities. These services
are assumed to provide interfaces described in a standard
way. Users may combine and reuse these services toward
the production of scientific and business applications. Facil-
itating the assembly of services to form composite services
is an important functionality in SOA. Popularly considered
as the building blocks of SOA, Web services (WS) are self-
describing (using XML based descriptions) and platform-
independent applications that can be invoked over the Web
using protocols such as SOAP [2]. In this article, we focus
on the problem of automatically assembling WSs to form
compositions that optimize given user preferences. Given
that popular WS description languages [3] decompose WSs
into the underlying operations, we specifically focus on the
problem of assembling operations to form the compositions.
This problem is often referred to as the Web service com-
position (WSC) problem, although no consensus definition
exists.
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Prevalent approaches for automatically composing WSs
predominantly utilize planning techniques to achieve the
composition because of the similarity of the WSC problem to
the planning problem in artificial intelligence (AI) research.
While a variety of such approaches have been proposed
[4–12], many of these fail to appropriately identify the differ-
ences between the WSC problem and the AI planning prob-
lem. The following characteristics of WSs and compositions
are often not well modeled in existing approaches:

– Uncertainty Distributed computing environments are
inherently uncertain: invocation of remote WSs may
potentially produce unexpected responses. A response
could depend on whether the WS is operating correctly
and on specific external real-world situations. For exam-
ple, output from an air ticket reservation WS will depend
on whether the service is working correctly and whether
the airline has tickets remaining. Thus, uncertainty often
results from imperfect reliability of WSs and business
logic.

– Optimality Although satisfying the functional require-
ments is important for building the WSC, optimization of
nonfunctional preferences may be equally crucial, espe-
cially in performance-sensitive application domains. We
may wish to build a WSC that minimizes the response
times and WS costs, and guarantees a basic level of avail-
ability.

– Scalability Many compositions tend to be large in terms
of the number of component services, the choice of WSs
to select from and the different types of input that a com-
position can process. In many cases, the desire for scala-
bility draws a line between “practical” and “impractical”
solutions to a SOA application problem.

Several of the proposed approaches for WSC utilize clas-
sical AI planning [4,5,8–12]. While these approaches guar-
antee compositions that meet the functional requirements,
they are unable to provide the previously mentioned charac-
teristics. In particular, they are:

– Incapable of modeling uncertainty of WS invocations
Classical planning assumes that the actions, used to model
WS invocations, are deterministic. In other words, regard-
less of the state of the WS or the real-world situation, clas-
sical planners assume that the WS will return the expected
result. Thus, these approaches often ignore service fail-
ures and the possibility of multiple service responses.

– Failure to provide QoS based optimality The approaches
typically focus on building WSCs that satisfy the func-
tional requirements. Classical planners do not associ-
ate cost or rewards with planning states or actions.
Therefore, these approaches fail to distinguish between
WSs and compositions with identical functionality but

exhibiting different quality measurements. This limita-
tion prevents classical planning from optimizing compo-
sitions with respect to QoS parameters during planning
time or it leads to computational overhead if an additional
plan optimization phase is used.

In this article, we focus on the WS QoS parameters of
cost, availability and response times. We consider cost to be
the cost of invoking the corresponding operation of the WS.
Availability is the probability with which the operation is
ready for use and performs as expected, while the response
time is the maximum time duration within which an invoked
operation responds. We assume that these QoS parameters
are all specified in the WS level agreements.

– Inability to scale efficiently The inability to scale is due to
an inefficient representation of the planning domain and
the complexity of the planning algorithms. Many plan-
ners use propositional logic to represent the planning
domains. Propositional planning is PSPACE-complete,
even if operators are restricted to have two positive
(non-negated) preconditions and two postconditions, or if
operators are restricted to one postcondition (with any
number of preconditions). It is NP-complete if operators
are restricted to positive postcondition, even if operators
are restricted to one precondition and one positive post-
condition [13]. Furthermore, handling multiple, different
types of input requires additional propositions.

Consequently, we focus on assembling WSs resulting in a
composition that is expected to optimize the QoS parame-
ters in the context of uncertainty of the WSs given a possible
hierarchical decomposition.

In order to address some of these issues, we adopt deci-
sion-theoretic planning [14] for composing WSs. Deci-
sion-theoretic planners such as Markov decision processes
(MDPs) [15] generalize classical planning techniques to non-
deterministic environments where action outcomes may be
uncertain, and associate costs to the different plans thereby
allowing the selection of an optimal plan. In an early piece
of study, Doshi et al. [16] showed how we may use MDPs
to compose WS-based workflows. Compared to classical
planners, a decision-theoretic planner models the uncer-
tainty inherent in WSs using probabilities and facilitates
a cost-based process optimization. This approach is espe-
cially relevant in the context of domains where services may
fail and processes must minimize costs. Zhao and Doshi
[17] examined the application of semi-Markov decision pro-
cess (SMDP) planning toward the hierarchical composition
of WSs, and demonstrated that decision-theoretic planning
effectively addresses both, the uncertainty and optimality
issues outlined previously.

In this article, we propose a novel hierarchical, deci-
sion-theoretic planning based framework for automatically
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composing WSs, which we call Haley. Existing WSC tech-
niques are further plagued by two challenges: (i) As the
number of participating WSs increases, there is an explo-
sion in the size of the state space; (ii) there is a growing
consensus among the popular WS description languages
such as OWL-S [18] and SAWSDL [19] on using first-
order logic (or its variants) to logically represent the
preconditions and effects of WSs. However, many of the
existing planning techniques used in WS composition do not
use the full generality of first-order logic while planning.
Haley improves on previous study by allowing WS compo-
sition at the logical level. Specifically, Haley enables com-
position using the first-order sentences that represent the
preconditions and effects of the component WSs. Besides,
using a symbolic representation, Haley promotes scalability
by exploiting possible hierarchical decomposition of real-
world processes. In some cases, a business process may
be seen as nested—a higher level process may be com-
posed of WSs and lower level processes—which induces
a natural hierarchy over the process [20]. In order to do
this, Haley models each level of the hierarchy using a
first-order semi-Markov decision process (FO-SMDP) that
extends a SMDP [21] to operate directly on first-order
logic sentences, which provide a logical representation of
the traditional state space. In particular, the lowest levels
of the hierarchy (leaves) are modeled using a FO-SMDP
containing primitive actions which are invocations of the
WSs. Higher levels of the process are modeled using
FO-SMDPs that contain abstract actions as well, which rep-
resent the execution of lower level processes. We represent
their invocations as temporally extended actions in the higher
level FO-SMDPs. Since descriptions of only the individual
WSs are usually available, we provide methods for deriv-
ing the model parameters of the higher level FO-SMDP
from the parameters of the lower level ones. Thus, our
approach is applicable to WSCs that are nested to an arbitrary
depth.

Haley brings three specific contributions toward com-
posing WSs: First, it offers a way to mitigate the prob-
lem of large state spaces by composing at the first-order
logic level and preserves the expressiveness of first-order
logic. Consequently, Haley supports an automated elic-
itation of the corresponding planning domain from WS
descriptions and produces a compact domain representa-
tion in comparison to classical planning based approaches.
Second, Haley offers a way to exploit possible hierarchical
decomposition of the WSC problem, thereby further pro-
moting scalability. Although our experiments indicate that
Haley takes significantly less time in generating compo-
sitions compared to related approaches, however, it may
not scale well as we increase the number of WSs. Improv-
ing this aspect is one line of our future study. Third,
Haley generates an optimal composition of WSs at each

level of the hierarchy. As parameters of abstract actions
are derived from those of the WSs at the lower level, the
generated composition is globally optimal under the assump-
tion that the availabilities of lower level WSs are independent
of each other. Therefore, because we model the WSC prob-
lem in a novel way, our solution to the problem is new.

Due to the limitations of the existing approaches men-
tioned previously and the complexity of the WSC prob-
lem, few implemented tools exist. We have implemented
Haley1 and provided a comprehensive tool suite. The suite
accepts WSs described using well-known languages such as
SAWSDL. It provides process designers with an intuitive
interface to specify process requirements, goals, and a hier-
archical decomposition if available, and automatically gen-
erates BPEL compositions while hiding the complexity of
planning and of BPEL from users.

We show a high-level architecture of Haley in Fig. 1. Our
system parses the functional and non-functional information
from the input WS descriptions files, takes the composition
goal and any hierarchy from the process designers, to for-
mulate the WSC problem. The composition problem is then
represented as a stochastic planning problem in first-order
logic and solved using a Prolog based planner. The gener-
ated plan is converted into BPEL, which may be deployed in
any WS-BPEL implementation.

We note that our focus is on automatically generating the
control flow of the composition and representing it using
BPEL. If inputs for WSs participating in the compositions
are available either from outputs of previous invocations or a
priori, the resulting BPEL is executable. As we discuss later,
we do not address the problem of data mediation, which is a
separate and challenging research problem in itself.

The rest of the article is organized as follows. We describe
two motivating scenarios, online shopping and order han-
dling in supply chain, in Sect. 2, both of which exhibit nested
structures with 2 levels and 3 levels, respectively. The sec-
ond scenario will be used as a running example to illustrate
our approach throughout the article. In Sect. 3, we provide
the background on MDPs and FO-MDPs. Section 4 presents
in detail the theoretical framework of Haley. We introduce
FO-SMDP and introduce a hierarchical FO-SMDP based
decision-theoretic planning framework. This framework is
used in Haley for planning to automatically compose WSs.
We also detail how Haley approaches the order handling sce-
nario in this section. In Sect. 5, we present the modules of the
system and implementation details. Section 6 discusses the
generation and the execution of the composition. Experimen-
tal results are presented and analyzed in detail. In Sect. 7, we
survey existing planning approaches to automatic WSC and
briefly compare them with Haley. We conclude our study

1 Haley is available for download at http://kilimanjaro.cs.uga.edu/
haley.

123

http://kilimanjaro.cs.uga.edu/haley
http://kilimanjaro.cs.uga.edu/haley


288 SOCA (2009) 3:285–306
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Fig. 1 A high-level depiction of Haley’s architecture

with a discussion in Sect. 8, and present limitations of our
approach and future research directions in Sect. 9.

2 Motivating scenarios

In order to illustrate our framework, we briefly describe two
motivating scenarios that exhibit hierarchical structures. We
intend to form WSCs that optimize preferences using the
specified input, output, precondition, and effect (IOPE) for
each WS. Furthermore, in the first scenario, we will opti-
mize over the traditional QoS parameters advertized for the
WSs (interface parameters) such as response time, invoca-
tion cost, and availability. However, the structure of a WSC
may not depend on the interface parameters alone. Hence,
in the second scenario, we will additionally optimize over
domain parameters such as the cost of the service and avail-
ability of the products. In comparison to previous research on
WSC, these scenarios are more complex, include uncertainty
of WS outcomes (most previous approaches consider WSs
to be deterministic) and require simultaneous optimization
of multiple QoS parameters.

2.1 Online shopping

In the first scenario, we study a typical online shopping prob-
lem. We show the component WSs in Fig. 2. A Chinese col-
lege student would like to know the total cost of buying a
textbook from the US portal of Amazon because the desired
textbook is not published in China. The total cost includes
the book’s price and the price of shipping it to China using
either USPS (United States Postal Service) or FedEx, and
both prices are, of course, in US dollars. We assume that
the FedEx WS has better availability than the USPS WS.
A currency conversion WS is utilized to convert US dol-
lars into Chinese currency, Yuan. Two of the components,
GetBookPriceInYuan to get the price of the book and, Get-
ShippingCostInYuan to get the shipping cost, are actually
subprocesses composed of primitive WSs. In order to make
this scenario realistic, we obtain these WSs from actual Web
application sites such as the USPS website, Amazon WSs
and WebserviceX.net.

2.2 Order handling scenario in supply chain

Our second example is typical of scenarios for handling
orders that are a part of the supply chains of manufactur-
ers (Fig. 3). This scenario will be used as a running example
to illustrate our approach throughout the article.

An instance of the business process is created when a cus-
tomer sends in an order. The order specifics first need to be
verified, in that the customer needs to be checked and her pay-
ment needs to be processed. Subsequently, the manufacturer
checks for supplies that are required to complete the order. In
this step, he may choose to check his own inventory first and
then ask his preferred supplier, if his own inventory is defi-
cient. Alternately, he may elect to directly ask his preferred
supplier for goods, since he does not expect his inventory
to satisfy the order. A final resort is the spot market which
is guaranteed to fulfill his order. On receiving the supplies,
the manufacturer will ship the completed order to the cus-
tomer.

Note that the three candidate suppliers differ in their prob-
abilities and costs of order satisfactions. In particular, while
the inventory exhibits a low cost of satisfying the order, the
spot market is the most expensive among the three. However,
it is also guaranteed to satisfy the order, while the inventory
has the least probability of doing so. This particular sce-
nario illustrates that not only are the WS interface parameters
(IOPE and QoS) important factors while composing WSs, but
also other domain-specific service parameters such as order
cost and the rate of satisfying orders need to be considered
while determining the composition.

In this case, we may combine the WS invocation cost and
the cost of parts from a supplier to produce the total cost
of using the supplier’s WS. The availability of a service is
determined by two probabilities: the WS interface availabil-
ity and the probability of order satisfaction. For example, the
probability that the Preferred Supplier is available to satisfy
the order is a product of the probability that the preferred
supplier’s WS is working properly and the probability that
the order can be satisfied by it. In other words, order
satisfaction is contingent on both, the WS is working
properly and the preferred supplier has sufficient parts in
stock.
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Fig. 2 Component WSs of a 3-level hierarchical online shopping scenario in which the service GetBookPriceInYuan and GetShippingCostInYuan
are subprocesses. GetBookPriceInDollar in subprocess GetBookPriceinYuan is also a subprocess composed of WSs

Fig. 3 Component WSs of a 2-level hierarchical order handling scenario in which the service Verify Order and Select Shipper are subprocesses
themselves. The three suppliers (Inventory, Preferred Supplier and Spot Market) in this scenario have different costs and probabilities of order
satisfaction

3 Background

In this section, we briefly describe MDPs [21], a well-known
framework for decision-theoretic planning, and then focus on
first-order extension of MDPs (FO-MDPs) that allow plan-
ning on first-order logic representations expressed using sit-
uation calculus.

3.1 Classical MDPs

MDPs [21] model the composition environment as a tuple
〈S, A, T, R, s0〉, where S is a set of states with each state
often factored into variables; A is a set of actions representing
WS invocations; T : S×A → �(S), is the transition function
representing the uncertain effects of WS invocations where

�(·) is the set of probability distributions; R : S × A → C is
the reward function representing the costs of WS invocations;
and s0 ∈ S is the start state of the composition. Solution of
an MDP results in a policy which is a mapping from states to
actions, π : S → A. In order to solve the MDP, we associate
with each state a value, V n(s), that represents the expected
cost of performing an optimal sequence of actions from that
state with n steps remaining. We define this value using the
following equation, which forms the basis for value iteration
[15]:

V n(s) = max
a∈A

R(s, a)+
∑

s′∈S

T (s′|s, a)V n−1(s′) (1)

Standard solution technique involves iterating over Eq. 1 until
V converges. The converged value is the maximal utility for
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each state, and the corresponding mapping from states to
actions that maximizes the utilities is the optimal policy. The
optimal action(s) to perform from a state is then the one which
results in the lowest expected cost. An application of MDPs
to WSC is given in [16].

Traditionally, the state is represented using propositions
and a combination of all possible values of the propositions
becomes the state space. Notice that the size is exponential
in the number of propositions. In order to solve MDPs, we
must explicitly enumerate over all pairs of states and actions.
This becomes a computational challenge when composing
large processes.

Efforts have been proposed to logically represent MDPs
and solve them symbolically to avoid an explicit enumeration
of the states. These approaches include symbolic dynamic
programming [22] using situation calculus, fluent calculus
based value iteration [23], and a relational Bellman algo-
rithm (Rebell) [24]. We review the first-order representation
of MDPs presented in [22] and briefly explain the symbolic
value iteration algorithm. We refer the reader to [22] for more
details.

3.2 First-order MDPs (FO-MDPs)

Web services (WS) description standards such as OWL-S
and SAWSDL seek to express the preconditions and effects of
WSs using first -order logic-based languages such as RuleML
[25]. Traditional planning-based approaches compose these
WSs by grounding and propositionalizing the WS descrip-
tions. As a result, they fail to scale to large WS composition
problems because the size of the state space grows exponen-
tially with the number of objects. Hence, there is a need for a
planning framework that operates symbolically on first-order
logic descriptions. Boutilier et al. [22] introduce FO-MDPs
that use a probabilistic variant of first-order situation calculus
to logically represent the domain and use symbolic value iter-
ation to solve the FO-MDP. Before we describe FO-MDPs,
we introduce situation calculus using the supply chain
example.

3.2.1 Probabilistic situation calculus

Situation calculus [26] is a first-order logic-based framework
for representing dynamic environments and actions, and rea-
soning about them. It uses situations to represent the state
of the world, and fluents to describe the changes from one
situation to the other caused by the actions. We briefly
explain the components of the probabilistic variant of sit-
uation calculus:

• Actions are first order terms, A(x), each consisting of
an action name, A, and its argument(s), x. For example,
the action of receiving an order from the customer can

be denoted as ReceiveOrder(o); the action of checking
inventory can be denoted as Check I nventory(o), where
o is a variable denoting the order.

• A situation is a sequence of actions describing the state
of the world and usually represented by symbol do(a, s).
For example, do(ReceiveOrder(o), s0) denotes the
situation obtained after performing ReceiveOrder(o)
in the initial situation s0 (s0 is a special situation
which is not represented using a do function). Sit-
uation do(ChargeMoney(o), do(V eri f y Payment (o),
do(CheckCustomer(o), s0))) represents the situation
obtained after performing the action sequence (Check
Customer(o),V eri f y Payment (o), ChargeMoney(o))
in s0.

• Fluents are situation-dependent relations and functions
whose truth values vary from one situation to another.
For example, HaveOrder(o, s) means the manufac-
turer has received an order denoted by o in situation s;
V alidCustomer(o, s) means the customer identified in
o has been validated in s.

• Nature’s choices Situation calculus in its original form is
restricted to deterministic actions, while MDPs allow sto-
chastic actions and are designed to make decisions under
uncertainty. In order to model stochastic actions in situ-
ation calculus, we decompose a stochastic action, A(x),
into a set of deterministic actions, n j (x), each of which
is selected randomly. We assume that this choice may
be made by nature. For example, an action invoking a
WS that has multiple effects could be decomposed into
deterministic actions for each effect. Nature’s choices,
introduced in [22], support stochastic actions in situa-
tion calculus. Nature chooses the deterministic action
that actually gets executed with some specified probabil-
ity, when an agent performs a stochastic action. We give
nature’s choices intuitive meanings in our framework. As
we mentioned previously, we assign a probability to each
possible WS invocation outcome including the positive
outcome and negative outcomes like service failure. For
example:

choice(CheckCustomer(o), a)

≡ a = CheckCustomer S(o) ∨ a

= CheckCustomer F(o)

choice(Check Pre f erred Supplier(o), a)

≡ a = Check Pre f erred Supplier S(o) ∨ a

= Check Pre f erred Supplier F(o)

where CheckCustomer S(o) and CheckCustomer F(o)
denote the deterministic actions that succeed (customer
validated) or fail, respectively.

• Probabilities for nature’s choices For each possible out-
come, n j (x), associated with stochastic action, A(x), we
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specify the probability, Pr(n j (x), A(x), s) with which
the outcome will occur, given that A(x) was performed
in situation s. For example:

Pr(CheckCustomer S(o),CheckCustomer(o), s) = 0.9

Pr(CheckCustomer F(o),CheckCustomer(o), s) = 0.1

Pr(Check Pre f erred Supplier S(o),

Check Pre f erred Supplier(o), s) = 0.72

Pr(Check Pre f erred Supplier F(o),

Check Pre f erred Supplier(o), s) = 0.28

To calculate Pr(Check Pre f erred Supplier S(o),
Check Pre f erred Supplier(o), s), we need to take into
account both the service availability and the probability
of order satisfaction. If the service availability of the pre-
ferred supplier’s WS is 0.9, and its probability of order
satisfaction is 0.8, the overall probability that the pre-
ferred supplier’s WS returns YES is 0.72.

While four classes of axioms are used in situation calcu-
lus to axiomatize a domain [27], we additionally focus on the
precondition and successor state axioms that are important
for FO-MDPs.

• Action precondition axioms We define one axiom for each
action: Poss(a(x), s) ≡ �(x, s), which characterizes the
precondition of the action, a(x). For example, the precon-
dition axiom of action CheckCustomer(o) is:

HaveOrder(o, s) ⇒ Poss(CheckCustomer(o), s)

where Poss denotes the possibility of performing the
action.

• Successor state axioms are axioms that describe the
effects of actions on fluents. Hence there is one such
axiom for each fluent. Successor state axioms provide a
way to address the frame problem—the problem of rep-
resenting all the things that stay the same on perform-
ing an action. Action effects are compiled into successor
state axioms [27], where the truth value of a fluent is
completely determined by the current situation s and the
action to be performed. There is one such axiom for each
fluent:

F(x, s) : F(x, do(a, s))

≡ �F (x, a, s).�F (x, a, s)

= γ+(x, a, s) ∨ (F(x, a) ∧ ¬γ−(x, a, s))

where γ+/−(x, a, s) contains all the combinations of
actions and conditions that would make fluent F true/false

respectively. In our example domain, the successor state
axiom for ReceiveOrder(o) is:

Poss(a, s) ⇒ HaveOrder(o, do(a, s))

⇔ a = ReceiveOrder S(o)

∨ (HaveOrder(a, s) ∧
a �= Cancel Order S(o))

In other words, we have the order in the situation that
results from performing the action if and only if we
performed the ReceiveOrder S(o) action or we already
have it in the current situation and do not perform an
action that will cancel the order.

• Regression Regression is a mechanism for proving con-
sequences in situation calculus. It is based on expressing
a sentence containing the situation do(a, s) in terms of a
sentence containing the action a and the situation s, with-
out the situation do(a, s). The regression of a sentence
ϕ through an action a is ϕ′ that holds prior to a being
performed iff ϕ holds after a. Successor state axioms
support regression in a natural way [22]. Suppose that
a fluent F’s successor state axiom is F(x, do(a, s)) ⇔
�F (x, a, s), we inductively define the regression of a
sentence whose situation arguments all have the form
do(a, s): Regr(F(x, do(a, s))) = φF (x, a, s).

3.2.2 Definition and solution of FO-MDP

We briefly present the FO-MDP formalism and the sym-
bolic dynamic programming solution using the order han-
dling example. We refer the reader to [22,28] for more details.

Actions in FO-MDPs are the stochastic actions decom-
posed into nature’s choices. In order to simplify the presen-
tation, FO-MDPs introduce case notation to represent the
transition and cost functions. A case notation is defined as,
case[φ1(s), t1; . . . ;φn(s), tn] where φi , i = 1 . . . n repre-
sents a first-order logic sentence in situation calculus, ti is
the corresponding term. We note that the case notation parti-
tions the state space into n classes; within a class i each state
unifies with φi (s) (i.e., φi (s) is true for state s).

Let A(x) be a stochastic action with choices, n1(x), . . . ,
nk(x), then the choice probabilities are specified as:
pCase(n j (x), A(x), s) = case[φ1(s), p j

1 ; . . . ;φn(s), p j
n ].

Note that we will have one such pCase for each j . For
example,

pCase(CheckCustomer S(o),CheckCustomer(o), s)

= case[true, 0.9]
pCase(CheckCustomer F(o),CheckCustomer(o), s)

= case[true, 0.1]
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Fig. 4 Within a class i , each state unifies with φi (s). Here, one case
notation partitions the state space with cases φ0 and φ1 and the other
one partitions the state space with cases ψ0 and ψ1. The operation on
the two case notations takes the cross-product of their cases

The reward function may be represented in case notation:
rCase(s) = case[ξ1(s), r1; . . . ; ξn(s), rn)], where r1, . . . ,

rn are the corresponding rewards. For example,

rCase(s) = case[V alidCus(o) ∧ V alid Pay(o)

∧Charged(o), 10; ¬(V alidCus(o)

∧V alid Pay(o) ∧ Charged(o)), 0]
Intuitively, an operation on two case notations takes the cross-
product of their cases (partitions) and performs the corre-
sponding operation on the terms of the paired partition. The
following operations are defined on case notations:

case[φi , ti : i ≤ n] ⊕ case[ψ j , t j : j ≤ m]
= case[φi ∧ ψ j , ti + t j : i ≤ n, j ≤ m]

case[φi , ti : i ≤ n] � case[ψ j , t j : j ≤ m]
= case[φi ∧ ψ j , ti − t j : i ≤ n, j ≤ m]

case[φi , ti : i ≤ n] ⊗ case[ψ j , t j : j ≤ m]
= case[φi ∧ ψ j , ti × t j : i ≤ n, j ≤ m]

We illustrate how cases partition the state space and an oper-
ation on case notations in Fig. 4.

On representing the FO-MDP parameters in case notation
and axiomatizing action preconditions and effects, we may
perform symbolic value iteration to solve the FO-MDP. We
briefly introduce the idea here. We define first-order deci-
sion-theoretic regression (FODTR) as:

FODTR(vCase(s), A(x)) = γ · [⊕ j pCase(n j (x), s)

⊗Regr(vCase(do(n j (x), s)))]
Here, vCase is the case notation for the value function, V .

Regr(vCase(s), A(x))
= rCase(s)⊕ F O DT R(vCase(s), A(x))

(2)

where Regr on the left regresses the value function through
action, A(x), and produces a case notation with action param-
eters as free variables. The parameters may be removed from
consideration through existential quantification followed by
instantiation:

Regr(vCase(s), A) = ∃x Regr(vCase(s), A(x))

The optimal value, analogous to Eq. 1, is given by the action
that maximizes the action-value pair:

Regr(vCase(s)) = maxA Regr(vCase(s), A)

In the above equation, we maximize over the values for
the different actions that are present within the case nota-
tion denoted by Regr(vCase(s), A) to obtain the case nota-
tion denoted by Regr(vCase(s)). We obtain the policy,
πCase(s), which maps a logical sentence consisting of flu-
ents to action, A, that maximizes the value in the situation.

4 Haley—a framework for logical composition
of hierarchical processes

As we illustrated in Sect. 2, real-world processes may be ame-
nable to a hierarchical decomposition into lower level pro-
cesses and primitive service invocations. We present a new
framework, which we call Haley, for modeling, composing,
and executing large WSCs by exploiting the hierarchy. Note
that a hierarchical decomposition simply involves grouping
WSs at different levels. No ordering among WSs at any level
is provided. Given such a hierarchical decomposition, Haley
automatically composes the WSs at each level.

Our approach is to use first-order semi-Markov decision
processes (FO-SMDPs), which are temporal generalizations
of the FO-MDPs mentioned in Sect. 3.2 to perform the
composition. Specifically, they allow temporally extended
actions of uncertain durations, which we call abstract
actions. The actions are used to represent the invocations
of lower level WSCs. Haley models the lowest level ser-
vice composition problem using primitive FO-SMDPs, while
higher level compositions are modeled using composite
FO-SMDPs (Fig. 5). We also show how the model param-
eters of the composite FO-SMDPs in the case of abstract
actions may be derived from the parameters of the primitive
FO-SMDPs that signify the actions. Parameters of the prim-
itive FO-SMDPs are obtained directly from the relevant WS
descriptions. To the best of our knowledge, Haley is the first
framework that combines hierarchical decomposition with
logic (knowledge) level composition of WSs, thereby offer-
ing a more scalable approach capable of operating directly on
logic-based descriptions of WSs. Furthermore, compositions
generated by Haley could be seen as starting points—upon
which other aspects of the business logic could be modeled.

4.1 First-order SMDPs (FO-SMDPs)

Semi-Markov decision process (SMDPs) [21] are tempo-
ral generalizations of MDPs. Instead of assuming that the
durations of all actions are identical and therefore ignoring
them while planning, SMDPs explicitly model the system
evolution in continuous time and model the time spent in a
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Fig. 5 Higher level of the order handling scenario is composed using composite FO-SMDP. Lowest level processes with only primitive WSs are
composed using primitive FO-SMDP

particular state while performing an action as following a pre-
specified probability distribution. Analogous to an MDP,
solution to a SMDP produces a policy. The policy assigns
to each state of the WSC action(s) that is expected to be opti-
mal over the period of consideration. We formally define a
SMDP that models the composition problem as a tuple:

SMDP = 〈S, A, T, R, K , F,C, s0〉
where S, A, T, R and s0 are the same as defined in MDP
described in Sect.3.

• K is the lump sum cost, K : A → R. This specifies the
immediate cost incurred on performing an action;

• F is the sojourn time distribution for each action, F :
A → �(t), where t ∈ [0, Tmax], Tmax is the maximum
time duration of any action. Given the action, a, the sys-
tem will remain in the state for a certain amount of time, t ,
which follows a density described by f (t |a). Note that the
sojourn time distribution may also depend on the current
state. This distribution represents the varying response
times of WS invocations up to the maximum response
time;

• C is the cost accumulating rate, C : A → R, which spec-
ifies the rate at which the cost accumulates on performing
a temporally extended action.

We may describe an example evolution of a SMDP as fol-
lows: At time t0, the system occupies state s0, and the WSC
chooses action a0 based on a particular policy. Consequently,
the system remains in s0 for t1 time units after which the sys-
tem state changes to s1, and the next decision epoch occurs.
The WSC performs action a2, and analogous sequences of
events follow. The sequence {t0, s0, a0, t1, s1, a1, . . . , tn, sn}
denotes the history of SMDP up to the nth decision epoch.
{t0, t1, t2, . . . , tn} are the sojourn times between two consec-
utive decision epochs. While in a MDP, these times are fixed,
in a SMDP, the time durations follow certain probability dis-
tributions given by F .

In order to solve the SMDP, we define the following:

TR(s, a)= R(s, a)−(K (a)+C(a)

Tmax∫

0

e−αt f (t |a)dt) (3)

Notice that we subtract the expected cost of performing the
action, a, from the reward obtained at the state, s.

Analogous to MDPs, we associate a value function, V :
S → R, with each state. This function quantifies the desir-
ability of a state over the long term.

V n(s) = max
a∈A

T R(s, a)+
∑

s′∈S

M(s′|s, a)V n−1(s′) (4)
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where

M(s′|s, a) =
Tmax∫

0

e−αt T (s′|s, a) f (t |a)dt (5)

Standard solution of the SMDP involves repeatedly iterat-
ing over Eq. 4 for the desired number of steps or until the
function, V , approximately converges. The optimal policy,
π , from each state is then the action which results in the
maximum value of that state.

We now extend the classical SMDPs described above to
first-order SMDPs, in a manner similar to Sect. 3.2. This not
only avoids an enumeration over all state–action pairs but
also allows us to operate directly on first-order logic-based
descriptions of WS preconditions and effects.

Analogous to FO-MDPs, we adopt the probabilistic sit-
uation calculus to logically represent the FO-SMDP. The
parameters S, A, T , and R of the FO-SMDP are as defined
in Sect. 3.2 using case notation. We give the case notations
for the new parameters specific to SMDPs next.

The lump sum cost function, K (A(x)), may be represented
in case notation as:

kCase(A(x)) = case[β1(A(x)), k1; . . . ;β|A|(A(x)), k|A|]
where |A| is the number of actions. Similarly, the accumu-
lating rate, C(A(x)), is represented in case notation:

cCase(A(x)) = case[β1(A(x)), c1; . . . ;β|A|(A(x)), c|A|]
The sojourn time distribution, F(A(x)), in case notation is:

f Case(A(x)) = case[β1(A(x)), f1(t); . . . ;
β|A|(A(x)), f|A|(t)]

Here βi (A(x)), is defined as, βi (A(x)) : A(x) = ai i =
1, 2, . . . , |A|. Intuitively, K ,C , and F have different values
or functions for each action. For example,

kCase(A(x)) = case[A(x) = CheckCustomer(o), 2;
A(x) = V eri f y Payment (o), 3;
A(x) = ChargeMoney(o), 2]

cCase(A(x)) = case[A(x) = CheckCustomer(o), 0.2;
A(x) = V eri f y Payment (o), 0.2;
A(x) = ChargeMoney(o), 0.2]

f Case(A(x)) = case[A(x) = CheckCustomer(o),

N (1, 0.8; t);
A(x) = V eri f y Payment (o),N (1, 1; t);
A(x) = ChargeMoney(o),N (2, 2; t)]

where N (µ, σ ; t) is a probability density over time t > 0 of
form Gaussian with mean µ and standard deviation σ .

Define the notation for the total expected cost as:

tcCase(A(x)) = kCase(A(x))⊕ (cCase(A(x))

⊗
Tmax∫

0

e−αt f Case(A(x))dt) = case[β1(A(x)), (k1

+ c1

Tmax∫

0

e−αt f1(t)dt); . . . ;β|A|(A(x)), (k|A|

+ c|A|
Tmax∫

0

e−αt f|A|(t)dt]

The case notation for the total expected reward, Eq. 3,
becomes:

trCase(s, A(x)) = rCase(s, A(x)) � tcCase(A(x)) (6)

Next, we define the case notation for Eq. 5:

mCase(n j (x), A(x), s) =
Tmax∫

0

e−αt pCase(n j (x), A(x), s)

⊗ f Case(A(x))dt (7)

where n j (x) is a deterministic decomposition of the stochas-
tic action, A(x). Thus, there are as many such cases as the
number of deterministic actions.

Given Eqs. 6 and 7, we may solve FO-SMDPs using
symbolic value iteration, in a manner similar to FO-MDPs
(Sect. 3.2). Specifically, we replace the rCase and pCase
in Eq. 2 with trCase and mCase, respectively.

4.2 Model elicitation from WS descriptions

We briefly mention ways in which the model parameters of
the above-mentioned primitive FO-SMDP are obtained. The
actions, A(x), are the atomic operations in WSs that com-
pose the WSC. Preconditions for performing the actions are
directly obtained from the preconditions of WSs specified
using RuleML, in their OWL-S or SAWSDL descriptions.
Successor state axioms are compiled from the first-order
effect sentences in the WS descriptions. For example, con-
sider the description of the following WS operation:

Web service operation: ChargeMoney(o)
Precondition: V alidCustomer(o) AND

V alid Payment (o)
Effect: Charged(o)
The precondition axiom for action ChargeMoney(o) is:

V alidCustomer(o, s) ∧ V alid Payment (o, s)

⇒ Poss(ChargeMoney(o), s)
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Fig. 6 A WSLA snippet illustrating the specification of inventory
availability rate

The successor state axiom becomes:

Poss(a, s) ⇒ Charged(o, do(a, s))

⇔ a = ChargeMoneyS(o) ∨ Charged(o, s)

McIlraith et al. [7] also provide some examples of com-
piling successor state axioms from DAML-S WS descrip-
tions. The probabilities of the different responses or effects
from service invocations that make up the probabilities in
pCase may be found in either the serviceParameter section
of the OWL-S description of the WS or in the SLAparameter
section of the WSLA specification [29] (see Fig. 6). These
probabilities quantify contracted service availability rates.
Alternately, these probabilities may also be compiled by the
process designer from prior interactions with the WSs.

The costs in kCase, which represents the parameter, K ,
may also be obtained from the serviceParameter section of
the OWL-S description or from the agreement between the
service users and providers. The values in the case notation
of the sojourn time distribution, F , and the cost rate, C , are
typically selected by the process designer from past experi-
ence. However, exact parameter values may not always be
available in which case estimates could be used, which could
adversely affect the optimality of the WSC formulated by
Haley.

4.3 Composite FO-SMDPs

For the lowest levels of the WSC, Haley uses the FO-SMDP,
defined in Sect. 4.1 to model the composition problem.
Let us label these FO-SMDPs as primitive. In primitive
FO-SMDPs, actions are WS invocations, and sojourn times
are the response times of the WSs. We compose the higher
levels of the WSC using a composite FO-SMDP (C-FOS-
MDP). Within a C-FOSMDP, the actions are either abstract
and represent lower level WSCs which in turn are modeled
using either composite or primitive FO-SMDPs, or simple
WS invocations. For example, VerifyOrder in the supply
chain example (Sect. 2) is modeled as an abstract action that
represents a lower level process composed of three actions
CheckCustomer, VerifyPayment and ChargeMoney, each of
which is a primitive WS invocation.

We use a to represent a primitive action and ā to represent
an abstract action. The elicitation of the C-FOSMDP model
parameters contingent on primitive actions is similar to that
of the primitive FO-SMDP as shown in Sect. 4.2. However,
model parameters for abstract actions are not directly avail-
able and must be derived from the model parameters of the
corresponding primitive FO-SMDP that models the lower
level WSC.

For the sake of simplicity, we focus on deriving the model
parameters for a composition that is singly nested. Our meth-
ods generalize to a multiply nested composition in a straight-
forward manner. We utilize the correspondence between
the high-level abstract action and the corresponding low-
level primitive actions. For illustration, we take the abstract
action V eri f yOrder(o) as the example to explain how we
derive the logical representations of the model parameters
for abstract actions. Specifically, in addition to the successor
state axioms, we need to derive the pCase, kCase, cCase,
and f Case, for the abstract action.

While the underlying methods for computing the param-
eters for the abstract action are the same as in [17], we adapt
them to the use of case notation. Thus, we will add a new
case in each of the case notations of the C-FOSMDP for the
abstract action.

• pCase statements for abstract action As VerifyOrder(o)
is a stochastic action, we decompose it into two deter-
ministic actions, each representing nature’s choice. Let
V eri f yOrder S(o) and V eri f yOrder F(o) be nature’s
choices denoting a validated and failed order, respec-
tively. Notice that for the order to be valid, the customer
and payment should be valid and the money charged.
Thus,

Pr(V eri f yOrder S(o), V eri f yOrder(o), s̄)

= Pr(CheckCustomer S(o),CheckCustomer(o), s)

×Pr(V eri f y Payment S(o), V eri f y Payment (o), s)

×Pr(ChargeMoneyS(o),ChargeMoney(o), s)

= 0.9 × 0.8 × 0.98 = 0.71

Pr(V eri f yOrder F(o), V eri f yOrder(o), s̄)

= 1 − Pr(V eri f yOrder S(o), V eri f yOrder(o), s̄)

= 0.29

Here, the lower level actions are assumed to be indepen-
dent of each other. These probabilities are added as cases
in the pCase for the C-FOSMDP:

pCase(V eri f yOrder S(o), V eri f yOrder(o), s̄)

= [true; 0.71]
pCase(V eri f yOrder F(o), V eri f yOrder(o), s̄)

= [true; 0.29]
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• Successor state axiom for abstract action Recall that a
successor state axiom describes the effect of an action on
a fluent. Let V alid Order(o, s̄) be the fluent affected by
V eri f yOrder(o). Then,

Poss(ā, s̄) ⇒ V alid Order(o, do(ā, s̄))

⇔ ā = V eri f yOrder S(o) ∨ V alid Order(o, s̄)

In order to ground the successor state axiom for
V eri f yOrder(o), we note the following relationship
between the fluent, V alid Order(o, s̄) and the fluents of
the corresponding primitive actions:

V alid Order(o, s̄) ≡ V alidCustomer(o, s1)

∧V alid Payment (o, s2) ∧ Charged(o, s3)

In addition, as we mentioned before,

V eri f yOrder S(o) ≡ CheckCustomer S(o)

∧V eri f y Payment S(o) ∧ ChargeMoneyS(o)

The successor state axiom for V eri f yOrder(o)
becomes:

Poss(ā, s̄) ⇒ V alid Order(o, do(ā, s̄))

⇔ [a = CheckCustomer S(o) ∧ a

= V eri f y Payment S(o) ∧ a

= ChargeMoneyS(o)] ∨ [V alidCustomer(o, s1)

∧V alid Payment (o, s2) ∧ Charged(o, s3)]

• kCase statement for abstract action The lump sum cost of
an abstract action is a summation of the lump sum costs
of the associated low-level primitive actions:

kV O = kCase(CheckCustomer(o))

+ kCase(V eri f y Payment (o))

+ kCase(ChargeMoney(o))

We add a statement to the kCase of the C-FOSMDP:
( Ā(x) = V eri f yOrder(o), kV O).

• fCase statement for abstract action Let the sojourn times
of the low-level primitive actions follow Gaussian dis-
tributions with means µCC , µV P , and µC M , and cor-
responding standard deviations σCC , σV P , and σC M .
The sojourn time distribution of the abstract action
V eri f yOrder(o) also follows a Gaussian defined as:
fV O(t) = N (µV O , σV O ; t) where: µV O = µCC +
µV P + µC M and σV O =

√
σ 2

CC + σ 2
V P + σ 2

C M
We add a statement to the f Case of the C-FOSMDP:
( Ā(x) = V eri f yOrder(o), fV O(t)). For the case

where the sojourn times of primitive actions do not fol-
low Gaussian distributions, other, perhaps more compli-
cated, ways would be needed to combine the parame-
ters.

• cCase statement for abstract action We note that the accu-
mulated cost of an abstract action is the total accumulated
cost of all the corresponding primitive actions. Using the
sojourn time distributions of the primitive actions, we
compute the expected sojourn time Eai of each, and use
it to derive the rate:

cV O =

cCase(CheckCustomer(o))×
ECC + cCase(V eri f y Payment (o))×
EV P + cCase(ChargeMoney(o))× EC M

ECC + EV P + EC M

where Eai = ∫ Tmax
0 t f (t |ai )dt ; ai is the primitive action,

f (t |ai ) is the sojourn distribution of the primitive action.
We add the following statement to the cCase of the
C-FOSMDP:

( Ā(x) = V eri f yOrder(o), cV O)

After deriving the logical representations for abstract
actions, the C-FOSMDP is completely defined and may be
solved just like a primitive FO-SMDP using the symbolic
value iteration as mentioned previously. By providing gen-
eral methods for deriving the C-FOSMDP model parameters
from those of the lower level ones, we allow C-FOSMDPs
at any level to be formulated and solved using the standard
solution methods. We note the assumption of independence
among the lower level WSs in deriving some of the model
parameters.

Having described the theoretical framework, we present
the architecture and modules of our implementation of Haley
as a tool suite to support WSC.

5 Implementation of Haley

Haley is implemented as a suite of freely available Eclipse2

plug-ins and a stand-alone Eclipse rich client platform (RCP)
application. It is provided under the Eclipse public license
version 1.0. Some of the technologies used in developing
Haley are Draw2d, Eclipse modeling framework (EMF),
graphical modeling framework (GMF), and Prolog and
ActiveBPEL API.3 Haley also contributes several indepen-
dent tools and experiences to the SOA community: (i) SAWS-

2 Eclipse platform: http://www.eclipse.org.
3 ActiveBPEL: http://www.activevos.com/bpel.php.
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DL (semantic annotations for WSDL) viewer is a complete
and independent Eclipse plug-in and is the first viewer for
SAWSDL files. (ii) eDT-GOLOG may be used as a general
stand-alone, symbolic decision-theoretic planner. The sys-
tem is compliant with the Eclipse plug-in standards and can
be integrated with other Eclipse-based tools like Web tools
platform (WTP), WSDL editor, and ActiveBPEL simulator
and designer in case process designers want to customize the
generated BPEL code.

5.1 Architecture

Haley is composed of four major components:

1. WS and goal specification This component is responsi-
ble for parsing service descriptions including SAWSDL
and WSLA (WS level agreements) files. It also provides
ways for the process designer to specify the WSC hier-
archy and goal.

2. Decision-theoretic planning This component is respon-
sible for producing a planning problem formulation from
the information gathered by the previous component. It
generates a policy using the decision-theoretic planner.

3. Integrated BPEL generation This component transforms
the generated policy into BPEL code that in many cases
is directly executable; and

4. WSC deployment and KB based execution This compo-
nent is responsible for deploying the generated BPEL
and monitoring the execution. We show the architecture
in Fig. 7 and further describe the main components of
Haley below.

5.1.1 Modules

The modularized architecture of Haley enables support for
future improvements and extensions. For example, Haley
could support other types of service description specifica-
tions such as OWL-S [30] and WS-Agreement [31] by sim-
ply plugging new parsing modules for these descriptions. We
describe the current modules individually:

• SAWSDL parser and viewer SAWSDL [19] extends
WSDL [3] by allowing semantic annotations in the form
of model references and schema mappings. In addi-
tion to specifying the inputs and outputs of a service,
SAWSDL also allows the specification of preconditions
and effects, which are useful for composing services.
However, the current SAWSDL specification does not
ground preconditions and effects using any language.
We, therefore, extend SAWSDL to support preconditions
and effects specified using SWRL, a popular seman-
tic Web rule language [32]. Schema for the extended
SAWSDL is available for use. In addition to parsing

SAWSDL using the SAWSDL4J API, Haley provides a
new Eclipse plug-in for graphically viewing SAWSDL
based service descriptions. We show a snapshot of the
viewer in Fig. 8.

• WSLA parser Web service level agreements (WSLA)
[29] specify the non-functional quality of service (QoS)
parameters of WSs such as response times, costs and
availability percentages. Haley is not limited to any
particular service agreement specification and can be
extended to support WS-Agreement or other agreement
specifications. QoS considerations are often neglected
while manually designing BPEL processes as well as
by many other automated composition techniques.
Haley uses a decision-theoretic planner for the compo-
sition that provides an intuitive way to model the QoS
parameters and optimize over the long term.

• Hierarchy modeler Haley promotes scalability by
exploiting the hierarchies often possible in real-world
processes. In order to facilitate this, Haley provides
an intuitive GUI (see Fig. 9) to construct a hierarchy
by importing component WSs at each level. A process
designer may simply group together WSs in nested boxes.
Note that a rectangular box in Fig. 9 represents a grouping
of WSs.

The modeler is also used to specify the start states, mul-
tiple goals and associated priorities at each level of the
hierarchy. A goal may be logically composed out of the
predicates in the effects of the component WSs. All of this
information is written into an XML file for input to the
planner.

• Planning domain generator Given the functional and
nonfunctional descriptions of individual WSs and goal
descriptions for the target composition, we automati-
cally generate a corresponding planning problem domain
file. The planning problem contains a first-order logical
description of the operations and their inputs, outputs,
preconditions and effects, and goals.

• eDT-GOLOG planner As an extension of DT-GOLOG
[33], we designed eDT-GOLOG to support first-order
SMDP-based planning. In addition to being expressive,
eDT-GOLOG allows us to model the uncertainty of WS
operations, QoS measures and provide guarantees of opti-
mality while preserving efficiency of planning as much as
possible. The planner takes as input the planning domain
file and produces a policy or a conditional plan for the
composition.

• BPEL generator Haley transforms the conditional plan
output by the planner into a WS-BPEL file. Manually
designing a BPEL process requires designers to spec-
ify namespaces, variables, partner links, and the control
flow of the activities. Haley programmatically generates
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Fig. 7 Architectural details of Haley. Notice that Haley operates on
both service descriptions and agreement specifications. Information
from these files is used to formulate the planning problem (often called

the planning domain) automatically. Process hierarchies are specified
by the designer using a hierarchy modeler

Fig. 8 SAWSDL viewer showing an example SAWSDL described WS CheckCustomer

executable BPEL using the ActiveBPEL API and deploys
it in an ActiveBPEL engine. This saves time and effort,
and avoids common grammatical and logical errors while
designing BPEL processes.

• KB based process monitor In order to determine which
branches to take while executing the BPEL, service oper-
ations once performed are asserted in a first-order logic
KB. The KB is implemented using an embedded Prolog
engine wrapped in a WS. The KB is updated with the
effects of the operations and queried for the next state of
the composition.

In summary, Haley automatically composes a WS-
BPEL process given component services described using
SAWSDL and service agreement files, using a first-order

logic-based planner that brings improvements in both
scalability and expressiveness.

6 Composition, execution, and evaluation

Solving the C-FOSMDPs and primitive FO-SMDPs defined
previously generates a policy at each level of the hierar-
chy. The policy, π , itself in case notation, πCase, maps
first-order sentences, which represent regions of the state
space where the sentences are true, to WS invocation(s).
The action is expected to be optimal over the period of con-
sideration. Our policy-based approach of generating a WS
composition is robust—no matter what the outcome of the
WS invocation is, the policy will prescribe the next WS to
invoke.
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Fig. 9 Hierarchy modeler with a GUI for intuitively grouping together the component WSs into a hierarchy

6.1 Algorithm

Haley generates and executes a WSC top-down, using the
policy prescriptively to guide the selection of the next WS to
invoke beginning with the start state. If the policy prescribes
an abstract action, Haley utilizes the policy and starts state
of the lower level WSC. In order to generate the composi-
tion, we need a way to find out which of the case conditions
in the policy is entailed at each step. We do this by main-
taining a first-order logic-based KB implemented in Prolog.
The KB is initialized using the initial state of the high level
WSC. Using the ASK operator, the KB is queried to find out
which of the case conditions in the corresponding πCase
is entailed.4 Given the entailed case statement, the WS pre-
scribed by the policy is invoked and its responses interpreted
as effects update the KB using the TELL operator. We addi-
tionally tell the KB that the action representing the WS has
been performed. Analogously, the second TELL statement
lets the KB know that the lower-level composite action has
been performed. This is important since compositions at each
level and the root composition may be associated with their
own KBs. Notice that a KB is initialized each time the algo-
rithm is recursively invoked. The procedure is repeated until
the KB entails the terminal condition or the specified number
of steps have been performed.

4 Note that only a single case condition will be entailed because the
case statements form a partition of the state space.

We deploy the higher level policy as a WS-BPEL compo-
sition and wrap the KB as a WS. Each of the lower level poli-
cies is described using WS-BPEL files of their own. Haley’s
algorithm for generating and executing WS compositions is
shown in Fig. 10.

6.2 Performance evaluation

We empirically evaluated the performance of Haley in com-
parison with two other well-known WS composition tech-
niques: HTNs augmented with information gathering actions
[4] and MBP [10] (used in the Astro project). To the best of
our knowledge, HTN is the only other approach that exploits
a hierarchy for composing WSs. However, HTNs do not uti-
lize a first-order symbolic representation for planning. We
performed the evaluation on the two application scenarios
mentioned in Sect. 2. In Figs. 11 and 12, we show the aver-
age rewards obtained by executing the WSCs using each of
the three approaches as we vary the uncertainty of the com-
position environment. For our experiments, we varied the
non-functional parameter, availability, of the USPS WS in
Fig. 11, and the probability with which the inventory satis-
fies the manufacturer’s order in Fig. 12. Each data point is the
average of 1,000 executions of the composition where each
execution involves running the WSC until the compositions
are successfully completed or it is unable to move forward.

For the online shopping application scenario (Fig. 11), we
observe that the composition generated by HTN performs the
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Fig. 10 Interleaved composition and execution of a nested WSC in
Haley. This algorithm is implemented in WS-BPEL and deployed
in the WS-BPEL Engine component in Fig. 7. Input policy, πCase,
is in WS-BPEL as well

Online shopping problem
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Fig. 11 Average rewards on running the compositions generated by
HTN, MBP and Haley for the online shopping example. Haley gathers
the most reward because it models the nondeterminism of WSs and pro-
vides cost-based optimization. Performances of the approaches begin to
converge as the availability approaches 1 signifying that the uncertainty
reduces

worse. HTN-generated WSC performs poorly because the
execution of the composition stops prematurely when the
WS is unavailable to take requests. For lower rates of WS
availability, this happens frequently and is responsible for
the lower average reward of the composition. We observe
that there is a drop in the average reward when the prob-
ability of USPS availability is around 0.68. At this point,
a change in the optimal choice occurs. As the availability
of USPS WS increases from this point onwards, the opti-
mal choice becomes the USPS WS as opposed to FEDEX

Order handling problem
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Fig. 12 Average rewards on running the composition generated by the
HTN, MBP and Haley for the supply chain example. Behaviors of the
three approaches are analogous to Fig. 11

WS. Although the cost of using USPS is lower than using
FEDEX, the FEDEX WS availability was higher than the
USPS WS availability previously. Hence, the overall reward
of the composition is lower. The MBP-generated compo-
sition performs better because its execution, similarly to
Haley, is also guided by a policy [34]. However, even at
low probabilities of USPS WS availability the composition
invokes USPS for satisfying the order. This is because MBP
does not associate costs with actions and fails to distinguish
between candidate WSs of similar functionality (USPS and
FedEx) but with different non-functional parameters. Haley
chooses to bypass USPS and utilizes FedEx, which is respon-
sible for its better performance. As the USPS WS availability
improves, Haley switches to USPS and its performance is
similar to that of MBP.

Analogous to the online shopping problem, in the order
handling application scenario, we observe similar behaviors
(Fig. 12). HTN-generated WSC performs the worse because
the execution of the composition often stops prematurely
when the inventory or the preferred supplier is unable to
satisfy the order. This could happen when the WS is not
functioning or there are insufficient parts for satisfying the
order. As the inventory availability improves, it becomes the
optimal choice. The reduced reward is due to its availabil-
ity being lower than the preferred supplier at this point. The
MBP-generated composition performs better because its exe-
cution is guided by a policy. However, it is not able to dis-
tinguish between candidate WSs with similar functionality
but different QoS parameters. Thus, even at low probabilities
of inventory availability the composition repeatedly invokes
the inventory. Haley chooses to bypass the inventory and uti-
lizes the preferred supplier, which is responsible for its better
performance. As the inventory availability improves, Haley
switches to checking inventory and its performance becomes
close to that of the MBP and HTN.
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The performance of the WSC is determined by the capabil-
ity of the approaches. HTN planning does not model uncer-
tainties in WSs, nor does it associate costs with planning
states or actions. MBP is capable of planning with non-deter-
ministic actions, but it does not associate costs with planning
states or actions either. Therefore, both these approaches are
limited in their ability to optimize during the planning phase.

In Table 1, we demonstrate the advantages of a hierar-
chical decomposition and logic based representation using
the time taken in generating the plans. We compare between
approaches that utilize a hierarchy such as the hierarchi-
cal formulation for SMDPs [17] and Haley and their coun-
terparts that do not (Flat FO-SMDP is the flat version of
Haley without a hierarchical decomposition). We also com-
pare between approaches that utilize a logical representation
such as FO-SMDP and Haley and those that utilize the tra-
ditional propositional state space representation.

For the first application scenario of online shopping, hier-
archical approaches consume significantly less time than
their flat counterparts. For the second scenario, we also varied
the number of distinct types of orders handled by the supply
chain to see how first-order logic representation reduces the
size of the state space. Different types of orders differ in the
probabilities of fulfilling them and their costs. In proposi-
tional approaches, a distinct order type would be included as
a new proposition in the state space. In first-order logic, this
is equivalent to grounding the variable o in the predicates
with the corresponding number of the type. We observe that
the flat SMDP whose states are obtained by grounding and
propositionalizing is computationally most expensive. This is
because its state space grows exponentially as the supported
number of order types increases. In contrast, FO-SMDP takes
significantly less time. In both scenarios, the effectiveness of
the hierarchical decomposition is evident from the fact that
the hierarchical approaches consumed significantly less time
than the others. This is because the decomposition leads to
smaller state spaces, and the planning at the different levels
could occur in parallel.

We further tested scalability by increasing the number of
suppliers in the order handling scenario to 15, resulting in a
total of 24 WSs in the composition. These many suppliers
are not uncommon in some supply chain applications, for
e.g., as in the automotive industry [35]. As we may expect,
propositional approaches failed to generate a solution in a
reasonable amount of time. While FO-SMDP generated a
plan, it took an order of magnitude time greater than Haley
in doing so. However, Haley displayed an increase ratio that
is worse than that of FO-SMDP indicating that it may not
scale well as we continue to increase the number of WSs,
especially if a large number of WSs reside at the same level.
Improving this aspect is one line of our future study.

Finally, we show the execution times of running the
WS-BPEL- based compositions generated by Haley and

the other approaches, in Table 2. All WSs were deployed
in an Axis 1.2 implementation, while the WS-BPEL files
were executed using the ActiveBPEL engine. The execu-
tion times of the hierarchical approaches are greater than the
flat approaches due to the overhead incurred while invok-
ing the lower level WS-BPEL compositions. In comparison,
the flat WS-BPEL files invoke WSs only. The algorithm for
interleaved composition and execution in Haley (Fig. 10)
requires the use of ASK statements on a first-order logic KB.
While in the worst case this could be semi-decidable [36], the
execution times for Haley demonstrate that the ASK state-
ments typically entail simple and quick inferences in practice.
However, as we may expect, interactions with the KB lead to
execution times that are greater than those of the traditional
propositional approaches.

In summary, Haley generates WS compositions signif-
icantly faster than comparative, traditional propositional
approaches. Furthermore, it is able to compose processes
much larger while simultaneously modeling the uncertainty
of WSs and optimizing QoS parameters. On the other hand,
executing the compositions takes longer due to the inter-
leaved interaction with the KB for determining the logical
state of the composition and applicable actions.

7 Related research

Several approaches have been proposed to address the WS
composition problem with varying levels of automation (see
[6] for a survey). In this section, we survey existing planning
approaches to automatic WSC and briefly compare them with
Haley. We position our study in the SOA context and discuss
the limitations of previous research in this area.

7.1 WS composition

SHOP2 [37], a classical planner based on hierarchical task
networks, exploits the hierarchy for composing WSs as
shown in [4,38]. The final plan generated by SHOP2 is a
sequence of WS invocations and fails to account for uncer-
tainties such as WS failures. Improving on this approach,
Kutter et al. [5] attempt to deal with this issue by gathering
information during planning, which may improve the robust-
ness of the plans because information used to generate a
plan may not change much at execution time. In comparison,
Haley explicitly models uncertainty in WS outcomes and
generates a policy which specifies a WS to invoke for every
state of the composition.

McIlraith et al. [7,39] transform DAML-S based WS
descriptions into situation calculus and implement the
descriptions using Golog. Standard theorem provers are used
to arrive at a plan which is a sequence of WS invoca-
tions. We improve on this study by modeling the uncertain
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Table 1 Run times for generating policies that guide the compositions (Centrino 1.6 GHz, 512 MB, WinXP)

Scenarios Flat SMDP Hier. SMDP Flat FO-SMDP Haley

Online shopping 251.49 s 0.241 s 34.19 s 0.54 s

Order handling
Order types

1 741.83 s 0.46 s 82.95 s 0.93 s

2 * 1.5 s 82.95 s 0.93 s

3 * 15.27 s 82.95 s 0.93 s

5 * 695.02 s 82.95 s 0.93 s

Order handling with 15 suppliers * * 3183.29 s 159.67 s

Flat FO-SMDP and Haley perform better than propositional SMDP and propositional hierarchical SMDP as a result of using first-order representa-
tions. Hierarchical SMDP and Haley have better run times than their corresponding flat frameworks. This is because the hierarchical decomposition
significantly reduces the planning state space

Table 2 Execution times of the WS-BPEL compositions averaged over 100 runs (Centrino 1.6 GHz, 512 MB, WinXP)

Scenarios Flat SMDP Hier. SMDP Flat FO-SMDP Haley

Online shopping 240.95 ms 420.25 ms 429.86 ms 1137.94 ms

±62.1 ms ±76.4 ms ±69.4 ms ±138.4 ms

Order handling 255.52 ms 335.05 ms 436.49 ms 970.88 ms

±109.2 ms ±60 ms ±109 ms ±136.1 ms

behavior of WSs, first by using a probabilistic variant of
situation calculus and second, by using decision-theoretic
planners. Consequently, we offer a way to form WS compo-
sitions that are more robust to WS failures and other events.

Medjahed et al. [8] present a technique to generate com-
posite services from high-level declarative descriptions of the
individual services. The method uses compensability rules,
defining possible WS attributes that could be used in service
composition, to determine whether two services are com-
posable. It provides a way to choose a plan in the selection
phase based on the quality of composition parameters (e.g.,
rank and cost). However, the final plan is not a conditional
plan; it may fail to adjust properly to the dynamic changes in
the environment.

In SELF-SERV [40], WSs are declaratively composed
and then executed in a dynamic, peer-to-peer environment.
SELF-SERV composes WSs based on state-charts, gluing
together an operation’s input and output parameters, con-
sumed and produced events. Service execution is monitored
by software components called coordinators, which initiate,
control, and monitor the state of a composite service they
are associated with. This system provides tools for specify-
ing composite services, data conversion rules, and provider
selection policies. SELF-SERV may be classified as a toolkit
for manually composing WSs, in contrast to an automated
WSC approach such as Haley.

Traverso and Pistore [9] propose a MBP (model check-
ing planner) based framework to automate WS composition,
where WSs are modeled as having stateful, non-deterministic
and partially observable behaviors. Our approach improves

on this line of study in that Haley not only handles the
nondeterminism of WSs, but also offers a way to scale WS
composition using a hierarchical approach. Pistore et al. [10]
improving on their previous study [9] transform compos-
ite WSs described using BPEL4WS into a KB and apply
MBP to arrive at a plan for composing the WSs. While MBP
handles nondeterminism, the language used for the KB is
restrictive and the final plan does not provide cost guaran-
tees. Besides, handling uncertainty and providing cost-based
optimality, Haley improves scalability and allows the full
generality of first-order logic-based descriptions of WSs.

Oh, Lee, and Kumara proposed a forward and backward
(bidirectional) search-based approach [11] for WSC. They
compared their algorithm with other approaches in two sim-
plistic WSC benchmarks as part of the WS Challenge,5

exhibiting good results in terms of the speed of composition.
Plans produced in this approach are based on the reachability
analysis of input and output variables only. In other words,
only the input and output as the functional description of
WSs is considered. This may not be realistic because multi-
ple WSs with the same input and output often exist and the
approach provides no way to choose between them. In partic-
ular, non-functional parameters of WSs are ignored, which
typically allows the selection of a composition among many
candidate ones.

Recently, Qiu et al. [12] proposed a context optimization
and planning-based approach for semantic WSC. A context-
aware planning method comprising global planning and local

5 WS Challenge: http://www.ws-challenge.org/.
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optimization based on context information is utilized. In par-
ticular, a framework is introduced for composing semantic
WSs using backward chaining-based search to find candi-
date services through reasoning in description logics. This
is combined with a method based on directed acyclic graphs
to select services and formulate the planning problem, and
filtering of inappropriate services during the graph gener-
ation. Although context is incorporated into planning, this
approach does not model the uncertain behaviors of WSs.
Furthermore, it does not select WSs based on QoS or per-
forms process optimization.

7.2 WS configuration

METEOR-S [41] aims to support the complete life cycle of
semantic Web processes. At the composition stage, it manu-
ally configures the process as a “Semantic Process Template”
and dynamically chooses the candidate WSs for the abstract
components in the process. It presents a constraint-driven WS
composition tool, which allows the process designers to bind
WSs to an abstract process, based on business and process
constraints.

Cardoso et al. [42] show how we may derive the QoS
parameters of a composite WS from the parameters of
individual WSs. This could have important applications in
configuration that seeks to optimize aggregate QoS parame-
ters given an abstract composition. While we derive param-
eters for abstract actions somewhat analogously, we use it
toward automatically composing WSs grouped in a given
hierarchy.

Similar to METEOR-S, Zeng et al. [43] proposes a global
planning approach to optimally select component services
during the execution of a composite service. Service selec-
tion is formulated as an optimization problem which can be
solved using efficient linear programming methods. By shar-
ing a similar view of selecting services as an optimization
problem, Canfora and Esposito [44] proposed a lightweight
approach for QoS-aware service composition using genetic
algorithms.

As pointed by Wiesemann et al. [45], many optimization-
based approaches to the service composition problem treat
the QoS of a service as deterministic quantities. In contrast,
Wiesemann et al. [45] view these QoS parameters as stochas-
tic variables quantified with average value-at-risk (AVaR).
The service selection problem is formulated as a multi-objec-
tive stochastic program which simultaneously optimizes QoS
parameters and minimizes the AVaR of the workflow dura-
tion and costs while imposing constraints on the workflow
availability and reliability.

Compared to planning based approaches, these
approaches [41,43–45] do not automatically compose indi-
vidual WSs into processes, but focuses on the dynamic selec-
tion of candidate WSs for the functional components in the

process. The process is assumed to have been manually con-
figured beforehand.

7.3 WSC tool support

While a variety of WSC algorithms and approaches have been
proposed, few implemented tools or solutions are available
to support automated WSC. This is because of the complex
nature of the WSC problem and the inherent scalability issues
in existing AI planners. Two exceptions are Synthy [46,47]
and the Astro Project.6

Synthy accepts WSs described in OWL-S and composes
the WSs in two stages: The first stage composes an abstract
workflow to satisfy the functional requirements, and the
second stage chooses WS instances for the components in
the abstract workflow, based on the QoS attributes of WS
instances. Although Synthy utilizes QoS properties of WSs,
it, however, does not specify how these QoS properties are
specified or acquired.

The Astro tool suite offers a way to compose WSs
described using abstract BPEL into business processes. It
supports both WSC design and execution. Abstract BPEL
is an unusual choice for describing WSs given the available
spectrum of WS description languages. In particular, design-
ing WSs using abstract BPEL is itself a time-consuming and
cumbersome process. While both Synthy and Astro utilize
planning, neither of them address the scalability issues of AI
planning algorithms in any feasible way. This could affect
the adoption of these two tool suites and their use in large
business process composition scenarios.

8 Discussion

This article introduced a hierarchical, symbolic planning-
based approach for composing WSs. We focused on address-
ing three key challenges faced by contemporary approaches,
which make WSC a difficult problem: (1) non-deterministic
WS behaviors; (2) composing WSs optimally given pref-
erences; and (3) facilitating scalable compositions. Haley
utilizes a stochastic planner for the composition, thereby
offering a more natural way to handle the uncertainty associ-
ated with WSs. The composition process takes into account
both functional and non-functional parameters (response
time, cost, and availability) and provides a cost-based WSC
optimization. It facilitates scalability by adopting a symbolic
representation and exploiting possible hierarchical decom-
positions. Specifically, symbolic representation helps us
address two primary issues. The first is the explosion in the
state space as the number of WSs increase. The second is the

6 Astro Project: http://www.astroproject.org/.
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capability to operate directly on WS descriptions—precon-
ditions and effects represented using first-order logic-based
languages. This enables Haley to directly elicit a planning
problem formulation from service descriptions.

Besides contributing a theoretical framework for compos-
ing WSs, we have implemented it as a working system and
provided a set of supporting tools. Haley is available as a
state of the art, end-to-end and scalable solution for WSC. It
provides an interface that hides the complexity of planning
and WS-BPEL from process designers. The tool suite offers
unique advantages over manual BPEL process design and
other automated approaches to composition.

We believe that some real-world business processes are
amenable to a hierarchical decomposition into lower level
processes and primitive service invocations. Typically, pro-
cess designers are aware of such decompositions through
their past experience and domain knowledge. While the
type of decomposition is usually domain specific, balanced
hierarchies are preferable for mitigating the computational
complexity. Such a decomposition has a relatively uniform
number of WSs at each level. Haley utilizes a framework that
provides a way to model the hierarchy. The tool suite offers an
intuitive GUI that allows users to create nested groupings of
WSs to formulate the hierarchy. However, we also recognize
that not all problems may be hierarchically decomposable.
Subsequently, providing a hierarchy is optional and may be
seen as an additional step toward scalability. We do not focus
on automatically inferring a hierarchy in this article, which
is a difficult problem in itself.

Although actions in our models predominantly focused on
WS invocations, our model is sufficiently general to include
many other types of actions such as receive actions. How-
ever, it could get difficult to obtain the definition of a receive
action—preconditions and effects—since they are not avail-
able in service descriptions. Definitions of such actions
would have to be manually input.

9 Limitations and future study

Haley utilizes various approaches that reduce the intrac-
tability of composition. This reflects in the reduced run
times it consumes in generating the compositions. However,
as Table 1 also shows, Haley may not scale well as we
continue to increase the number of WSs, especially if this
increase is not accounted for in the hierarchical decomposi-
tion. Improving the scalability further is one aspect of our
future study.

Closely associated with WSC is the challenge of data
mediation, which is not addressed in this article. In some
cases, the WS-BPEL composition generated by Haley may
not be directly executable. Specifically, both syntactic and
semantic heterogeneity may exist in the input and output

messages exchanged between WSs. In other words, the out-
put of the previous WSs may not exactly match the required
input of the successive WSs. Data mediation involves a for-
mal model and mechanism for managing this data heteroge-
neity. It is a challenging problem and is beginning to receive
renewed research attention in the semantic Web service com-
munity. One proposed approach [48] models the involved
domains using ontologies and relies on pre-constructed data
mappings to solve the heterogeneity issue. Haley could be
extended in a straightforward manner with approaches that
address data mediation challenges. As part of future study,
we are investigating data mediation within the Haley frame-
work.

While the three predominant quantitative QoS parameters
(response time, availability, and invocation cost) are consid-
ered by Haley, other QoS parameters such as compliance and
security have not been addressed in our approach. These QoS
parameters could be crucial in some application domains, say
in the cyber systems related to defense. However, two reasons
why these parameters are often not considered are because
they lack formal operational definitions and they tend to be
qualitative, which makes it difficult to optimize them numer-
ically.

Compositions generated by Haley are optimal under the
assumption that WSs in lower level processes are indepen-
dent of each other. Of course, this may not always be the case,
especially if the WSs (or operations) are hosted by the same
organization. Deriving parameters of the abstract actions to
preserve optimality becomes challenging in these cases. Our
current approach for optimizing multiple QoS parameters is
to combine these parameters into a single objective function,
and as a consequence, a single optimal policy is produced.
It is also possible to view the problem as a multiple-objec-
tive optimization problem. In this case, we may apply pareto
optimization to Haley and produce a pareto policy set, rather
than a single policy.

Haley does not currently support concurrent service invo-
cations—an important feature of many real-world service
compositions. Supporting concurrent actions in AI planning
is challenging due to the difficulty in modeling their effects
because the concurrent actions may not terminate at the
same time and they could be competing for shared resources.
However, extensions of our planning model to support con-
current, temporally extended actions exist, which could be
used. In particular, Rohanimanesh and Mahadevan [49]
utilize options, which are temporally extended courses of
concurrent actions, in the place of primitive actions in a
MDP. The concurrent options are limited in that they may not
compete for shared resources. Rohanimanesh and Mahad-
evan show how we may derive the transition and reward
functions, and subsequently the action-value function in the
context of options. However, representing options in first-
order logic is challenging, and it represents an aspect of
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continuing investigations, both by us and by researchers look-
ing into situation calculus.

Kiepuszewski et al. [50] analyze processes (workflows)
that do not contain concurrent actions. They call processes
with syntactic restrictions imposed by the workflow manage-
ment system as structured processes. Structured processes
that do not contain parallelism are inherently simple, since
they preclude deadlocks and multiple instances; however,
their semantics is equivalent to elementary flow charts com-
monly used for procedural program specification.

We also plan to test Haley with additional real world large-
scale scenarios and continue to improve the usability and
reliability of the tool suite.
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