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Abstract We introduce Abstract State Services (AS2s) as
an abstraction of data-intensive services that can be made
available for use by other systems, e.g. via the web. An
AS2 combines a hidden database layer with an operation-
equipped view layer, and can be anything from a simple
function to a full-fledged Web Information System or a Data
Warehouse. We adopt the fundamental approach of Abstract
State Machines to model AS2s and show that AS2s capture
the fundamentals of approaches such as media types, meme
media, SOA and web services excluding presentation issues.
Then we show how tailored services can be extracted from
available AS2s, combined with other AS2 components and
personalised to user preferences.
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1 Introduction

Since its introduction, the role of the world-wide web has
shifted from enabling access to a pool of documents to
the provision of services. Such web services can in fact be
anything: a simple function, a data warehouse or a fully func-
tional Web Information System. The unifying characteristic
is that content, functionality and sometimes even presen-
tation are made available for use by human users or other
services. A prominent example for the view of the web as
a pool of resources is the meme media architecture [33],
which is based on research that started in the second half of
the 1980s, and thus, being older than the world-wide-web is
not restricted to the web as the only pool of media resources.
The general idea is that media resources are extracted from
any accessible source, wrapped and thereby brought into the
generic form of a meme media object, and stored in a meme
pool, from which they can be retrieved, reedited, recombined
and redistributed.

Recently, a lot of research has been investigated into
service-oriented architectures (SOA) (see e.g. [12,22]) and
service-oriented computing (SOC), which adopt the same
principle. A quick search on the DBLP bibliography server
reveals that in less than a decade, nearly 500 articles were
published with keywords “service-oriented” and “architec-
ture” in the title, not counting the far larger number of papers
dealing with the subject, but not having it already in the title.
Despite this big interest in the area and the many ideas and
systems that have been created, many questions have still
not been answered. Among them is the fundamental prob-
lem of formally defining the notion of service, as most of the
research in the area is mainly based on an informal idea of
what constitutes a service.

In an effort to consolidate and integrate current res-
earch activities, the Service-Oriented Computing Research
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Roadmap [24] has been proposed. Service foundations, ser-
vice composition, service management and monitoring, and
service-oriented engineering have been identified as core
SOC research themes. In particular, a specific Web Services
Description Language (WSDL) has been proposed by W3C
[13], a web services standard has been proposed [4], web ser-
vice integration has become a highly relevant research topic
[7] including service personalisation [17] and transaction
processing (e.g. WS-Transaction [14] and WS-Coordination
[15]) has been proposed to target loosely coupled, dynamic
environments. It also appears quite natural that Abstract State
Machines (ASMs) [11] have also been used for modelling
web services [3,10].

Our research aims at laying the foundations of a theory of
service-oriented systems. In particular, we try to answer the
following fundamental questions:

– How must a general model for services look like captur-
ing the basic idea and all facets of possible instantiations,
and how can we specify such services?

– How can we search for services that are available on the
web?

– How do we extract from such services the components
that are useful for the intended application, and how do
we recombine them?

– How can we optimise service selection using functional
and non-functional (aka “quality of service”) criteria?

In this article, we address the first of these problems, and
partly the third one. The other questions will be addressed by
future research. We take an abstract, conceptual approach to
service specification, composition and personalisation with
a particular focus on data-intensive services, in which not
only functional, but also data resources are made available.
We adopt the fundamental idea from the area of dialogue
systems [25] that a service can be described by two layers:
a hidden database layer consisting of a database schema and
transactions, and a visible view layer on top of it providing
views and functions based on them.

In doing so, we assume that services are data-intensive,
which will enable us to combine data services with func-
tional services. The assumption of an underlying database is
no real restriction, as it is hidden anyway, and data services
will be formalised by views, which in the extreme case could
be empty to capture pure functional services.

The data model is of secondary importance for this idea,
e.g. Entity-Relationship modelling as in [34] or XML [1,16]
could be used for this purpose. This idea has already been mir-
rored in development methods for Web Information System
[28,27], and also appears as a natural choice for component-
based systems development [29]. ASMs have also been
suggested as a means for modelling such services [8]. On
the practical side, the IntelligentPad system [33] provides

a realisation of a meme media architecture with a similar
underlying idea and in addition tools that also capture presen-
tation issues, similar to presentation options in media types
[28].

However, we want to go one step further and formally
ensure that indeed all (data-intensive) services are captured.
For this, we develop a theory of Abstract State Services
(AS2s) following the line of thought of the ASM thesis.
Gurevich and Blass [9,19] formalised sequential and par-
allel algorithms by requiring a small set of intuitive, abstract
postulates to be satisfied, then proved that these postulates are
always satisfiable by (sequential) ASMs, i.e. ASMs capture
algorithms in the most general sense in a natural way. This
has been picked up in [32] and customised to database trans-
formations exploiting states as meta-finite logical structures
[18]. In analogy to the ASM thesis, it could be proven that
a variant of ASMs called Abstract Database Transformation
Machines (ADTMs) captures exactly all database transfor-
mations, while detail of the used data model become part
of the background of the computation. This research can be
used as a basis for the model of transactions on the database
level, and thus forms the basis of the formal definition of
AS2s. In doing so, the web as the medium through which a
service may become available is of no importance; the notion
of AS2 can also be applied to enterprise services that are only
available to selected clients.

The work in [32] actually consists of two parts. The
first one describes intuitive postulates for database trans-
formations and discusses the fundamental differences to
Gurevich’s seminal work on the ASM thesis. These postu-
lates are repeated in this article, though their motivation has
been shortened. The reason is that a foundational theory for
service-oriented computing has to explain why the language
captures all services (even if the formal mathematical proof is
done elsewhere). The second part of the MSCS article con-
tains the mathematical proof that database transformations
are captured exactly by a variant of ASMs. As for the variant
of ASMs, its core, the ADTM-rules, also appears in Sect. 3
of this article. However, the lengthy proof of the main result
in [32] is not repeated here.

We then address the problem of service composition and
personalisation. Composition requires the extraction of ser-
vice components from existing AS2s that feed a new service
without replacing the original ones. For this, we can adopt
ideas from component composition [29]. For service per-
sonalisation according to preference rules, we pick up the
idea from WIS personalisation [30] to compose personalised
tasks, where the preference rules indicate, which choices will
be preferred.

Service composition has to be distinguished from service
integration, which means to replace two or more AS2s by a
single new one that offers all the functionality of the indi-
vidual services. This problem can actually be reduced to
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database schema and view integration. For composition, how-
ever, we have no access to the hidden database layer of a ser-
vice. Nevertheless, service integration may be a valuable tool
for service design, which is beyond the scope of this article.

The remainder of this paper is organised as follows. In
Sect. 2, we formally introduce the model of Abstract State
Services by means of postulates. This involves postulates for
database transformations in the spirit of the sequential ASM
thesis that were developed in [32]. In Sect. 3, we then present
a language for AS2s that is based on the model of Abstract
Database Transformation Machines (ADTMs), a variant of
ASMs that was shown to capture database transformations in
[32]. In view of our intention to capture transactional data-
base systems and extended views on top of them, we extend
the ADTM language by expressions that cover complex
queries as the fixed-point queries on media types in [28].
A preliminary version of this language was presented briefly
in [23].

In Sect. 4, we illustrate the power of Abstract State Ser-
vices by presenting examples taken from areas as diverse
as Web Information Systems, Data Warehouses, Web Ser-
vices and Intelligent Pads. This is followed by a discussion
of component extraction and composition to new AS2s in
Sect. 5. All composition operations remain within the frame-
work defined by AS2s. In addition, we address the problem
of service personalisation. For this, we show how the extrac-
tion process discussed before can be tailored by preference
rules. Finally, in Sect. 6, we place our work into the context
of the literature on Web Information Systems, Web Services
and Meme Media. We show that AS2s provide the formal
backbone for many other approaches including media types
and Meme media. We conclude with a brief summary and
discussion of open research problems.

2 Abstract state services

As we consider data-intensive services, we first look at
databases. Traditional database architecture distinguishes at
least three layers: a conceptual layer describing the database
schema in an abstract way, a physical layer implementing the
schema and an external layer made out of views. The exter-
nal layer exports the data that can then be used by users or
programs. For our purposes, here we can neglect the physi-
cal layer, but in order to capture data-intensive services, we
complete this architecture by adding operations on both the
conceptual and the external layer, the former one being han-
dled as database transactions, whereas the latter ones provide
the means with which users can interact with a database.

2.1 The database layer

In order to abstract from this architecture to obtain a model
of abstract services, we first formulate postulates for the

database layer. Following the general approach of Abstract
State Machines [19], we may consider each database com-
putation as a sequence of abstract states, each of which rep-
resents the database (instance) at a certain point in time plus
maybe additional data that is necessary for the computation,
e.g. transaction tables and log files. In order to capture the
semantics of transactions, we distinguish between a wide-
step transition relation and small step transition relations. A
transition in the former one marks the atomic execution of a
transaction, so the wide-step transition relation defines infi-
nite sequences of transactions. Without loss of generality, we
can assume a serial execution, while of course interleaving
is used for the implementation, as long as this is equivalent
to the serial execution, i.e. serialisability is guaranteed. Then
each transaction itself is a database transformation and as
such corresponds to a finite sequence of states resulting from
a small step transition relation, which should then be subject
to the postulates for database transformations [32,35]. We
will explain these postulates later in this section.

Definition 1 (database postulate) A database system DBS
consists of

– a set S of states, together with a subset I ⊆ S of initial
states,

– a wide-step transition relation τ ⊆ S × S and
– a set T of transactions, each of which is associated with

a small-step transition relation τt ⊆ S × S (t ∈ T )
satisfying the postulates of a database transformation
over S.

With this definition, we do not yet specify what states are.
We do, however, already require that states of a database sys-
tem are states of database transformations. Later, when we
discuss the postulates for database transformations, we will
further elaborate the notion of state and database transforma-
tion.

For now note that differently from the sequential time pos-
tulate in Gurevich’s work, we permit non-determinism both
in the wide-step transition relation and in the small-step tran-
sition relations. For the first one this is due to the fact that
transactions may be started anytime, and the database system
will schedule them in a serialisable way thereby defining a
(serial) run. The non-determinism in the small-step transi-
tion relations is far more limited, as it is mainly meant to
capture the creation of values such as identifiers as a highly
expressive means in query and update languages. This form
of non-determinism is common in database transformations.

Definition 2 A run of a database system DBS is an infi-
nite sequence S0, S1, . . . of states Si ∈ S starting with an
initial state S0 ∈ I such that for all i ∈ N(Si , Si+1) ∈ τ

holds, and there is a transaction ti ∈ T with a finite run
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Si = S0
i , . . . , Sk

i = Si+1 such that (S j
i , S j+1

i ) ∈ τti holds for
all j = 0, . . . , k − 1.

Example 1 Let us consider a flight booking system. At its
core it may use a database storing data about flights and
bookings. For simplicity, assume that we use a relational
database, so we may have a relation Flight with attributes
flight_no, departure_date, departure_time, origin and desti-
nation for the available flights; a relation Seat with attributes
flight_no, departure_date, class, and number for the available
seats per class in a flight; and Booking with attributes book-
ing_ref, flight_no, departure_date, class, customer_id for the
already made bookings. Let us ignore everything else such
as customer data and status of bookings.

Then a state of the DBS would contain an instance of the
relational database schema, and a booking transaction would
change the state by adding further tuples to the booking rela-
tion, provided the number of seats booked for each class of
each flight does not exceed the number of available seats.
The booking transaction itself proceeds stepwise, and each
step also changes the database, i.e. the state.

Furthermore, a booking may be issued by a customer after
receiving an answer to a query, e.g. asking for flight itineraries
from a specified origin airport to a destination airport within
a specified timeframe. The answer to such a query would be
a set of itineraries, and each itinerary would be specified by
a set of flight tuples stored in the database. Thus, the state, in
which the booking transaction is started, should also contain
the set of itineraries, which is a view on top of the relational
database.

The preceding example is of course very simplified, but
it illustrates the definition of a database system. Note that if
views are considered as part of states of a DBS, then trans-
actions also affect them. We will handle this in the next sub-
section.

2.2 The view layer

Views in general are expressed by queries, i.e. read-only data-
base transformations. Therefore, we can assume that a view
on a database state Si ∈ S is given by a finite run Sv

0 , . . . , Sv
�

of some database transformationv with Sv
0 = Si and Si ⊆ Sv

� .
Traditionally, we would consider Sv

� − Si as the view. Here,
we assume that we can write a state of a database system
as a set. For instance, if we deal with a relational database
system, then each relation is a set of tuples, which can be
written as first-order atoms, and the whole database is the
union of these sets of atoms. We will later explain that it is
also possible in general to view a state as a set.

We can use this to extend a database system by views.
For this, let each state S ∈ S to be composed as a union
Sd ∪ V1 ∪ · · · ∪ Vk such that each Sd ∪ Vj is a view on Sd .
As a consequence, each wide-step state transition becomes

a parallel composition of a transaction and an operation that
switches views on and off. This leads to the definition of an
Abstract State Service (AS2).

Definition 3 (extended view postulate) An Abstract State
Service (AS2) consists of a database system DBS, in which
each state S ∈ S is a finite composition Sd ∪ V1 ∪ · · · ∪ Vk ,
and a finite set V of (extended) views. Each view v ∈ V is
associated with a database transformation such that for each
state S ∈ S there are views v1, . . . , vk ∈ V with finite runs
S j

0 , . . . , S j
n j of v j ( j = 1, . . . , k), starting with S j

0 = Sd

and terminating with S j
n j = Sd ∪ Vj . Each view v ∈ V is

further associated with a finite set Ov of (service) operations
o1, . . . , on such that for each i ∈ {1, . . . , n} and each S ∈ S
there is a unique state S′ ∈ S with (S, S′) ∈ τ . Furthermore,
if S = Sd ∪ V1 ∪ · · · ∪ Vk with Vi defined by vi and o is an
operation associated with vk , then S′ = S′d ∪ V ′1 ∪ · · · ∪ V ′m
with m ≥ k − 1, and V ′i for 1 ≤ i ≤ k − 1 is still defined
by vi .

In a nutshell, in an AS2 we have view-extended database
states, and each service operation associated with a view
induces a transaction on the database, and may change or
delete the view it is associated with, and even activate other
views. We therefore talk of views that are open and those that
are closed. These service operations and the view generating
queries are actually what is exported from the database sys-
tem to be used by other systems or directly by users, in which
case we obtain the dialogue interfaces described in [25] or
the web interfaces in [28].

The abstract handling of service operations that induce
transactions avoids the view update problem, which has to
be taken into account when dealing with concrete specifica-
tions for AS2s, e.g. using the theory developed by Hegner
[21].

What is exported can be very limited such as simple aggre-
gation functions, in which case most of the data in the data-
base would be hidden. The other extreme would be to export
the complete database and define operations that take a query
text as input and then process the query. Both extremes (and
anything between them) are supported by the definition of
AS2s.

Example 2 The booking operation in Example 1 is a service
operation that is associated with a view that produces a list of
itineraries for given search criteria such as origin and destina-
tion, preferred class and departure time frame. The induced
transaction on the DBS updates the Booking relation. Initial
states for this database transformation can be any consistent
database plus any set of open views. The successor state (for
the wide-step transition relation τ ) would contain the updated
database and the same set of views except the one containing
the list of itineraries, which would be replaced by a view that
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simply contains a confirmation message for the selected and
booked itinerary.

2.3 Preliminaries: abstract state machines

The notion of Abstract State Service is based on database
transformations. Therefore, we obtain a model that is com-
plete for services, i.e. it captures all services, if it captures
all database transformations, in particular all database trans-
formations that preserve the input database, i.e. queries. In
the next subsection, we will address a model capturing all
database transformations, which is based on Abstract State
Machines (ASMs) [11]. Before presenting it, let us first look
at ASMs without customising them to databases.

ASMs (aka Evolving Algebras) have been introduced as
a means to capture algorithms in an abstract, high-level way.
This has led to the sequential and parallel ASM theses [9,
19], respectively, showing that sequential and general ASMs,
respectively, capture all sequential and parallel algorithms.1

Such algorithms have been characterised by a small set of
intuitive postulates.

Let us look at the three postulates for sequential algorithms
without going too much into technical details:

Sequential time postulate: An algorithm proceeds stepwise
by means of a transition function on a set of abstract states,
starting from an initial state.

Abstract state postulate: States are first-order structures
over a fixed signature and a constant base set, i.e. sets of
functions, and are closed under isomorphisms.

Bounded exploration postulate: There is a finite set of
closed terms, called bounded exploration witness such that
whenever two states coincide on it, the update sets of the
algorithm in these states are equal.

For parallel algorithms, the first two postulates remain the
same, but the third one has to be replaced by several more
complicated ones.

The decisive novelty of ASMs was the use of first-order
structures for the states, while the other two postulates are
intuitively clear. In particular, the bounded exploration postu-
late assures that in any state an algorithm can only manipulate
finitely many locations, where a location is understood as one
of the functions in the signature plus arguments for it.

On these grounds, an ASM specification is given by a sig-
nature Σ , i.e. a set of function symbols, and a set of rules, one
of which is marked as the main rule. Rules can be defined as
follows (see [11]):

1 In Gurevich’s theory sequential algorithms still permit bounded par-
allelism, whereas parallel algorithms are understood to capture even
unbounded parallelism.

– If t0, . . . , tn are terms over Σ , and f is an n-ary function
symbol in Σ , then f (t1, . . . , tn) := t0 is a rule in R called
assignment rule.

– If ϕ is a Boolean term and r ′ ∈ R is a rule, then if ϕ then
r ′ endif is a rule in R called conditional rule.

– If ϕ is a Boolean term and r ′ ∈ R is a rule, then forall
x1, . . . , xk with ϕ do r ′ enddo is a rule in R called forall
rule.

– If r1, . . . , rn are rules in R, then also r1‖ · · · ‖rn is a rule
in R called parallel rule.

– If r1, r2 are rules in R, then also r1 ; r2 is a rule in R
called sequence rule.

– If r ′(x1, . . . , xk) ∈ R is a rule using variables x1, . . . , xk ,
and t1, . . . , tk are terms, then r ′(t1, . . . , tk) ∈ R is a rule
called call rule.

We obtain sequential ASMs by discarding forall rules or
by restricting them to formulae ϕ that can only be satisfied
by finitely many x1, . . . , xk .

Example 3 For the booking transaction from Example 1, we
would have function symbols for the relations Flight,Seat
and Booking in the signature Σ—interpreted as Boolean-
valued functions, i.e. relations, in every state. Then, we spec-
ify the following ASM rule:

book(set_of_flights,customer) =
if ∀ f. f ∈ set_of_flights ⇒ not_yet_booked( f ,

customer) ∧ seat_available( f )
then

forall f with f ∈ set_of_flights
do store_booking( f ,customer)
enddo

endif

Here, not_yet_booked( f ,customer) and seat_available( f )
are used as shortcuts for more complicated conditions
expressed in terms of the relations Flight, Seat and Book-
ing. We omit the details. Likewise, store_booking( f ,cus-
tomer) is a rule that contains an assignment Booking(…) :=
true with arguments derived from the input f and customer.

In our previous work in [32,35], we customised the ASM
theses to database transformations in general. We followed
the same idea as in Gurevich’s seminal work to start with
intuitive postulates for database transformations and then to
define a variant of ASMs, for which we then proved that
they capture exactly all database transformations. The major
differences to the postulates2 are the following:

2 There are also some minor differences, which merely reflect a differ-
ent taste, but are technically not relevant.
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– The notion of state refers to meta-finite structures to cap-
ture the finiteness of databases without being limited to
finite structures.

– The background of a computation is made explicit (as in
the parallel ASM thesis) in order to capture the necessities
of any data model the transformation is based on.

– The background may contain so-called location operation
to enable structurally determined bounded parallelism by
means of multiset operations.

– The genericity in database transformations is captured by
a separate postulate.

– A bounded form of non-determinism is permitted, which
together with the genericity amounts to semi-determism.

We will explain the modified postulates for database trans-
formations in detail in the following subsection. In Sect. 3,
we then show how the customised variant of ASMs for data-
base transformation, the Abstract Database Transformation
Machines (ADTMs), which capture all database transforma-
tions according to the main result in [32], can be exploited
to specify AS2s.

2.4 Database transformations

The definition of database systems and by that also the defini-
tion of AS2 refer to postulates for database transformations
that have been elaborated in [32]. We will briefly describe
these postulates here, though a full motivation will not be
possible due to space limitations. In total, there will be five
postulates: the sequential time postulate, the abstract state
postulate, the background postulate, the exploration bound-
ary postulate and the genericity postulate. An object satisfy-
ing these postulates will be a data transformation. Together
with the database postulate in Definition 1 and the extended
view postulate in Definition 3, we obtain the complete defi-
nition of AS2s by means of postulates.

Definition 4 (sequential time postulate) A database trans-
formation t is associated with a non-empty set of states St

together with non-empty subsets It and Ft of initial and final
states, respectively, and a one-step transition relation τt over
St , i.e. τt ⊆ St × St .

Analogously to Definition 2, a run of a database trans-
formation t is a finite sequence S0, . . . , S f of states with
S0 ∈ It , S f ∈ Ft , Si /∈ Ft for 0 < i < f and (Si , Si+1) ∈ τt

for all i = 0, . . . , f − 1.
The abstract state postulate is an adaptation of the corre-

sponding postulate for Abstract State Machines [19], accord-
ing to which states are first-order structures, i.e. sets of func-
tions. These functions are interpretations of function symbols
given by some signature.

Definition 5 A signatureΣ is a set of function symbols, each
associated with a fixed arity. A structure S over Σ consists of
a set B, called the base set of the structure together with inter-
pretations of all function symbols in Σ , i.e. if f ∈ Σ has arity
k, then it will be interpreted by a function fS : Bk → B. An
isomorphism σ from structure S to structure S′ is defined by a
bijection σ : BS → BS′ between the base sets that extends to
functions by σ( fS(b1, . . . , bk)) = fS′(σ (b1), . . . , σ (bk)).

Taking structures as states reflects common practice in
mathematics, where almost all theories are based on first-
order structures. Variables are special cases of function sym-
bols of arity 0, and constants are the same, but unchangeable.
We will later in the background postulate formulate minimum
requirements for the base set such as containing truth values,
a value representing undefinedness and more.

Definition 6 (abstract state postulate) All states S ∈ St of
a database transformation t are structures over the same sig-
nature Σt , and whenever (S, S′) ∈ τt holds, the states S
and S′ have the same base set. The sets St , It and Ft are
closed under isomorphisms, and for (S1, S′1) ∈ τt each iso-
morphism σ from S1 to S2 is also an isomorphism from S′1
to S′2 = σ(S′1) with (S2, S′2) ∈ τt .

Furthermore, the signature Σt is composed as a disjoint
union out of a database signature Σdb, an algorithmic sig-
nature Σa and a finite set of unary bridge function symbols,
i.e. Σt = Σdb ∪Σa ∪ { f1, . . . , f�}. The base set of a state is
B = Bdb∪Ba with interpretation of function symbols in Σdb

and Σa over Bdb and Ba , respectively. The interpretation of
a bridge function symbols defines a function from Bdb to Ba .
With respect to such states, the restriction to Σdb is a finite
structure.

Example 4 In the booking Example 1, we have to deal with
finite relations Flight, Seat and Booking, so for the data-
base part a finite structure would be sufficient. However, in
the service operations including the view-definining queries,
we may need to permit arithmetic operations such as count-
ing, adding prices, determining the time difference between
arrival and departure for which we would require the whole
set of natural or real numbers. Thus, these infinite sets of
numbers have to become part of the set Ba , and in each view
that exploits values from these sets we use surrogate identi-
fiers instead, which can be drawn from the finite set Bdb, and
a bridge function assigning the actual values to the surrogate
identifiers.

Another example arises, if we use finite XML trees. In
this case, each node in the tree would be represented by an
identifier, and the tree structure would be expressed by order
relations for Successor and Sibling. Thus, Bdb would have
to contain the set of hereditarily finite trees over a finite set
O of node identifiers. For the actual values associated with
the tree nodes, we would provide a bridge function.
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The postulates in Definitions 4 and 6 are in line with the
sequential ASM thesis [19], and with the exception of allow-
ing non-determinism in the sequential time postulate and the
reference to meta-finite structures in the abstract state pos-
tulate, there is nothing in these postulates that makes a big
difference to postulates for sequential algorithms. The next
postulate, however, is less obvious, as it refers to the back-
ground of a computation, which contains everything that is
needed to perform the computation that is not yet captured
by the state. For instance, truth values and their connectives,
and a value ⊥ to denote undefinedness constitute necessary
elements in a background.

For database transformations, in particular, we have to
capture constructs that are determined by the used data
model, e.g. relational, object-oriented or semi-structured, i.e.
we will have to deal with type constructors, and with func-
tions defined on such types. Furthermore, when we allow
values, e.g. identifiers to be created non-deterministically,
we would like to take these values out of an infinite set of
reserve values. Once created, these values become active, and
we can assume they can never be used again for this purpose.

Following [9], we use background classes to define back-
grounds, which will then become part of states. Background
classes themselves are determined by background signatures
that consist of constructor symbols and function symbols.
Function symbols are associated with a fixed arity as in
Definition 5, but for constructor symbols, we also permit
the arity to be unfixed or bounded.

The major purpose for the explicit constructors in database
transformations is the need to capture the constructs of data
models. For instance, in complex value and object-oriented
databases, we may require the presence of constructors for
records, finite sets, lists, multisets, disjoint unions, arrays,
maps, etc. Starting from a set of base domains such as Integer,
Date and Bool, we can apply these constructors and nest them
arbitrarily to define complex value domains. In tree-based
databases such as XML databases, we may even require a
colimit constructor leading to hereditarily finite trees, i.e. the
domain of all finite trees with nodes in a given base domain
such that all subtrees are also trees in the same domain.

Definition 7 Let D be a set of base domains and VK a back-
ground signature, then a background class K with VK over
D is constituted by

– the universe U = ⋃
D∈D D of elements, where D is the

smallest set with D ⊆ D satisfying the following prop-
erties for each constructor symbol �� ∈ VK :

– If �� ∈ VK has unfixed arity, then �D� ∈ D for all
D ∈ D, and �a1, . . . , am� ∈ �D� for every m ∈ N

and a1, . . . , am ∈ D.

– If �� ∈ VK has unfixed arity, then A�� ∈ D with
A�� = ⋃

�D�∈D
�D�.

– If�� ∈ VK has bounded arity n, then�D1, . . . , Dm� ∈
D for all m ≤ n and Di ∈ D (1 ≤ i ≤ m), and
�a1, . . . , am� ∈ �D1, . . . , Dm� for every m ∈ N and
a1, . . . , am ∈ D.

– If �� ∈ VK has fixed arity n, then �D1, . . . , Dn� ∈ D

for all Di ∈ D (1 ≤ i ≤ n), and �a1, . . . , an� ∈
�D1, . . . , Dn� for all a1, . . . , an ∈ D.

– and an interpretation of function symbols in VK over U .

Example 5 The view in Example 1 is to present a set of
itineraries, in which each element is a list of flights. In order
to model the necessary domain elements, we used construc-
tors [·] and {·} for finite lists and finite sets, respectively, both
with unfixed arity. Furthermore, we may use a constructor
(flight_no, date, departure, origin, destination, class) of fixed
arity six.

If Flight_number, Date, Time, Airport and Character
denote base domains, then (flight_no:Flight_number, date:
Date, departure:Time, origin:Airport, destination:Airport,
class: Character) defines a complex domain for flights. Let
this be called Flight. Then {[ Flight ]} defines the domain
for the set of itineraries.

That is, given the base set of a structure S, we can add the
required Booleans and ⊥, partition it into base domains D,
then apply the construction in Definition 7 to obtain a much
larger base set and interpret functions symbols with respect
to this enlarged base set.

Definition 8 (background postulate) Each state of a data-
base transformation t must contain

– an infinite set of reserve values,
– truth values and their connectives, the equality predicate,

the undefinedness value ⊥ and
– a background class K defined by a background signa-

ture VK that contains at least a binary tuple constructor
(·), a multiset constructor 〈·〉 and function symbols for
operations on pairs such as pairing and projection, and
on multisets such as empty multiset 〈〉, singleton 〈x〉 and
multiset union �.

The bounded exploration postulate for sequential algo-
rithms requests that only finitely many terms can be updated
in an elementary step [19]. For parallel algorithms, this pos-
tulate becomes significantly more complicated, as basic con-
stituents not involving any parallelism (so-called “proclets”)
have to be considered [9].

For database transformations, the problem lies somehow
in between. Computations are intrinsically parallel, even
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though implementations may be sequential, but the paral-
lelism is restricted in the sense that all branches execute de
facto the same computation. We will capture this by means
of location operators, which generalise aggregation functions
and cumulative updates. Furthermore, depending on the data
model used and thus on the actual background signature, we
may use complex tree-structured values. As a consequence,
we have to cope with the problem of partial updates [20], e.g.
the synchronisation of updates to different parts of the same
tree values.

Definition 9 Let M(D) be the set of all non-empty multisets
over a domain D, then a location operator ρ over M(D)

consists of a unary function α : D→ D, a commutative and
associative binary operation� over D, and a unary function
β : D→ D, which define ρ(m) = β(α(b1)� . . .� α(bn))

for m = 〈b1, . . . , bn〉 ∈M(D).

Example 6 A typical location operator is count counting the
number of elements in a multiset. In this case, α assigns 1 to
each element of D,� is addition, and β is the identity on D.

If α assigns to b the set {b}, if b satisfies a formula ϕ,
and ∅ otherwise, � is set union, and β is again the identity,
then the location operator defined by α,� and β assigns to
a multiset m ∈M(D) the set of elements in m satisfying ϕ.

The definitions of updates, update sets and update multi-
sets are the same as for ASMs [11].

Definition 10 Let t be a database transformation and S be
a state of t . A pair ( f, (a1, . . . , an)) consisting of an n-ary
function symbol f , and arguments a1, . . . , an in the base set
of S for its interpretation fS in a state is called a location,
usually written as f (a1, . . . , an). An update of t is a pair
(�, v), where � is a location f (a1, . . . , an) and v is another
element in the base set of S. An update set is a set of updates;
an update multiset is a multiset of updates.

Using a location function that assigns a location oper-
ator or ⊥ to each location, an update multiset can be
reduced to an update set. It is further possible to construct
for each (S, S′) ∈ τt a minimal update set ∆(t, S, S′)
such that applying this update set to the state S will
produce the state S′. Then, ∆(t, S) denotes the set of
all such update sets for t in state S, i.e. ∆(t, S) =
{∆(t, S, S′) | (S, S′) ∈ τt }. The problem of partial updates
is then subsumed by the problem of providing consis-
tent update sets, in which there cannot be pairs (l, v1)

and (l, v2) with v1 �= v2 – details are discussed in
[32].

In order to derive an exploration boundary for a database
transformation, we have to be aware of the fact that databases
permit associative access. In principle, the claim of unique
identifiability applies to databases, as emphasised by Beeri
and Thalheim in [6]. More precisely, unique identifiability

has to be claimed for the basic updatable units in a database,
e.g. objects in [26]. Unique identifiability, however, does not
necessarily apply to all elements in a database. Sets of log-
ically indistinguishable locations may be updated simulta-
neously. Nevertheless, for databases, only logical properties
are relevant—this is the so-called “genericity principle” in
database theory [5]—and therefore, it must still be possible
to use terms to access elements and locations in the database
part of a state. These terms, however, may be non-ground.

The exploration boundary postulate in the sequential ASM
thesis in [19] uses a finite set of ground terms as bounded
exploration witness in the sense that whenever states S1 and
S2 coincide over this set of ground terms, the update set
produced by the sequential algorithm is the same in these
states. The intuition behind the postulate is that only the part
of a state that is given by means of the witness will actually
be explored by the algorithm.

The fact that only finitely many locations can be explored
remains the same for database transformations. However,
permitting parallel accessibility within the database part of
a state forces us to slightly change our view on the bounded
exploration witness. For this, we need access terms, which
in a sense cover associative access to databases.

In the following definition, we exploit the interpretation of
terms α, β in a state (i.e. a structure) S. If α is a ground term,
then valS(α) is the value of the base set resulting from the
interpretation of the function symbols in α in the structure
S. If β is non-ground, then in addition we require a variable
assignment ζ , which assigns values of the base set to the
variables in β. Then, a variable x is interpreted by ζ(x),
and valS,ζ (β) is the value of the base set resulting from the
interpretation of the function symbols and variables in α in
the structure S.

Definition 11 An access term is either a ground term α or a
pair (β, α) of terms, the variables x1, . . . , xn in which refer
to the arguments of some f ∈ Σdb. The interpretation of
(β, α) in a state S is the set of locations

{ f (x1, . . . , xn)[a1/x1, . . . , an/xn] | valS,ζ (β) = valS,ζ (α)}
with the variable assignment ζ = {x1 �→ a1, . . . , xn �→

an}. Structures S1 and S2 coincide over a set T of access
terms iff the interpretation of each (β, α) ∈ T over S1 and
S2 are equal.

Due to our request that the database part of a state is always
finite, there will be a maximum number m of elements that are
accessible in parallel. Furthermore, there is always a number
n such that n variables are sufficient to describe the updates of
a database transformation, and n can be taken to be minimal.
Then for each state S, the upper boundary of exploration is
O(mn), where m depends on S. Taking these together, we
obtain our fourth postulate.
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Definition 12 (bounded exploration postulate) For a data-
base transformation t , there exists a fixed, finite set T of
access terms of t such that ∆(t, S1) = ∆(t, S2) holds when-
ever the states S1 and S2 coincide over T .

The last postulate addresses genericity. For queries gener-
icity means that queries should preserve isomorphisms.
In order to capture also queries that use constants, this
genericity request has to be relaxed to the preservation of
Z -isomorphisms, where Z contains all constants appearing
in the query. In generalising this request to general data-
base transformations, we concentrate on equivalent substruc-
tures in the following sense, and leave the generalisation to
Z -isomorphisms to elsewhere.

Definition 13 A structure S′ is a substructure of the struc-
ture S (notation: S′ � S) iff the base set B ′ of S′ is a subset
of the base set B of S, and for each function symbol f of
arity n in the signature Σ the restriction of fS (the inter-
pretation of f in state S) to B ′ results in fS′ . Substructures
S1, S2 � S are equivalent (notation: S1 ≡ S2) iff there exists
an automorphism σ ∈ Aut (S) with σ(S1) = S2.

This allows us to formulate our genericity postulate, which
requires that whenever a substructure is preserved by a one-
step transition, then all equivalent substructures will appear
as substructure in one of the states reachable by the one-
step transition. This postulate puts a severe restriction on the
non-determinism in the transition relation τt .

Definition 14 (genericity postulate) Let X be a substructure
of state S ∈ St with X � S′ for (S, S′) ∈ τt . Then, for each
Y � S with X ≡ Y , the isomorphism σ : X → Y extends
to an isomorphism σ ′ : S′ → σ ′(S′) with (S, σ ′(S′)) ∈ τt .
Furthermore, for each state S′′ with (S, S′′) ∈ τt , there exists
some substructure Y � S with X ≡ Y and Y � S′′.

3 A language for abstract state services

In this section, we develop an abstract language for the spec-
ification of AS2s. As AS2s are based on database transfor-
mations, we first adapt Abstract Database Transformation
Machines (ADTMs), which have been proven to capture
database transformations in general [32]. In doing so, we
can specify the database layer by

– a background class specifying additional base types, each
associated with a base domain, constructor symbols and
function symbols associated with these constructors,

– a signature comprising function symbols for the database
and algorithmic parts of states and for the bridge func-
tions,

– a set of initial states for the database system,

– a set of transactions, each of which will be defined by an
ADTM-rule and

– a set of auxiliary ADTM-rules.

In the following, we simply use the term rule to mean
ADTM-rule. On top of such specification of a database sys-
tem, we define the view layer by a set of extended views.
Each view is defined by

– a signature defined similarly to the signature for the
underlying database system,

– a defining query that is defined by another ADTM-rule
possibly using auxiliary ADTM-rules, and

– a set of operations that are specified similar to transac-
tions, but in addition include details on how to handle
views.

While such a definition would capture all AS2s, it does
not exploit declarative query languages as emphasised in
[32]. Therefore, in a second step, we extend the language by
adding declarative query expressions taken from a complete
fixed-point query language [28]. This is merely “syntactic
sugar”, as by the background postulate, we have at least mul-
tiset and tuple constructors available, and thus could emulate
any higher-order structure, in particular, those resulting from
inflationary fixed-point constructions.

3.1 Database systems specifications

We first define ADTM-rules on top of a signature Σ and some
background class satisfying the requirements in Definitions 6
and 8. Furthermore, ADTM-rules may involve variables, so
in the following definition, we also refer to database vari-
ables as variables that must be interpreted by values in Bdb.

Definition 15 The setRof rules over a signatureΣ = Σdb∪
Σa ∪ { f1, . . . , f�} are defined as follows:

– If t0, . . . , tn are terms over Σ , and f is an n-ary function
symbol in Σ , then f (t1, . . . , tn) := t0 is a rule in R called
assignment rule.

– If ϕ is a Boolean term and r ′ ∈ R is a rule, then if ϕ then
r ′ endif is a rule in R called conditional rule.

– If ϕ is a Boolean term with only free database variables
x1, . . . , xk and r ′ ∈ R is a rule, then forall x1, . . . , xk

with ϕ do r ′ enddo is a rule in R called forall rule.
– If r1, . . . , rn are rules in R, then also r1‖ · · · ‖rn is a rule

in R called parallel rule.
– If ϕ is a Boolean term with only free database variables

x1, . . . , xk and r ′ ∈ R is a rule, then choose x1, . . . , xk

with ϕ do r ′ enddo is a rule in R called choice rule.
– If r1, r2 are rules in R, then also r1 ; r2 is a rule in R

called sequence rule.
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– If r ′ ∈ R is a rule and ϑ is a location function that assigns
location operators � to terms t , then let ϑ(t) = � in r ′
endlet is a rule in R called let rule.

– If r ′(x1, . . . , xk) ∈ R is a rule using variables x1, . . . , xk ,
and t1, . . . , tk are terms, then r ′(t1, . . . , tk) ∈ R is a rule
called call rule.

On the grounds of this definition, we can now define a
database system specification as indicated earlier. First, we
assume a fixed background specification BS by means of a
type systems, e.g.

t = b | (a1 : t1, . . . , an : tn) | {t} | 〈t〉 | . . . ,
i.e. we take base types b and constructors (·), {·}, 〈·〉, etc. for
records, finite sets, multisets and maybe more. According to
Definition 8, the type BOOL for truth values must be one of
the base types. The same applies to at least one type for data-
base values. Furthermore, the constructors (·) for records–
pairs would be sufficient – and 〈·〉 for multisets must be
present.

With each base type b, we associate a domain dom(b), so
the base types collectively define the set D of base domains
requested in Definition 7. The domain association dom is
then extended for the type constructors in the way defined in
Definition 7.

In addition to the types, BS must contain functions sym-
bols, each of which is associated with an arity that is defined
by input- and output-types. These functions may be paramet-
ric polymorphic, i.e. type variables will be permitted. For
instance, ∧ : BOOL BOOL → BOOL defines a function
symbol for conjunction, and � : 〈x〉 〈x〉 → 〈x〉 defines a
function symbol for polymorphic multiset union (with mul-
tiplicities added up). These function symbol are then inter-
preted over the domains as requested in Definition 7. Note
that some function symbols for truth values, records and mul-
tisets are requested in Definition 8.

On top of a background specification, we can define a
signature Σ as in Definition 5, but we permit the modification
to use types. For instance, even : NAT → BOOL would
define a function symbol in the algorithmic part of Σ , which
defines a function on natural numbers for testing whether a
given number is even or not.

Definition 16 A database system specification DBSS over
a background specification BS consists of

– a signature Σ over BS fulfilling the requests from Defi-
nition 6,

– a set I of states over Σ called initial states of DBSS that
is closed under isomorphisms,

– a finite set T of parameterised transactions, each of which
is defined by a rule as in Definition 15 with free variables
equal to the parameters and

– a finite set A of auxiliary rules defined in the same way
as T .

Note that our definition of ADTM-rules permits calling
rules. We do not exclude in Definition 16 that a transaction
r ∈ T is called by another rule in T or even A, but in this
case, it is only treated as an auxiliary rule.

3.2 Extended view specifications

We now approach the requirements of Definition 3 to define
the extended views on top of a database system specification.
In doing so, we have to address the signature, the defining
query and operations on views.

If Σ = Σdb ∪ Σa ∪ { f1, . . . , fn} is the signature of a
database system specification DBSS, we extend the signa-
ture by adding database function symbols and bridge func-
tions to obtain the extended signature Σext = Σ ′db ∪ Σa ∪
{ f1, . . . , fk} (with k ≥ n). Then the added function symbols,
i.e. Σ ′db − Σdb ∪ { fn+1, . . . , fk} define a view signature,
denoted as Σv .

An ADTM-rule rv over the extended schema Σext will be
called a query over Σ , iff the input database is preserved,
and the result only depends on it. Formally, the following
two conditions must be satisfied:

– For all state pairs (S, S′) produced by rv , i.e. there is a
finite run S0, . . . , S� of rv with initial state S0 = S and
final state S� = S′ such that the restrictions of S and S′
to Σ coincide.

– For all state pairs (S1, S′1) and (S2, S′2) produced by rv

such that the restrictions of S1 and S2 to Σ coincide we
have S′1 = S′2.

Though this definition of query is semantical, as it is based
on the states and not on the text of the rule rv , the conditions
are easily satisfied, if rv only contains assignment rules with
function symbols in the view signature Σv .

Definition 17 If DBSS is a database system specification
with signature Σ , then a view v over DBSS is defined by
a view signature Σv over Σ and a defining query rv over
Σ ∪Σv .

In order to address operations associated with views, we
need selection conditions, which are Boolean terms that can
be evaluated on structures over Σv and thus define substruc-
tures. If ϕ is a selection condition, we permit the use of
restriction terms t[ϕ]. Then, a v-rule over view v with selec-
tion condition ϕ is given by a parametrised ADTM-rule with-
out assignments, but with the possibility to use restriction
terms, to open views by means of rules open(v′) for v′ �= v

and to close the view v using the rule close(v). Opening a
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view v means to initiate the functions in the corresponding
view signature Σv , while closing it can be expressed simply
by letting all functons in Σv be totally undefined. Techni-
cally, the use of restriction terms can be replaced by using
conditional rules with the term ϕ.

Definition 18 An extended view over a database system
specification DBSS consists of a view v over DBSS and a
set Ov of v-rules over v. An Abstract State Service Specifi-
cation (A3S) AS consists of a database system specification
DBSS and a set V of extended views over DBSS.

3.3 Fixed-point queries

As ADTMs capture database transformations, A3Ss capture
AS2s, so in a theoretical sense we have achieved complete-
ness, which in most cases is far more than we need. On
the other hand, the database transformations that are used
as defining queries do not fully exploit the possibilities that
are given by declarative query language, though using forall
rules allows us to adopt a calculus-style of defining queries,
i.e. the Boolean term ϕ in such rules would in fact be used
to express the query in a declarative way. As multisets and
maybe also sets can be used in these terms, any higher-order
construction would be enabled. However, writing queries
as higher-order logical expressions is uncommon; therefore,
we provide the possibility to exploit fixed-point queries in
Definition 17 to define views. Such queries have been
defined in the Identity Query Language (IQL) from [2] and
used in [28].

In order to formalise this, we assume that one of the base
types in the type system of BS is a type ID, the domain of
which is a countable set of abstract identifiers. Then, take
countable sets of variables Vt for each type t . These sets
are to be pairwise disjoint. Variables and constants of type
t are terms of that type. In addition, for each variable ı of
type ID, there is a term ı̂ of some type t (ı). If τ1, . . . , τk are
terms of type t , then {τ1, . . . , τk} is a term of type {t}, and
〈τ1, . . . , τk〉 is a term of type 〈t〉. If τ1, . . . , τk are terms of
type t1, . . . , tk , respectively, then (a1 : τ1, . . . , ak : τk) is a
term of type (a1 : t1, . . . , ak : tk). Each function symbol f
in the signature Σ of arity n defines a relation symbol R f of
arity n + 1.

If τ1, τ2 are terms of type {t} (or 〈t〉) and t , respectively,
then τ1(τ2) is a positive literal (also called a fact) and¬τ1(τ2)

is a negative literal. If τ1, τ2 are terms of the same type t , then
τ1 = τ2 is a positive literal and τ1 �= τ2 is a negative literal.
A ground fact is a fact without variables.

A clause is an expression of the form L0 ← L1, . . . , Lk

with a fact L0 (called the head of the clause) and literals
L1, . . . , Lk (called the body of the clause), such that each
variable in L0 not appearing in the rule’s body is of type ID.

A logic program is a sequence P1; . . . ; P�, in which each Pi

is a set of clauses.
Finally, a query Q is defined by a view signature Σv and

a logic program PQ , in which the function symbols in Σv

correspond to predicate symbols that only occur in heads of
clauses.

Example 7 Let us illustrate fixed-point queries by an exam-
ple adapted from [23] dealing with a paper submission and
reviewing system. For such a system, we could model a sim-
ple relational database schema. At its core, we would have the
following signature (using functions with arity in parenthe-
ses to represent relations): paper(7), member(9), assigned(2),
review(17).

The seven components of paper correspond to attributes
such as paper_id, title, contact_email, password, abstract,
submission_date and accept_code. The components of mem-
ber correspond to attributes member_id, name, address,
email, phone, rights, user_id, password and type. Compo-
nents of assigned correspond to member_id and paper_id.
The 17 attributes for review could be id, member_id,
subreviewer, paper_id, submission_date, contribution,
positive_aspects, negative_aspects, confidential_remarks,
details, confidence, originality, significance, technical_
quality, relevance, presentation and recommendation. Paper
authors are handled separately. So we may have paper
(19,“Abstract State Services”,kdschewe@acm.org,
“dr0w33@p”,“…”,28-02-09,accepted) = 1 in some state
indicating that on 28 February 2009 a paper with title
“Abstract State Services” and abstract “…” was submitted.
The email-address kdschewe@acm.org is the contact e-mail
address, the paper received the id 19, the chosen password is
“dr0w33@p”, and the paper has been accepted.

For the task of PC-members to discuss papers after they
have been reviewed, we need a set of tuples each representing
a paper with its paper_id, title, abstract and the set of reviews
associated with it. The query needed to produce this relation
can be expressed by using the following logic program:

pap(i, p, t, ab, R)← paper(i, (p, t, e, pw, ab, d, c));
Here, the arguments of paper in the rule body refer
to an abstract identifier i and the attributes paper_id
p, title t , contact_email e, password pw, abstract ab,
submission_date d and accept_code c. In the first step,
we “forget” most of these, keeping only paper_id p,
title t and abstract ab and creating a new identifier R
for the set of reviews that is still to be constructed.

R̂(i, n, n′, c, pos, neg, dc, co, o, s, q, r, pr, or)←
pap(i, p, t, ab, R),

review(ir , (re, m, n′, p, d, c, pos, neg, c f, dc,

co, o, s, q, r, pr, or)),

member(im, (m, n, a, e, ph, rg, u, pw, t y));
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In this second step, we use the predicate R̂ associated
with the identifier R constructed in the first step and col-
lect the reviews to the corresponding paper. As in the
first step, the arguments of review and member refer
again to abstract identifiers and the attributes given
earlier in the respective order. Most of these argu-
ments are simply “forgotten”, i.e. they do not appear in
the head of the clause. We only keep for each review
the abstract paper identifier i , the reviewer name n, the
subreviewer n′, contribution c, positive_aspects pos,
negative_aspects neg, details dc, confidence co, origi-
nality o, significance s, technical_quality q, relevance
r , presentation pr and recommendation or .

ans(p, t, ab, R̂)← pap(i, p, t, ab, R).

In the last step, we replace the abstract identifier R in
the result by the set of reviews R̂ constructed in the
previous step.

4 Examples

Let us now look at examples for AS2s. We will concentrate on
functions, which are quite often taken as Web Services, Data
Warehouses, Web Information Systems and systems using
Intelligent Pads.

4.1 Functional web services

We consider services that mainly consist of some service
operations that are made available, i.e. the view they are
defined on is trivial.

Example 8 Suppose we have a database with employee
information, in particular salaries. Individual salaries will
be kept hidden, but building averages for groups of employ-
ees will be offered as a service. In this case, we could have
a quaternary relation with employee_id, name, department
and salary in the database schema. Using ASMs [11], we
would model this by a controlled 4-ary function employee.
Then employee(43,Lisa,Cheese,4100) = 1 means that there
is an employee with id 43, name Lisa and salary 4100 in the
Cheese department, while employee(552,Bernd,Milk,8000)
=0 means that in the Milk department there is no employee
named Bernd with id 552 and salary 8000.

The averaging operation would be made available in com-
bination with an empty view. We would allow either a group-
ing by department or no grouping at all. The result would
leave the database as it is but display a new view with
the resulting relation and the same operation associated to
it. Using ASM notation, we could define the averaging

operation by department simply by the rule

result := {(d, a) | ∃i, n, s. employee(i, n, d, s) = 1 ∧
a = avg〈s | ∃i, n, s. employee(i, n, d, s) = 1〉}

The next example was used in [33] to illustrate the com-
bination of meme media objects by means of Intellingent
Pads.

Example 9 Another simple example is given by a currency
converter, in which case the database schema would simply
need a single relation schema Rate with three attributes
source_currency, target_currency and exchange_rate.

The conversion operation would be made available in
combination with an empty view. We expect two currencies
and a value for the amount as input, so the service opera-
tion can be expressed by the simple rule convert(in, out, a),
which is defined by

choose p with Rate(in, out, p) = true do result :=
p · a enddo

4.2 Data warehouses

More interesting examples of AS2s are given by data ware-
houses, which could be turned this way into web warehouses.
The ASM-based approach in [36] used three linked ASMs to
model data warehouse and OLAP applications. At its core we
have an ASM modelling the data warehouse itself using star
or snowflake schemata. A second ASM would be used for
modelling operational databases with rules extracting data
from them and refreshing the data warehouse. This ASM is
of no further relevance for us and thus will be ignored. A
third ASM models the OLAP interface on the basis of the
idea that datamarts can be represented as extended views.

Example 10 For instance, here we could have controlled
functions sales, product, and store all of arity 3 and a
static ternary function time. Similar to Example 7, sales
(003,14,27-2-2008) = 1 represents the fact that product 003
was sold in store 14 on 27 February 2008, product(003,
hammer,27.5) = 1 means that the product with id 003 is a
hammer, which is sold at a price of 27.5, store(14,Awapuni,
Palmerston)= 1 means that the store with id 14 is located in
Awapuni in the city of Palmerston and time (27,2,2008) = 1
indicates that 27 February 2008 is a valid time point.

For example, a view may extract all sales in store 14 in
2008 together with product description and price. That is,
the view defining database transformation could be described
(using relational algebra operations liberally; they must be
defined as part of the background signature) by the simple
rule

result := πp−id,description,price,day(date),month(date)

(σs−id=14∧year(date)=2008(sales) �� product)
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Service operations associated with such a view could be
roll-up and drill-down operations, e.g. aggregating sales per
day or month, or slicing operations, e.g. concentrating on
sales of a particular product. Furthermore, we could permit
operations for changing the selected year or store. We omit
further details.

Furthermore, the main rule in the OLAP ASM in [36]
mainly serves the purpose of opening and closing datamarts
and selecting operations associated with them. This has been
already captured by the notion of a run.

4.3 Web information systems

Another even more complex example is given by Web Infor-
mation Systems (WISs), following the modelling approach in
[28], which among others provides the notion of media type.
At its core, a media type is a view on a database schema that
is extended by operations (and more), which is exactly what
we capture with AS2s.

However, in this case, the view-defining queries must be
able to create the link structure between instances of media
types, the so-called media objects, which implies that the
creation of identifiers is a desirable property in such queries.
As already stated, the non-determinism in database trans-
formation is motivated by such identifier creation. In this
sense, WISs provide an example for the necessity of non-
determinisn in the small-step transition relations in Defini-
tion 1.

Example 11 A stock market database stores stock values by
means of a relation Stockwith attributes for company, date
time and stock_value. In a view, we would represent for a
selected company the current stock value plus the develop-
ment of the value since the last opening. Thus, the view with
parameter c for the company name can be simply defined by
the rule

choose v with Stock(c,today,now,v) = true
do Result := (v, πtime,value(σcompany=c,date=today

(Stock)))

enddo

Service operations could be buy(x) or sell(x) with x indi-
cating the number of shares to be bought or sold, or average
and predict to determine the average value over the day, and
a predicted value at the end of the day. Other service oper-
ations could be for changing the company, switching to a
larger timeframe for the development of the share, etc.

In the next section, we want to show how to combine the
finance data service in Example 11 with the currency con-
version service from Example 9. This would constitute an
easy example of service composition. A more difficult situa-
tion arises in epidemiology, e.g. in the prediction of bushfire

spreading, in which case we would have to combine a GIS
service and a weather service with a forecasting model for
the spreading of a fire. The next example provides a glimpse
of one of the input services needed for this.

Example 12 A weather service may provide a view
Measurement containing a set of 5-tuples (loc, date, time,
wind, rain), in which loc denotes a location by means of
a pair of coordinates, date and t ime denote the date and
time of measurement, wind denotes a wind-vector indicat-
ing direction and speed of the wind, and rain denotes the
amount of rain in millimetres per hour. That is, loc is of type
Point, which is defined as (x : FLOAT , y : FLOAT), date is
of type DATE, t ime is of type TIME, wind is of type Vector,
which is also defined as (x : FLOAT , y : FLOAT), and rain
is of type FLOAT .

A service operation on this view may be predict(t) with t
denoting a timeframe in hours. The service operation would
produce a similar set of triples as predicted to develop within
the next t hours. This could be specified as:

predict(t) =
close_view;
advance(now,t ,predict_date,predict_time);
let ϑ(set_of _predictions) = ∪ in

forall loc with ∃d, t ′, w, r.Measurement
(loc, d, t ′, w, r) = true

do last_five_measurements(loc,M);
extrapolate(M ,predict_date,predict_time,

predict_wind,predict_rain);
set_of_predictions := { (loc,

predict_wind,predict_rain)}
enddo

endlet

This uses other rules advance(now,t ,predict_date, predict_
time) to compute the date and time t hours from now,
last_five_measurements(loc,M) to determine the last five
measurements at the given location loc and return them
in a list M , and the core rule extrapolate (M ,predict_date,
predict_time,predict_wind,predict_rain) to estimate (by
extrapolation) the wind and rain at the given date and time
and the basis of the measurements in M (and maybe other
data in the database).

5 Abstract state services composition and
personalisation

In this section, we discuss how to extract components from
AS2s and recompose them to form new AS2s. In doing so, we
introduce constructions for parallel composition with feed-
back and sequential composition. The discussion is rounded
up by a brief indication of how component extraction can be

123



276 SOCA (2009) 3:263–283

personalised, though personalisation is not the major focus
of this paper.

5.1 Extraction of service components

While AS2 integration replaces given AS2s by new ones pre-
serving their functionality, the composition of AS2s does
not aim at replacing any existing AS2. Instead, the goal is
to define new services that exploit functionality of existing
ones. That is, we will have to extract components from exist-
ing AS2s and recompose these components. A simple form of
recomposition can be component integration as discussed in
the previous section—the extracted components will be AS2s
as well. However, we may also exploit other mechanisms of
component composition, e.g. those discussed in [29].

In order to extract components from an AS2, we first build
a subset V ′ ⊆ V of the set of views, and for each view v ∈ V ′,
we restrict the service operations to a subset O′v ⊆ Ov . These
subset restrictions obviously produce an AS2 with the same
underlying database system as before.

In a second step, we actually restrict the views v ∈ V ′
themselves by defining views pv on top of it, i.e. pv is a
database transformation that will transform a state V into a
state V ∪V ′. Practically speaking, service extraction can only
be performed by service users, and they only have access to
the view layer, not to the underlying database system. Nev-
ertheless, by forgetting the original view V , the composed
database transformation pv ◦ v defines a view on top of the
original database system transforming states S ∈ S into
states S ∪ V ′. Furthermore, o ∈ O′v still induces the same
transaction, and if v would be replaced by {v1, . . . , vk},
then pv ◦ v would have to be replaced by {pvi ◦ vi | i ∈
{1, . . . , k}, vi ∈ V ′}. In this way, the collection of views pv

defines an AS2 with the same underlying database system as
before. We will call this an AS2 component.

Definition 19 Let A = (DBS,V) = (S, τ, {τt }t∈T , {(v,

{o1, . . . , onv })}v∈V ) be an AS2. A component of A is an
AS2(S, τ, {τt }t∈T , {(pv ◦ v, {o′1, . . . , o′n′v })}v∈V ′) with V ′ ⊆
V and {o′1, . . . , o′n′v } ⊆ {o1, . . . , onv }.

Note that in order to define a component of an AS2A, it is
not necessary to know anything about the DBS of A, as only
the views and associated service operations are affected. In
a practical sense, this reflects the request that the database
layer of an AS2 should be hidden.

5.2 Parallel composition of abstract state services

After extracting components from several AS2s, their inte-
gration along the lines discussed in the previous section is
one way of recomposing them. Another one is parallel com-
position.

Definition 20 Let Ai = (S i , τ i , {τt }t∈T i , {(v, {o1, . . . ,

oni
v
})}v∈V i ) (i = 1, . . . , n) be AS2s. Their parallel com-

position A1 ⊕ · · · ⊕An is an AS2 that is defined as follows:

– The set of states is the sum S = {S1∪· · ·∪ Sn | Si ∈ S i }.
– The wide-step transition relation τ is defined by parallel

composition, i.e. (S1 ∪ · · · ∪ Sn, S′1 ∪ · · · ∪ S′n) ∈ τ iff
(Si , S′i ) ∈ τ i for all i = 1, . . . , n.

– The set of transactions is the product T = {t1‖ · · · ‖tn |
ti ∈ T i }.

– Small step transition relations are defined by parallel com-
position, i.e. (S1 ∪ · · · ∪ Sn, S′1 ∪ · · · ∪ S′n) ∈ τt1‖···‖tn iff
(Si , S′i ) ∈ τti for all i = 1, . . . , n.

– The set of views is also defined as a product V =
{v1‖ · · · ‖vn | vi ∈ V i }.

– The sets of service operations are defined by parallel com-
position Ov1‖···‖vn = {o1‖ · · · ‖on | oi ∈ Ovi }.

The obvious drawback of parallel composition is that we
still make merely the service operations of the original AS2s
available. In order to obtain new service operations by com-
position of extracted ones, we follow the approach in [29] to
distinguish between retrieval and update operations.

Definition 21 A service operation o ∈ Ov in a component of
an AS2A is a retrieval operation iff the induced transaction
on the database system underlyingA is the identity, otherwise
it is an update operation.

A retrieval operation does only affect the views that are
open or closed, but it may nevertheless affect the presentation,
from which our definition abstracts. An update operation on
the other hand may change the underlying database state. The
view v1 the update operation o1 ∈ Ov1 is associated with
provides data that affect the service operation. Therefore,
if o1 opens another view v2, we may compose any update
operation o2 ∈ Ov2 to define a new update operation o2 ◦ o1.
We can use this to define the one-sided and double-sided
composition of views.

In a one-sided composition, all the service operations asso-
ciated with a view v2 come first, provided they open the view
v1, and are composed with the update operations associated
with view v1. It does make no sense to compose them with
retrieval operations, as these merely extract data, but leave
the underlying database unchanged, so from a service user
point-of-view any composition does the same as the retrieval
operation alone. In a double-sided composition, we use the
same composition of service operations in both directions.
That is, compose service operations associated with v2 that
open v1 with update operations on v1, compose service oper-
ations associated with v1 that open v2 with update operations
on v2 and preserve all retrieval operations on v1 and v2. In
this way, we build all meaningful compositions of the service
operations associated with views v1 and v2.
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Definition 22 Let A be an AS2.

– Let v1 ∈ V be a view on A with service operations
Ov1 that are decomposed into the sets Or

v1
and Ou

v1
of

retrieval and update operations, respectively. Let v2 ∈ V
be another view on A with service operations Ov2 , and let
O1

v2
⊆ Ov2 denote the set of service operations that open

v1. Then, the one-sided composition v1 � v2 is the view
with the database transformation v1 and the associated
set of service operations Or

v1
∪ {o1 ◦ o2 | o1 ∈ Ou

v1
, o2 ∈

O1
v2
}.

– Let v1, v2 ∈ V be views on A with service operations Ovi

that are decomposed into the sets Or
vi

and Ou
vi

of retrieval
and update operations, respectively (i = 1, 2). Further-
more, let O1

v2
⊆ Ov2 denote the set of service operations

that open v1, and O2
v1
⊆ Ov1 denote the set of service

operations that open v2. Then, the double-sided composi-
tion v1 �� v2 is the view with the database transformation
v1‖v2 and the associated set of service operations

Ov1��v2 = Or
v1
∪Or

v2
∪

{o1 ◦ o2 | o1 ∈ Ou
v1

, o2 ∈ O1
v2
}

∪{o2 ◦ o1 | o2 ∈ Ou
v2

, o1 ∈ O2
v1
}

If we combine parallel composition of AS2s with double-
sided composition of views, i.e. instead of taking Ov1‖v2 as in
Definition 20, we take the double-sided composition Ov1��v2 ,
we obtain parallel composition with feedback in analogy to
the definition in [29].

In this definition we made the restriction that views belong
to the same AS2. However, this is only a technical restriction,
because we can always extend a view to become a view on
an extended DBS; it will simply ignore the extension. Using
this, we can use single-sided and double-sided composition
in Definition 22 loosely for views defined on different AS2s.
This is exploited in the next definition of parallel composition
with feedback.

Here, “feedback” refers to nothing more than the analogy
to circuits, as the output of an operation from one service
feeds in as input for the operation of the other service and
vice versa. This analogy is also exploited in some Meme
Media tools [33].

Definition 23 Let Ai = (S i , τ i , {τt }t∈T i , {(v, {o1, . . . ,

oni
v
})}v∈V i ) (i = 1, 2) be AS2s. Their parallel composition

with feedback A1 �� A2 is an AS2 that is defined as follows:

– The set of states is the sum S = {S1 ∪ S2 | Si ∈ S i }.
– The wide-step transition relation τ is defined by parallel

composition, i.e. (S1 ∪ S2, S′1 ∪ S′2) ∈ τ iff (Si , S′i ) ∈ τ i

for i = 1, 2.

– The set of transactions is the product T = {t1‖t2 | ti ∈
T i }.

– Small step transition relations are defined by parallel com-
position, i.e. (S1 ∪ S2, S′1 ∪ S′2) ∈ τt1‖t2 iff (Si , S′i ) ∈ τti
for i = 1, 2.

– The set of views is also defined as a product V = {v1 ��
v2 | vi ∈ V i }.

– The sets of service operations are defined by doubled-
sided composition Ov1��v2 as in Definition 22.

Note that same as component extraction parallel composi-
tion (with feedback) does not require knowledge of the under-
lying database systems, as only views and service operations
are affected. For parallel composition with feedback, how-
ever, it is necessary to know which service operations are
retrieval operations and which are update operations.

Example 13 Let us look again at the flight booking service in
Examples 1 and 2. Let the view, on which this service opera-
tion is defined be v1. Obviously, the flight-booking operation
(rename it to flight_booking) is an update operation.

Take another service dealing with hotel bookings. Here,
we would use a view v2 presenting available hotel for a speci-
fied timeframe. The booking operation hotel_booking is also
an update operation.

The double-sided composition v1 �� v2 is a view that
simultaneously creates a set of itineraries and a set of hotel
options for specified timeframes. In addition, the compo-
sitions hotel_booking ◦ flight_booking and flight_booking
◦ hotel_booking are service operations associated with
v1 �� v2. The first of these feeds the output of flight_booking,
i.e. the booked itinerary, as input into hotel_booking. Only
the arrival and departure dates at the destination are needed
for this composition. Similarly, the second composed ser-
vice operation feeds the output of hotel_booking, restricted
to the booked arrival and departure dates, as input into
flight_booking.

Note that in Example 13, the two composed service opera-
tions offer almost the same functionality, which reflects that
in this case we could have done almost equally well with
parallel composition as defined in Definition 20. Example 16
below shows another example of double-sided composition
with greater dependencies between the composed services.

5.3 Sequential composition of abstract state services

Parallel composition with feedback replaces update opera-
tions by compositions with service operations from another
AS2, and this composition is used in both directions. If we
only want to consider compositions with operations from one
AS2 executed first, we obtain a sequential composition. This
is defined next exploiting single-sided composition.
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Definition 24 Let Ai = (S i , τ i , {τt }t∈T i , {(v, {o1, . . . ,

oni
v
})}v∈V i ) (i = 1, 2) be AS2s. Their sequential compo-

sition A1 ◦A2 is an AS2 that is defined as follows:

– The set of states is the sum S = {S1 ∪ S2 | Si ∈ S i }.
– The wide-step transition relation τ is defined by parallel

composition, i.e. (S1 ∪ S2, S′1 ∪ S′2) ∈ τ iff (Si , S′i ) ∈ τ i

for i = 1, 2.
– The set of transactions is the product T = {t1‖t2 | ti ∈

T i }.
– Small step transition relations are defined by parallel com-

position, i.e. (S1 ∪ S2, S′1 ∪ S′2) ∈ τt1‖t2 iff (Si , S′i ) ∈ τti
for i = 1, 2.

– The set of views is also defined as a product V = {v1�v2 |
vi ∈ V i }.

– The sets of service operations are defined by single-sided
composition Ov1�v2 as in Definition 22.

With respect to the hidden database layer, sequential com-
position behaves in the same way as parallel composition
(with feedback).

Example 14 Similar to Example 13, we could use the
single-sided composition of the flight-booking view v1 with a
conference registration service v2. Assume that v2 is associ-
ated with a service operation register. Thus, flight_booking ◦
register becomes a service operation associated with v1 �v2.
The conference dates resulting as output from the register
operation feed as input into the flight_booking service oper-
ation.

5.4 Final remarks

A few final remarks on service extraction and composition are
due now. The composition constructs we defined, i.e. sequen-
tial, parallel composition and parallel composition with feed-
back operate on sets of views and associated sets of service
operations, and in all cases, single- and double-sided compo-
sition is applied uniformly. This is, however, no restriction,
as the constructs are applied to AS2 components (which are
again AS2s), and these components can be as small as desired,
i.e. they can even consist of a single view with a single service
operation.

If different compositions of service operations are needed,
service components can be composed in different ways, and
the results could be combined by parallel composition. Note
that if parallel composition is used for AS2s with the same
underlying DBS, this could actually be identified with an
AS2 on this DBS instead of the some with itself. As the
database layer is hidden, this identification would not be vis-
ible to service users. Of course, for practical convenience, it
may be desirable to define composition constructs that deal
directly with these cases. Theoretically, however, these are

merely derived from the constructs we defined, and thus can
be dispensed with.

Our definitions also neglect “local” operations, i.e. the
possibility to compose the extracted service operations with
any other operation defined elsewhere. If this composition is
in the form o1◦o�◦o2 for operations o1, o2 as in Definition 22
and a local operation o�, this composition can again be mim-
iqued by the constructs mentioned earlier, if o� is defined
as a service operation associated with a (possibly empty)
view on some local database. In this way, the usage of such
local operations does not add anything, but of course practi-
cally, we would avoid defining an AS2 for the only purpose
to extract a service operation that is then subject to service
composition.

A more general case arises, if an AS2 is defined, and the
defining queries of views as well as service operations are
simply used as part of the definition of views and service
operations. In this case, the underlying database system of
the extracted component would become part of the underly-
ing database system of the AS2 to be defined, but no general
rules apply to forming views and service operations. The
only restriction is that access to the database system of the
extracted component is limited to the views and service oper-
ations of the component, but this is within the hidden database
layer.

Therefore, in order to recombine the data extraction and
service operations from several ASSs, we may exploit func-
tional composition in general, if input and output are com-
patible. In addition, we may use aggregation operations and
other locally defined auxiliary functions. For instance, if
qv1 and qv2 are defining queries of two views v1 and v2

resulting in relations, we can aggregate them by building
the natural join of the corresponding results. We denote this
view by v1 �� v2, and call it an aggregated view of {v1, v2}
with aggregate functions {��}. More generally, any functional
composition of given views with other functions defines an
aggregated view, provided the views have to be executed
first.

Similarly, any such functional composition (without the
restriction that views have to come first) can define a new
service operation. This leads to the following definition of
an aggregated ASS.

Definition 25 Let Ai = (S i , τ i , {τ i
t }t∈T i , {(vi , {oi

1, . . . ,

oi
n

vi
})}vi∈V i ) be ASS components (i = 1, . . . , n). An

AS2A = (S, τ, {τt }t∈T , {(v, {o1, . . . , onv })}v∈V ) is an
aggregation of A1, . . . ,An with a set of local functions
F iff each view v ∈ V is an aggregated view of

⋃n
i=1 V i

with the aggregate functionsF∪⋃n
i=1

⋃
vi∈V i {oi

1, . . . , oi
n

vi
},

and each service operation o ∈ V is composed out of
⋃n

i=1
⋃

vi∈V i {oi
1, . . . , oi

n
vi
} ∪ F ∪⋃n

i=1{qv | v ∈ V i }.
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5.5 Examples

Let us now illustrate the composition of AS2s by two simple
examples that draw on the Examples in Sect. 4.

Example 15 Suppose stock values in Example 11 are pro-
duced in US dollars. In order to produce values in a different
currency, e.g. Euro, we must apply a function f to all such
values, i.e. the view would be defined by the rule

choose v with Stock(c,today,now,v) = true
do Result := ( f,map(id, f ))(v, πtime,value

(σcompany=c,date=today(Stock)))

enddo

Here, the function f can be defined by the service
operation convert (USD,Euro,a) from Example 9. Thus, the
conversion takes the role of the projection function pv in Def-
inition 19. Alternatively, if we consider view-formation also
a service function, the composed service would also appear
as the result of parallel composition with feedback.

Example 16 Another more complex example for service
composition arises, if we want to combine a weather ser-
vice (as sketched in Example 12) with a GIS service and a
bushfire prediction model. We could first produce a paral-
lel composition with feedback between the GIS service and
the weather service, which would give us a prediction of the
weather by means of wind-vectors and expected rainfall in the
geographical area we are interested in, which would then be
combined with “local functions” predicting locations under
fire on the basis of known fire locations. If these locations
contain inhabited areas, which again can be taken from the
GIS service, corresponding action plans can be developed.

A sketch of the service operation predict_fire can be
obtained as follows:

predict_fire(area_of_interest, hours, affected_area) =
let ϑ(affected_area) = ∪ in
forall loc, t with loc ∈ area_of_interest ∧ 0 ≤

t ≤ hours
do forall d, t ′, w, r with (loc, d, t ′, w, r) ∈

predict(t)
do Predict(loc, d, t ′, w, r) := t
enddo;

affected_area :=
hours−t⋃

t ′=0
{loc′+(t+t ′)·const ·

w | ∃r, d ′, t ′′.
Predict(loc′, d ′, t ′′, w, r) = t ∧

d ′ = date(advance(now, t))
∧ t ′′ = time(advance(now, t))}

enddo
endlet

Here the check, whether a location is in the area of interest
and producing a different representation for the resulting set

of locations is done by a service operation from the GIS
service, while the predict service operation is taken from the
weather service as sketched in Example 12. The prediction
model is based on simple linear spreading in the direction of
the wind with a constant const .

5.6 AS2 personalisation

With the concept of AS2s, we provide a mechanism to export
data and services that can be used by others within a more or
less open community. The ultimate open community would
be given by the web. Using the offered AS2s, new services
can be defined by extracting AS2 components and recompos-
ing them in various ways as described in the previous sec-
tion. At first sight, the extraction and composition process is
a manual activity: discover available services, decide which
components might be relevant, extract them and recombine
them as needed. In a sense, the resulting new AS2s will be
personalised, as the selected components and the used com-
position method reflect the preferences of the service user.
Nevertheless, the question arises how the selection process
can be tailored automatically to user preferences, i.e. how
can only views and associated operations be selected out of
those on offer that are relevant for the intended use.

In order to address this problem of personalisation sup-
port, we concentrate on the selection process as outlined at
the beginning of the previous section, i.e. building a subset
V ′ ⊆ V of the set of views and restricting the service opera-
tions Ov associated with v ∈ V ′ to a subset O′v . This reflects
the part of the process that is determined by the preferences
of the service user, while follow-on steps are more of a tech-
nical nature and aim at rearranging the selected views and
operations in the best suitable way. These steps of restricting
the selected views and operations to define components and
composing these components will be left for manual treat-
ment following the selection.

We further concentrate on the service operations treating
the views they are associated with as necessary basis. That
is, if a service operation o ∈ Ov is to be selected, then of
course v has to be selected as a view, and if no operation in
Ov is considered to be relevant, there is no need to select v.

To support the automatic or semi-automatic selection of
service operations from a given AS2, we have to know more
about it, in particular, how it is supposed to be used. For
this purpose, we associate an action scheme or plot with an
AS2. Such a plot will be an algebraic expression composed
out of the service operations together with Boolean pre- and
postconditions that prescribes meaningful sequences of oper-
ations – in the case of a WIS, this would constitute the possi-
ble navigation paths. For technical reasons, we will also need
operations skip and abortwith the usual meaning, which
we will denote as 1 and 0, respectively. skip is needed to
express optionality, as p + 1 expresses or choice between p
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and skip, i.e. in this case p is optional. abort is needed to
permit reasoning with equations. For instance, an equation
ᾱ p = 0 expresses that α is a precondition for p. Similarly,
pq = 0 expresses that q cannot follow p.

Definition 26 Let O denote the set of service operations
associated with an AS2A, and let C be a set of Boolean condi-
tions. Then, the set P of plots over O and C is the smallest set
with O∪C∪{0, 1} ⊆ P satisfying the following conditions:

– For p, q ∈ P we also have pq ∈ P , p+q ∈ P , p‖q ∈ P
and p∗ ∈ P .

– For p ∈ P not involving any operation in O we also have
p̄ ∈ P .

The informal meaning of the operators is the following:
pq denotes a sequence (q follows p), p+q denotes a choice
between p and q, p‖q denotes parallel execution of p and q
and p∗ denotes iteration of p. A Boolean condition is identi-
fied with an operation that tests it, so if p and q are Booleans,
then pq denotes conjunction and p + q disjunction. Fur-
thermore, p̄ denotes negation, and 0 and 1 correspond to
false and true, respectively. Finally, as there is no interaction
between the operations, p‖q can be considered as a shortcut
for pq + qp. Then, according to [30], the set P must satisfy
the axioms of Kleene algebras with tests.

Suppose now we are given the plot p ∈ P associated with
an AS2. Then, we can define preference rules by means of
equations on P as follows:

– α(p+q) = αp means that under the condition α, if there
is a choice between p and q, then p will be preferred.

– p(q + r) = pq means that after p, if there is a choice
between q and r , then q will be preferred.

– αp∗ = αp means that under the condition α the prefer-
ence is to execute p exactly once instead of iterating it
arbitrarily often.

– ᾱ p = 0 means that α is a precondition for p.
– pᾱ = 0 means that α is a postcondition for p.

This list of equations expressing preference rules is not
exhaustive. Together with the conditional equations that
define the axioms for Kleene algebras with tests, we can
use the given plot p and a postcondition β that we want to
reach (it could simply be 1), and apply the equations as term
rewriting rules to turn pβ into a simpler form, say P ′. This
approach to rewriting on the basis of Kleene algebras with
tests has been handled in detail in [30], and generalised to
parameterised plots in [31]. Then, p′ would define a person-
alised plot, and the operations in it are the natural choice for
the selection.

Example 17 Consider a service for ordering products with a
plot

(α1(ϕ1α2ϕ2 + α3ϕ3 + α4ϕ4)α5(α6ϕ5 + 1)+ 1)∗,

in which α1, . . . , α6 represent service operations select_
product, payment_by_card, payment_by_bank_transfer,
payment_by_cheque, provide_address and confirm_order,
and the Boolean conditions ϕ1, . . . , ϕ5 express price_in_
range, payment_by_credit_card, payment_by_bank_
transfer, payment_by_cheque and order_confirmed.

The equations α4 = 0 and ϕ1(α3 + α4) = 0 express
preferences not to pay by cheque, and if possible to pay by
card. This can be used to rewrite the plot to

(α1(ϕ1α2ϕ2 + ϕ̄1α3ϕ3)α5(α6ϕ5 + 1)+ 1)∗.

In this personalised plot, the service operation α4 =
payment_by_cheque has completely disappeared, and the
service operation α3 = payment_by_bank_transfer has
received a precondition ϕ̄1 expressing that payment by bank
transfer is only applied, if the amount is out of range for card
payment.

6 Related work

Let us finally take a closer look at how AS2s fit into the
literature. We are particularly interested in meme media [33],
web information systems [28] and web services (see e.g. [3,
7,12,13,22]).

6.1 Media types

Media types are a core concept in the co-design approach to
web information systems modelling and development. They
provide the means to define a conceptual model of a WIS as
a whole [28].

At its core, a media type is defined by an extended view
on some database schema. The data model and the query
language used for defining views are left as open choices.
The only request is that abstract identifiers can be created
by the queries. These identifiers are to represent URLs, thus
serve both as a mechanism to create abstract page content and
links. That is, when a query is evaluated against the underly-
ing database, the result will be a set of media objects, each of
which represents some abstract page content with an identify-
ing URL and possibly links to other media objects. However,
media types are not bound to page abstraction, but can also be
used to capture larger portions of a WIS, thereby supporting
context-awareness, session objects and collaboration.

The most important extension to such views is provided by
operations, through which a dialogue interface to the media
objects is enabled. In this way, media types also capture
aspects of WIS functionality. As media types are first of all
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operation-extended views defined on some database schema,
and the operations induce database transactions, media types
are equivalent to the operation-extended views in Definition 3
addressing the view layer of an AS2, in other words: our
model of AS2s is an abstraction of media types.

The difference is that media types were defined to cap-
ture the interaction of users with a WIS, while AS2s also
highlight the aspect of using the offered service operations
to define new services by means of component extraction
and composition. Furthermore, the approach of AS2s aims at
a theory of data-intensive services, thus instead of focusing
on the usability of conceptual languages, the main goal is
to define services in general and to show that this definition
can be exploited to enable service-oriented computing in the
sense that as much as possible functionality (and data) can
be borrowed from existing services.

Another difference is that media types are extended in
various other ways addressing granularity of the content by
means of hierarchical versions, adaptivity by means of cohe-
sion that enables automatic separation of important content
from less important one and presentation option that deter-
mine the layout and playout of media objects. These exten-
sions are helpful for the web-based interaction, but they are
of minor importance, when it comes to component extrac-
tion and recomposition of services. Nevertheless, extending
AS2s in these directions is an idea to be addressed further,
as finally services will also need to pay attention to dialogue
interaction.

6.2 Meme media

Meme media technologies have been developed since the
second half of the 1980s, i.e. even prior to the development
of the WWW. They are centred around a model for world-
wide publication, reediting and redistribution of intellectual
resources, depicted in [33, Figure 1.2]. The idea is to extract
these resources and to use wrappers to bring them into the
uniform shape of a meme object, which is then stored in a
meme pool, from which it can be taken for the purpose of
defining new media resources. Thus, the basic idea is very
similar to the one underlying AS2s.

The major difference is that the work on meme media tech-
nologies is primarily focused on technical solutions without
any intent to provide a general theoretical framework for
the work. Key tools are wrappers that enable hiding details
of extracted resources and provide a common frame-based
interface. For instance, if a resource is made available via the
web maybe in form of an HTML-document, then the frame
representation may provide input-slots linked to input-field
on the HTML-page and coupled with scripts handling the
input. In this way, meme objects support the model-view-
controller (MVC) architecture. Furthermore, meme objects

are coupled with a presentation, whereas AS2s abstract from
all aspects of representation.

However, despite these apparent differences, meme media
can be considered as the practical counterpart of AS2s. Wrap-
ping technology will be needed to extract AS2 components
and bring them into a form that allows the composition
constructs to be applied. The redistribution corresponds to
turning any resulting AS2 into a running systems maybe by
exploiting media types.

6.3 Web services

While media types and meme media refer to research done by
only one group, web services are ubiquitous, and it is impos-
sible to relate AS2s to all work that has been done in this area.
Service foundations, composition, management and moni-
toring and service-oriented engineering have been identified
as core research themes in [24], but surprisingly, little work
has been devoted to foundations, whereas the research on
AS2s mainly addresses exactly the theoretical foundations.
In doing so, the core features of data-intensive services have
been highlighted by means of postulates, and it is hard to
deny that these intuitive postulates capture the intent behind
services.

The contribution of AS2s for now is to give a precise for-
mal clarification of what a service is. As it is based on a
variant of ASMs that capture all database transformations, it
captures all services. It further clarifies how services can be
extracted and recomposed remaining completely within the
same formal framework.

Of course, AS2s do not solve all problems around web ser-
vices. They provide the theoretical backbone for the many
research problems addressed in the web services commu-
nity. Among these research problems is the management of
offered services by means of uniform interfaces that make
clear what can be expected from the service. As this also
becomes a commercial issue, pricing, conditions of usage,
liability, etc. are non-negligible questions. Another group of
research problems in this area is linked to the design of ser-
vices, which is out of the scope of our current work on AS2s.

Finally, despite AS2s being considered as theoretical back-
bone for service-oriented system development, we would like
to emphasise that AS2s treat not only functions, but also data
as part of services, which many approaches to web services
and web services composition do not.

7 Conclusion

In this paper, we introduced Abstract State Services (AS2s)
as an abstraction of data-intensive services that can be made
available for use by other systems, e.g. via the web. An
AS2 combines a hidden database layer with an operation-
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equipped view layer, thereby integration data and function-
ality offerings into our notion of service. An AS2 can be
almost anything, e.g. a simple function, a data warehouse or
a Web Information System. We adopted the approach taken
for the proof of the sequential ASM thesis, i.e. we defined
AS2s by means of intuitive, abstract postulates. The ratio-
nale behind this approach is that we did not simply want
to define “just another service language”, whatever expres-
siveness such a language might have, but to actually define
what a data-intensive service is. We believe the postulates
we came up with are intuitive, and capture the intent behind
services.

We defined a language for AS2s based on Abstract Data-
base Transformation Machines (ADTMs), which have been
proven to capture database transformations in general [32].
In order to do so, we obtain a language that captures all
data-intensive services as stipulated by the postulates. How-
ever, for the sake of easier handling of database queries, we
integrated expressions from a complete, fixed-point-based
query language. Such a language captures indeed all AS2s.
We exemplified this by a diverse range of AS2 examples, and
by comparing our work with web services, media types and
meme media.

We then discussed the problems of service composition
and personalisation leading to new services defined on top of
existing ones. This in principle shows the power of the con-
cept, but will require further elaboration in future research.
For instance, concentrating on Web Information Systems as
AS2s the approach may contribute to web interoperability,
but should be linked more tightly to web application devel-
opment methods. With respect to data warehouses, AS2 inte-
gration and composition will contribute to web warehousing,
but this also has to be investigated in more detail.

With respect to media types and meme media, we empha-
sised one particular difference. While our theory captures
data and functionality in a very satisfactory way, the cho-
sen abstract approach does not integrate aspects of presen-
tation, which, however, are available with media types by
means of presentation options, and are an essential feature of
meme media. We believe that AS2s can be extended to cap-
ture also presentation aspects, which was beyond the scope
of this article and has to be addressed by follow-on research.
The same applies to granularity and adaptivity, for which
media types provide the concepts of hierarchical versions
and cohesion, whereas AS2s do yet take care of these nice
properties.

With respect to service-oriented architectures in general
and web-services in particular, research also addressed prob-
lems of which services to select, in particular with respect to
optimisation of expressiveness, performance or costs. These
kinds of problems have not yet been addressed in this arti-
cle, but will be in follow-on research. For this, the formal
framework of AS2s will help defining load and cost mod-

els, i.e. AS2s can form a basis for research in this direc-
tion.
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