
SOCA (2009) 3:189–204
DOI 10.1007/s11761-009-0048-5

ORIGINAL RESEARCH PAPER

Equivalences of BPMN processes

Vitus S. W. Lam

Received: 24 March 2009 / Revised: 24 June 2009 / Accepted: 23 July 2009 / Published online: 13 August 2009
© Springer-Verlag London Limited 2009

Abstract Notwithstanding the business process modelling
notation (BPMN) has gained increasing popularity in the con-
text of business process management; a foundation for veri-
fying the equivalences of BPMN processes remains an open
research problem. The capacity to prove that two structur-
ally different graphical representations of a business process
are behaviourally equivalent using mathematical founded
methods is important during the modelling and design of
workflows. In this study, various forms of equivalences are
formally defined and studied.

Keywords BPMN · Process equivalence · Equivalence
classification

1 Introduction

Business process modelling notation (BPMN) [1,2], which is
a graphical modelling language, has established itself as the
lingua franca for documenting, visualizing, specifying and
designing business processes [3]. BPMN developed initially
by business process management initiative is currently main-
tained by the Object Management Group. When compared
with BPMN 1.0 [1], major modifications in BPMN 1.1 [2]
encompass

(i) the classification of events into catching events and
throwing events; and

(ii) the introduction of a new construct signal event for
broadcasting a signal to other processes and business
process diagrams.

V. S. W. Lam (B)
Computer Centre, The University of Hong Kong,
Pokfulam Road, Hong Kong, Hong Kong
e-mail: vitus.lam@ieee.org

As BPMN becomes more prevalent in the modelling of
business processes, establishing a principled method to deter-
mine when two BPMN processes are behaviourally equiva-
lent is crucial in the course of process design. However, little
research is done for advancing our understanding on this fun-
damental issue. This work is concerned with how mathemati-
cal techniques are adopted as a solid basis for the equivalence
checking of BPMN processes.

The remainder of this paper is structured as follows.
Section 2 concentrates on a critical review of the literature.
Section 3 is devoted to a summary of the graphical constructs
of BPMN. A formalization of BPMN processes is the pri-
mary focus of Sect. 4. Section 5 presents a formal descrip-
tion of various forms of equivalences with regard to BPMN
processes. The practicality of the proposed equivalences is
demonstrated by means of an elaborated example. Section 6
summarizes the major results of our endeavour and outlines
directions for further research.

2 Related work

Numerous studies in the literature deal with the simulation,
analysis and verification of business processes expressed as
BPMN 1.0. Bog et al. [4–7] convert the business process
diagrams of BPMN into the π -calculus. The π -calculus rep-
resentations are then simulated and analysed using PiViz-
Tool [4–7]. In the same spirit, Puhlmann [8] encodes BPMN
models in the π -calculus and utilizes Advanced Bisimu-
lation Checker (ABC) [9] for verifying the correctness of
the π -calculus specifications. Ou-Yang and Lin [10] use
BPEL4WS as intermediate representations when transform-
ing BPMN models into Colored Petri-net XML (CPNXML).
The CPNXML representations are verified against various
properties using CPN Tools [11]. Raedts et al. [12] define

123

190 SOCA (2009) 3:189–204

semantic mappings between BPMN models and Petri nets as
well as between Petri nets and mCRL2 in order to determine
the validity of BPMN models. The work of Dijkman et al. [13,
14] formalizes BPMN models in the form of Petri nets for
analyzing with ProM framework. Wong and Gibbons [15]
adopt communicating sequential processes (CSP) [16] as the
semantic domain for a subset of BPMN graphical constructs.
The failure-divergence refinement (FDR) model checker [17]
is employed for examining the compatibility between BPMN
processes. Although a fairly large body of literature exists on
BPMN, there are marked discrepancies between these prior
contributions and our work as:

(i) These earlier studies are primarily focused on the sim-
ulation, analysis and verification of BPMN rather than
BPMN process equivalences. Specifically, the subject
of our work is on establishing a taxonomy of equiva-
lences for BPMN processes. Formal description of a
theory of equivalences related to BPMN processes is
presented.

(ii) The foundational work for the proposed equivalences
is based on BPMN 1.1 in lieu of 1.0. BPMN 1.1 is
distinct from BPMN 1.0 in several respects:

(a) the use of catching event and throwing event to
differentiate between the two different notions;

(b) the incorporation of signal event into the BPMN
1.1 specification; and

(c) the modification of the representations for graph-
ical constructs including multiple instance
marker as well as multiple event.

Other closely related studies encompass [18–20]. Gruber
[18] and Eder et al. [19] explore the semantically equiva-
lent transformations of workflows. Despite both Gruber et al.
[18,19] and our work are based on semantics-preserving
transformations, substantial differences lie in two fundamen-
tal aspects:

(i) The emphasis of our work is on the equivalences
of BPMN processes, whereas the studies of Gruber
et al. [18,19] deal with the equivalences of structured
workflow graphs. Unlike structured workflow graphs,
BPMN supports a wider range of notational elements
such as start events, end events, intermediate events,
transactions, complex decision gateways, message
flows, associations, data objects, groups, text anno-
tations, pools and lanes.

(ii) Contrary to Gruber et al., some BPMN specific
equivalences are propounded in our work. These equi-
valences build upon BPMN graphical constructs
including none start events, complex decision gate-
ways and conditional sequence flows.

Our earlier attempt [20] exploits a disciplined approach
for the classification of different kinds of equivalences for
UML activity diagrams. Nevertheless, research concentrat-
ing on the equivalences of BPMN processes defined in terms
of BPMN 1.1 specification is given little attention. The aim
of this work is to address this neglected area by studying the
various forms of equivalences along with their properties.

3 An overview of BPMN

In BPMN, a process consists of graphical constructs that are
broken down into four categories: flow objects, connecting
objects, swimlanes and artifacts. The flow objects and con-
necting objects are notational elements for specifying the
behaviour of a process. The swimlanes are graphical con-
structs for separating and organizing the graphical elements
of a process. The artifacts are dedicated to the specification
of extra information which does not associate with both the
sequence and message flows of a process [2].

As shown in Figs. 1 and 2, the three types of flow objects
are: events, activities and gateways. A start event triggers
the commencement of the flow of a process by generating
a token. An end event consumes the token and represents
the end of the flow of a process. A none start event means
that the event type is not specified or indicates the start of a
subprocess when the flow is moved from its parent process
to it. A message start event, timer start event, conditional
start event and signal start event are triggered, respectively,
upon receipt of a message, when a particular time date is
reached, whenever a condition holds and on receiving a sig-
nal. A multiple start event signifying more than one triggers
is capable of starting a process.

A none end event represents the event type is not defined
or the completion of a subprocess in which the flow is trans-
ferred from it to its parent process. A message end event,
an error end event, a cancel end event, a compensation end
event, a signal end event and a terminate end event sym-
bolize the sending of a message to a participant, the gen-
eration of a named error, the cancellation of a transaction,
the performing of a compensation, the broadcasting of a sig-
nal and the immediate termination of all flows in a process,
respectively. A multiple end event indicates more than one
results occur when a process ends.

A none intermediate event is used when the event type is
not specified. A message intermediate event, a timer interme-
diate event, an error intermediate event, a cancel intermedi-
ate event, a compensation intermediate event, a conditional
intermediate event, a link intermediate event and a signal
intermediate event signify, respectively, the receipt of a mes-
sage from a participant, the reaching of a particular time date,
the catching of a named error, the receipt of a cancel mes-
sage, the catching of a compensation event, the holding of

123

SOCA (2009) 3:189–204 191

Fig. 1 BPMN notational
elements

none message timer

start event

end event

intermediate
event –
catching

conditional signal multiple

none message error cancel compensation signal terminate multiple

multiplesignallinkconditionalcompensationnone message timer error cancel

intermediate
event –
throwing

message compensation multiplesignallink

...
task collapsed

subprocess

activity

expanded
subprocess

transaction

gateway
(with
sequence
flows)

data-based
exclusive
decision
gateway

data-based
exclusive
merge
gateway

event-based
exclusive
decision
gateway

event-based
exclusive
merge
gateway

inclusive
decision
gateway

inclusive
merge
gateway

complex
decision
gateway

complex
merge
gateway

parallel
fork
gateway

parallel
join
gateway

c1

cn

c1

cn

Fig. 2 BPMN notational elements (continued)

a condition, the catching from a source link and the receipt
of a signal when the intermediate events are used for catch-
ing event triggers. A multiple intermediate event, which is
used for catching an event trigger, represents more than one
triggers can resume a process.

A message intermediate event, a compensation intermedi-
ate event, a link intermediate event and a signal intermediate
event indicate the sending of a message to a participant, the
throwing of a compensation event, the throwing to a target
link and the sending of a signal if the intermediate events
are used for throwing event triggers. A multiple intermediate
event, which is used for throwing an event trigger, symbolizes
more than one triggers are thrown.

There are two types of activities: tasks and subprocesses.
A task is an activity that is not decomposable and does not
contain any other activities. In contrast, a subprocess is an

activity that is decomposable. It has a lower level of detail
and consists of a set of other activities. A subprocess is either
represented as a collapsed view or an expanded view. In a col-
lapsed subprocess, all the details are hidden and only a plus
sign is shown. On the contrary, all the fine details are visible
in an expanded subprocess. A transaction is a special kind
of subprocess in which all its activities are regarded as an
atomic unit that is either complete or cancel. All the activi-
ties within a transaction are reverted, compensation activities
are executed and a cancellation handler is performed upon
receipt of a cancellation event.

A data-based exclusive decision gateway is composed of
one incoming sequence flow and two or more mutually exclu-
sive outgoing sequence flows. Each outgoing sequence flow
is associated with a corresponding conditional expression
evaluated merely at runtime. In accordance to which con-
ditional expression evaluates to true, a token is sent on one
of the mutually exclusive outgoing sequence flows when-
ever a token is received from the incoming sequence flow. A
data-based exclusive merge gateway comprises two or more
mutually exclusive incoming sequence flows and one outgo-
ing sequence flow. Upon receipt of a token along one of the
incoming sequence flows, a token is offered to the outgoing
sequence flow.

An event-based exclusive decision gateway connects the
outgoing sequence flows to events. A token is sent on one of
the mutually exclusive sequence flows according to the first
received event. An event-based exclusive merge gateway, like
a data-based exclusive merge gateway, emits a token along
the outgoing sequence flow on receiving a token from one of
the incoming sequence flows.

In contrast to a data-based exclusive decision gateway,
an inclusive decision gateway sends a token on all outgo-
ing sequence flows which conditional expressions evaluate

123

192 SOCA (2009) 3:189–204

normal/
uncontrolled

flow

conditional flow
sequence flow

c

default flow

message flow

association
directed

association
(non-directed)

association

Fig. 3 BPMN notational elements (continued)

to true. Every outgoing sequence flow is completely indepen-
dent of any other outgoing sequence flows in lieu of mutu-
ally exclusive. An inclusive merge gateway waits until all
the tokens generated by a corresponding inclusive decision
gateway are received before the traverse of a token along the
outgoing sequence flow.

A complex decision gateway, which is based on an expres-
sion, determines which one of the possible sets of outgoing
sequence flows is selected. A complex merge gateway makes
use of an expression for deciding which one of the possible
combinations of incoming sequence flows is needed in order
to continue the process flow.

A parallel fork gateway receives a token along the incom-
ing sequence flow, splits the token apart and sends them on
all outgoing sequence flows for modelling concurrent flows.
A parallel join gateway blocks until a token is received from
each incoming sequence flow, merges the token together and
emits it along the outgoing sequence flow.

The three kinds of connecting objects are: sequence flows,
message flows and associations (Fig. 3). A sequence flow
links up a source flow object and a target flow object. A token
is generated by the source flow object at the end of its execu-
tion. Then the token traverses the sequence flow and arrives
at the target flow object eventually. A normal flow is a flow
that commences at a start event, passes through a number of
gateways and terminates at an end event. Unlike a normal
flow, an uncontrolled flow is a flow that does not pass over
any gateways. A conditional flow, which is a sequence flow, is
associated with a conditional expression. The mini-diamond
marker is only shown when the source flow object is an activ-
ity instead of a gateway. A default flow is fired whenever all
the conditional expressions of the other outgoing conditional
flows evaluate to false.

A message flow captures the message exchanged between
two participants that take part in an interaction. The source
and target objects of a message flow are limited to the fol-
lowing combinations [21]: (i) two different pools; (ii) a pool
and a flow object of another pool; and (iii) the flow objects
of two different pools.

In BPMN, there are three pre-defined artifacts: data
objects, groups and text annotations (Fig. 4). A data object

artifact

data
object

group text
annotation

P
oo

l 1

La
ne

1
La

ne
n

P
oo

l 2

pool and lane

Fig. 4 BPMN notational elements (continued)

defines what the input or output of an activity is. A group is a
graphical construct for grouping the notational elements of a
BPMN diagram as a category. A text annotation gives extra
information to the reader in the form of text description.

An association connects an artifact with a flow object
(Fig. 3). A directed association indicates whether a data object
is considered as the input or output of an activity. An asso-
ciation, which is non-directional, is utilized for attaching a
text annotation with a flow object.

A pool stands for a participant. It serves as the container
of a process. Every pool comprises at minimal one lane. Each
lane has a distinct name as delineated in Fig. 4. On the con-
dition that a pool contains just one lane, the lane name is
identical to the pool name.

4 Formal model of BPMN processes

The formal rigour, which is essential for studying a variety of
equivalences of BPMN processes, is absent from the BPMN
1.1 specification. This section seeks to provide a mathemat-
ical model for BPMN processes which lays the foundational
work for categorizing equivalences of BPMN processes. The
proposed model considerably extends our previous one intro-
duced in [21] in two perspectives. First, the BPMN 1.1 speci-
fication, which is the latest version, is adopted as the basis for
developing the proposed formal model in lieu of the BPMN
1.0 specification. Second, the whole set of notational ele-
ments of flow objects, the sequence flows, message flows and
directed associations of connecting objects as well as the data
objects of artifacts are covered in the current model instead
of confining to a subset of the graphical constructs. We do not
consider non-directed associations, groups and text annota-
tions as they are notational elements which are not concerned
with the behavioural aspect of BPMN processes.

123

SOCA (2009) 3:189–204 193

Definition 1 (Start-event tuple) A start-event tuple is a
6-tuple �SE = (

FNone
SE , FMsg

SE , FTimer
SE , FCond

SE , FSign
SE , FMulti

SE

)

where

– FNone
SE is a set of none start events for catching the event

triggers;
– FMsg

SE is a set of message start events for catching the event
triggers;

– FTimer
SE is a set of timer start events for catching the event

triggers;
– FCond

SE is a set of conditional start events for catching the
event triggers;

– FSign
SE is a set of signal start events for catching the event

triggers; and
– FMulti

SE is a set of multiple start events for catching the
event triggers.

A start-event tuple contains six kinds of start events
comprising none, message, timer, conditional, signal and
multiple.

Definition 2 (Intermediate-event tuple) An intermediate-

event tuple is a 15-tuple �IE = (
FNone

IE , FMsg
IE , FMsg

IE , FTimer
IE ,

FErr
IE , FCncl

IE , FCmpen
IE , FCmpen

IE , FCond
IE , FLink

IE , FLink
IE , FSign

IE ,

FSign
IE , FMulti

IE , FMulti
IE

)
where

– FNone
IE is a set of none intermediate events for catching

the event triggers;
– FMsg

IE is a set of message intermediate events for catching
the event triggers;

– FMsg
IE is a set of message intermediate events for throwing

the event triggers;
– FTimer

IE is a set of timer intermediate events for catching
the event triggers;

– FErr
IE is a set of error intermediate events for catching the

event triggers;
– FCncl

IE is a set of cancel intermediate events for catching
the event triggers;

– FCmpen
IE is a set of compensation intermediate events for

catching the event triggers;

– FCmpen
IE is a set of compensation intermediate events for

throwing the event triggers;
– FCond

IE is a set of conditional intermediate events for catch-
ing the event triggers;

– FLink
IE is a set of link intermediate events for catching the

event triggers;
– FLink

IE is a set of link intermediate events for throwing the
event triggers;

– FSign
IE is a set of signal intermediate events for catching

the event triggers;

– FSign
IE is a set of signal intermediate events for throwing

the event triggers;
– FMulti

IE is a set of multiple intermediate events for catching
the event triggers; and

– FMulti
IE is a set of multiple intermediate events for throwing

the event triggers.

In BPMN, there are ten kinds of intermediate events for
catching the event triggers and five types of intermediate
events for throwing the event triggers. The notion is captured
formally in form of an intermediate-event tuple.

Definition 3 (End-event tuple) A end-event tuple is a 8-tuple

�EE = (
FNone

EE , FMsg
EE , FErr

EE , FCncl
EE , FCmpen

EE , FSign
EE , FTerm

EE ,

FMulti
EE

)
where

– FNone
EE is a set of none end events for throwing the event

triggers;

– FMsg
EE is a set of message end events for throwing the event

triggers;
– FErr

EE is a set of error end events for throwing the event
triggers;

– FCncl
EE is a set of cancel end events for throwing the event

triggers;

– FCmpen
EE is a set of compensation end events for throwing

the event triggers;

– FSign
EE is a set of signal end events for throwing the event

triggers;
– FTerm

EE is a set of terminate end events for throwing the
event triggers; and

– FMulti
EE is a set of multiple end events for throwing the

event triggers.

An end-event tuple divides end events into the following
categories: none, message, error, cancel, compensation, sig-
nal, terminate and multiple.

Definition 4 (Event tuple) Suppose �SE = {None, Msg,
Timer, Cond, Sign, Multi}, �EE = {None, Msg, Err, Cncl,
Cmpen, Sign, Term, Multi}, �IE = {None, Msg, Timer, Err,
Cncl, Cmpen, Cond, Link, Sign, Multi},�IE ={Msg, Cmpen,

Link, Sign, Multi}, FSE = ⋃
i∈�SE

Fi
SE, FEE = ⋃

i∈�EE
Fi

EE,
F IE = ⋃

i∈(�IE∪�IE) Fi
IE, FE = ⋃

i∈{SE,EE,IE} Fi , SAtt
E is a set

of event attributes and SAttV
E is a set of event attribute val-

ues. An event tuple is a 4-tuple �E = (�SE, �IE, �EE, �Att
E)

where

– �SE is a start-event tuple;
– �IE is an intermediate-event tuple;
– �EE is an end-event tuple; and

123

194 SOCA (2009) 3:189–204

– �Att
E : FE × SAtt

E → SAttV
E relates an event and an event

attribute to an event attribute value.

We define a function �Att
E which returns the event attri-

bute value for a particular event attribute of an event. An
event tuple is specified in terms of a start-event tuple, an
intermediate-event tuple, an end-event tuple and a function
�Att

E .

Definition 5 (Task tuple) Suppose ML represents the loop
marker, MMI represents the multiple instance marker, MC

represents the compensation marker, the valid combination
of markers for tasks SM

T = {{ML}, {MMI}, {MC}, {ML, MC},
{MMI, MC}}, the types of BPMN tasks �T = {Service,
Receive, Send, User, Script, Manual, Reference, None} and
STNames is a set of task names. A task tuple is a 4-tuple �T

= (FT, �TM, �Ttype, �TName) where

– FT is a set of tasks;
– �TM : FT → SM

T defines for a task its set of markers;
– �Ttype : FT → �T returns the type of a task; and
– �TName : FT → STNames maps a task to its name.

Definition 6 (Subprocess tuple) Suppose MCSP represents
the collapsed subprocess marker, ML represents the loop
marker, MMI represents the multiple instance marker, MAD

represents the ad hoc marker, MC represents the compensa-
tion marker, the valid combination of markers for collapsed
subprocesses SM

CSP = {{MCSP}, {MCSP, ML}, {MCSP, MMI},
{MCSP, MAD}, {MCSP, MC}, {MCSP, ML, MAD}, {MCSP,
ML, MC}, {MCSP, MMI, MAD}, {MCSP, MMI, MC}, {MCSP,
MC, MAD}, {MCSP, ML, MAD, MC}, {MCSP, MMI, MAD,
MC}}, the valid combination of markers for expanded sub-
processes SM

ESP = {{}, {ML}, {MMI}, {MAD}, {MC}, {ML,
MAD}, {ML, MC}, {MMI, MAD}, {MMI, MC}, {MC, MAD},
{ML, MAD, MC}, {MMI, MAD, MC}}, SNP is a set of none-
start-events processes, SP is a set of processes and B is the
set of Boolean values. A subprocess tuple is a 10-tuple �SP

= (FEmbed
SP , FReuse

SP , FRef
SP , �IsTX, �SPM, �

Bdy
SE , �

Bdy
EE , �NP,

�P, �RP) where

– FEmbed
SP is a set of embedded subprocesses;

– FReuse
SP is a set of reusable subprocesses;

– FRef
SP is a set of reference subprocesses;

– �IsTX : FEmbed
SP ∪ FReuse

SP ∪ FRef
SP → B returns whether a

subprocess is a transaction or not;
– �SPM : FEmbed

SP ∪ FReuse
SP ∪ FRef

SP → SM
ESP ∪ SM

CSP speci-
fies for a subprocess its set of markers;

– �
Bdy
SE : {x |x ∈ (FEmbed

SP ∪ FReuse
SP)∧�SPM(x) ∈ SM

ESP} →
2FSE returns the set of start events attached to the bound-
ary of an expanded subprocess;

– �
Bdy
EE : {x |x ∈ (FEmbed

SP ∪ FReuse
SP)∧�SPM(x) ∈ SM

ESP} →
2FEE returns the set of end events attached to the boundary
of an expanded subprocess;

– �NP : FEmbed
SP → SNP returns the associated none-start-

events process;
– �P : FReuse

SP → SP returns the called process; and
– �RP : FRef

SP → ⋃
i∈{Embed,Reuse,Ref} Fi

SP returns the sub-
process being referenced.

A task tuple and a subprocess tuple comprise a collection
of functions as well as, respectively, a set of tasks and sets
of embedded subprocesses, reusable subprocesses and ref-
erence subprocesses. There are three kinds of task markers:
loop markers, multiple instance markers and compensation
markers. Likewise, four subprocess markers are allowed to
use in both collapsed subprocesses and expanded subprocess-
es. These encompass loop markers, multiple instance mark-
ers, ad hoc markers and compensation markers.

Definition 7 (Activity tuple) Suppose �SP = {Embed,
Reuse, Ref}, �IE = {None, Msg, Timer, Err, Cncl, Cmpen,
Cond, Link, Sign, Multi}, �NLC = {None, Link, Cncl}, �NL

= {None, Link}, FA = FT ∪ ⋃
i∈�SP

Fi
SP, STX = {x |x ∈

⋃
i∈�SP

Fi
SP ∧�IsTX(x) = true}, SAtt

A is a set of activity attri-
butes and SAttV

A is a set of activity attribute values. An activ-

ity tuple is a 5-tuple �A = (�T, �SP, �
Bdy[−TX]
IE , �

Bdy[TX]
IE ,

�Att
A) where

– �T is a task tuple;
– �SP is a subprocess tuple;

– �
Bdy[−TX]
IE : FA\STX → 2

⋃
i∈�IE\�NLC

Fi
IE returns the set

of intermediate events attached to the boundary of an
activity that is not a transaction;

– �
Bdy[TX]
IE : STX → 2

⋃
i∈�IE\�NL

Fi
IE returns the set of inter-

mediate events attached to the boundary of a transaction;
and

– �Att
A : FA × SAtt

A → SAttV
A returns the activity attribute

value of an activity and an activity attribute.

A task tuple, a subprocess tuple and a number of functions
constitute an activity tuple. None intermediate events and
link intermediate events cannot be attached to the boundary
of an activity or a transaction. Additionally, cancel interme-
diate events are restricted to be placed on the boundary of a
transaction.

Definition 8 (Exclusive gateway tuple) An exclusive gate-
way tuple is a 4-tuple �XG = (FD

XDG, FD
XMG, FE

XDG, FE
XMG)

where

– FD
XDG is a set of data-based exclusive decision gateways

(DXDGs);

123

SOCA (2009) 3:189–204 195

– FD
XMG is a set of data-based exclusive merge gateways

(DXMGs);
– FE

XDG is a set of event-based exclusive decision gateways
(EXDGs); and

– FE
XMG is a set of event-based exclusive merge gateways

(EXMGs).

Sets of data-based exclusive decision gateways, data-
based exclusive merge gateways, event-based exclusive deci-
sion gateways and event-based exclusive merge gateways
form an exclusive gateway tuple.

Definition 9 (Inclusive gateway tuple) An inclusive gateway
tuple is a 2-tuple �IG = (F IDG, F IMG) where

– F IDG is a set of inclusive decision gateways (IDGs); and
– F IMG is a set of inclusive merge gateways (IMGs).

Definition 10 (Complex gateway tuple) A complex gateway
tuple is a 2-tuple �CG = (FCDG, FCMG) where

– FCDG is a set of complex decision gateways (CDGs); and
– FCMG is a set of complex merge gateways (CMGs).

Definition 11 (Parallel gateway tuple) A parallel gateway
tuple is a 2-tuple �PG = (FPFG, FPJG) where

– FPFG is a set of parallel fork gateways (PFGs); and
– FPJG is a set of parallel join gateways (PJGs).

Definition 12 (Gateway tuple) Suppose �XG = {XDG,
XMG}, �IG = {IDG, IMG}, �CG = {CDG, CMG},
�PG = {PFG, PJG}, FXG = ⋃

i∈{D,E}
⋃

j∈�XG
Fi

j , F IG =⋃
i∈�IG

Fi , FCG = ⋃
i∈�CG

Fi , FPG = ⋃
i∈�PG

Fi , FG =
⋃

i∈{XG,IG,CG,PG} Fi , SAtt
G is a set of gateway attributes and

SAttV
G is a set of gateway attribute values. A gateway tuple is

a 5-tuple �G = (�XG, �IG, �CG, �PG, �Att
G) where

– �XG is an exclusive gateway tuple;
– �IG is an inclusive gateway tuple;
– �CG is a complex gateway tuple;
– �PG is a parallel gateway tuple; and
– �Att

G : FG × SAtt
G → SAttV

G defines for a gateway and
a gateway attribute the corresponding gateway attribute
value.

The two types of inclusive gateways are: inclusive deci-
sion gateways and inclusive merge gateways. There are two
sorts of complex gateways: complex decision gateways and
complex merge gateways. A parallel gateway tuple is com-
posed of sets of parallel fork gateways and parallel join gate-
ways. By combining an exclusive gateway tuple, an inclusive

gateway tuple, a complex gateway tuple, a parallel gateway
tuple and a function �Att

G , a gateway tuple is obtained.

Definition 13 (Connecting-object tuple) Suppose �src
IE =

{Msg, Msg, Timer, Cond, Link, Link, Sign, Sign}, �
trg
IE =

{None, Msg, Msg, Timer, Cmpen, Cmpen, Cond, Link, Link,
Sign, Sign}, SF = ⋃

i∈{E,A,G} Fi , SBdy[−Cmpen]
IE =

⋃
A∈(FT∪⋃

i∈�SP
Fi

SP\STX) �
Bdy[−TX]
IE (A) ∪ ⋃

T x∈STX
�

Bdy[TX]
IE

(T x) \ FCmpen
IE is the set of non-compensation intermedi-

ate events attached to activities and transactions, SCmpen
A =

{x |(x ∈ FT ∧ MC ∈ �TM(x)) ∨ (x ∈ ⋃
i∈�SP

Fi
SP ∧ MC ∈

�SPM(x))} is the set of activities with the compensation
marker, SNF[src]

IE = ⋃
i∈�src

IE
Fi

IE \ (
⋃

A∈(FT∪⋃
i∈�SP

Fi
SP\STX)

�
Bdy[−TX]
IE (A) ∪ ⋃

T x∈STX
�

Bdy[TX]
IE (T x)) is the set of inter-

mediate events that are sources of normal or uncontrolled
flows, SNF[trg]

IE = ⋃
i∈�

trg
IE

Fi
IE \ (

⋃
A∈(FT∪⋃

i∈�SP
Fi

SP\STX)

�
Bdy[−TX]
IE (A) ∪ ⋃

T x∈STX
�

Bdy[TX]
IE (T x)) is the set of inter-

mediate events that are targets of normal or uncontrolled
flows, SAtt

C is a set of connecting object attributes and SAttV
C

is a set of connecting object attribute values. A connecting-
object tuple is a 7-tuple�C = (ADO, CSF, CDA, SCond,�Cond,
�IsDf , �Att

C) where

– ADO is a set of data objects;
– CSF ⊆ (SF \ (FEE ∪ SCmpen

A ∪ F IE) ∪ (
⋃

P∈FEmbed
SP

�
Bdy
EE

(P) ∪ SBdy[−Cmpen]
IE ∪ SNF[src]

IE)) × (SF \ (FSE ∪ F IE)

∪ (
⋃

P∈FEmbed
SP

�
Bdy
SE (P) ∪ SNF[trg]

IE)) is a set of sequence
flows (SFs);

– CDA ⊆ (FA × ADO) ∪ (ADO × FA) ∪ (FCmpen
IE × FA)

is a set of directed associations;
– SCond is a set of conditions;
– �Cond : CSF → SCond returns the condition of a sequence

flow;
– �IsDf : CSF → B returns whether a sequence flow is a

default sequence flow; and
– �Att

C :⋃i∈{SF,DA} Ci × SAtt
C → SAttV

C relates a connecting
object and a connecting object attribute to a connecting
object attribute value.

In Definition 13, the expression (SF \ (FEE ∪ SCmpen
A ∪

F IE) ∪ (
⋃

P∈FEmbed
SP

�
Bdy
EE (P) ∪ SBdy[−Cmpen]

IE ∪ SNF[src]
IE))

states that

(i) an end event cannot be a source flow object with the
exception that it is attached to the boundary of an
expanded subprocess; and

(ii) a compensation activity does not have any outgoing
sequence flows.

123

196 SOCA (2009) 3:189–204

In a similar way, the expression (SF \ (FSE ∪ F IE) ∪
(
⋃

P∈FEmbed
SP

�
Bdy
SE (P) ∪ SNF[trg]

IE)) says that a start event can-
not be a target flow object except it is attached to the boundary
of an expanded subprocess. A sequence flow is a subset of
the cross product of these two expressions. The expression
(FA × ADO) ∪ (ADO × FA) ∪ (SCmpen

IE × FA) stipulates
that a directed association connects

(i) a data object with an activity; or
(ii) a compensation intermediate event for catching the

event trigger with an activity.

Definition 14 (Process) A process is a 4-tuple P = (�E,
�A, �G, �C) where

– �E is an event tuple;
– �A is an activity tuple;
– �G is a gateway tuple; and
– �C is a connecting-object tuple.

A process consists of four components: an event tuple, an
activity tuple, a gateway tuple and a connecting-object tuple.

Definition 15 (None-start-events process) Given a process
P with a start-event tuple �SE = (FNone

SE , FMsg
SE , FTimer

SE ,

FCond
SE , FSign

SE , FMulti
SE). The process P is a none-start-events

process if and only if
∧

i∈�SE\{None}(Fi
SE = ∅).

Definition 16 The function �TP, defined below, returns the
task name, none-start-events process, called process or ref-
erenced subprocess depending on whether the parameter is
a task, an embedded subprocess, a reusable subprocess or a
reference subprocess.

�TP(x) =

⎧
⎪⎪⎨

⎪⎪⎩

�TName(x) if x ∈ FT

�NP(x) if x ∈ FEmbed
SP

�P(x) if x ∈ FReuse
SP

�RP(x) if x ∈ FRef
SP

5 Classification of equivalences of BPMN processes

This section aims to study different kinds of equivalences
of BPMN processes from a formal perspective. The princi-
ples of equivalences are specified precisely in the form of a
number of definitions. In essence, two BPMN processes are
regarded as equivalent if both of them can be transformed
into a common graphical representation.

In what follows, definitions for DXMG-based-duplicate-
free form and DXDG-based-duplicate-free form are
provided. A discussion of two types of equivalences of
BPMN processes, which are based on DXMG-based-dupli-
cate-free form and DXDG-based-duplicate-free form,
is offered. These encompass DXMG-DF-equivalence and

DXDG-DF-equivalence. The motivation for introducing
DXMG-DF-equivalence and DXDG-DF-equivalence is to
reduce redundant activities by adjusting the positions of data-
based exclusive merge gateway and data-based exclusive
decision gateway.

Definition 17 (DXMG-based-duplicate-free form) Let P1

be a process with �A, �C, �T, �SP, CSF, FT, FEmbed
SP ,

FReuse
SP , FRef

SP are replaced by �A(P1) , �C(P1) , �T(P1) , �SP(P1) ,
CSF(P1) , FT(P1) , FEmbed

SP(P1) , FReuse
SP(P1) , FRef

SP(P1) , FA(P1) = FT(P1) ∪
⋃

i∈�SP
Fi

SP(P1) and SF(P1) = FA(P1) ∪ ⋃
i∈{E,G} Fi . If F O1,

F O2 ∈ SF(P1) , A1,1, A1,2, . . ., A1,n , A2,1, A2,2, . . ., A2,n , A3,1,
A3,2, . . ., A3,n , . . ., Am−1,1, Am−1,2, . . ., Am−1,n , Am,1, Am,2,
. . ., Am,n ∈ FA(P1) , G1 ∈ FD

XDG, G2 ∈ FD
XMG, c1, c2, . . ., cn

∈ SCond, (F O1, G1), (G1, A1,1), (G1, A1,2), . . ., (G1, A1,n),
(A1,1, A2,1), (A1,2, A2,2), . . ., (A1,n , A2,n), (A2,1, A3,1),
(A2,2, A3,2), . . ., (A2,n , A3,n), . . ., (Am−1,1, Am,1), (Am−1,2,
Am,2), . . ., (Am−1,n , Am,n), (Am,1, G2), (Am,2, G2), . . .,
(Am,n , G2), (G2, F O2) ∈ CSF(P1) , �Cond((G1, A1,i)) = ci ,
SSA(P1) = {A2,1, A2,2, . . ., A2,n , A3,1, A3,2, . . ., A3,n , . . .,
Am−1,1, Am−1,2, . . ., Am−1,n , Am,1, Am,2, . . ., Am,n},
CCSF(P1) = {(A1,1, A2,1), (A1,2, A2,2), . . ., (A1,n , A2,n),
(A2,1, A3,1), (A2,2, A3,2), . . ., (A2,n , A3,n), . . ., (Am−1,1,
Am,1), (Am−1,2, Am,2), . . ., (Am−1,n , Am,n), (Am,1, G2),
(Am,2, G2), . . ., (Am,n , G2), (G2, F O2)},=n

i=1�TP(P1) (A j,i),
FFT(P1) = {x |x ∈ SSA(P1) ∧ x ∈ FT(P1)}, FFk

SP(P1) = {x |x ∈
SSA(P1) ∧ x ∈ Fk

SP(P1)} for i = 1, . . ., n, j = 2, 3, . . ., m − 1,
m and k ∈ �SP, then there is a unique process P2 which is in
DXMG-based-duplicate-free form such that

– �A, �C, �T, �SP, CSF, FT, FEmbed
SP , FReuse

SP , FRef
SP are

replaced by �A(P2) , �C(P2) , �T(P2) , �SP(P2) , CSF(P2) ,
FT(P2) , FEmbed

SP(P2) , FReuse
SP(P2) , FRef

SP(P2) ,

– FA(P2) = FT(P2) ∪ ⋃
i∈�SP

Fi
SP(P2) ,

– SF(P2) = FA(P2) ∪ ⋃
i∈{E,G} Fi ,

– F O1, F O2 ∈ SF(P2) ,
– A1,1, A1,2, . . ., A1,n , A2, A3, . . ., Am−1, Am ∈ FA(P2) ,
– (F O1, G1), (G1, A1,1), (G1, A1,2), . . ., (G1, A1,n), (A1,1,

G2), (A1,2, G2), . . ., (A1,n , G2), (G2, A2), (A2, A3), . . .,
(Am−1, Am), (Am , F O2) ∈ CSF(P2) ,

– �Cond((G1, A1,i)) = ci ,
– SSA(P2) = {A2, A3, . . ., Am−1, Am},
– CCSF(P2) = {(A1,1, G2), (A1,2, G2), . . ., (A1,n , G2), (G2,

A2), (A2, A3), . . ., (Am−1, Am), (Am , F O2)},
– FFT(P2) = {Ai |Ai ∈ SSA(P2) ∧ (Ai,1) ∈ FT(P1)},
– FFk

SP(P2) = {Ai |Ai ∈ SSA(P2) ∧ (Ai,1) ∈ Fk
SP(P1)},

–
∧m

j=2(�TP(P2) (A j) = �TP(P1) (A j,1)),
– FT(P2) = FT(P1)\FFT(P1) ∪ FFT(P2) ,
– Fk

SP(P2) = Fk
SP(P1)\FFk

SP(P1) ∪ FFk
SP(P2) and

– CSF(P2) = CSF(P1)\CCSF(P1) ∪ CCSF(P2)

for i = 1, . . ., n and k ∈ �SP.

123

SOCA (2009) 3:189–204 197

Fig. 5 DXMG-DF-equivalent
BPMN processes

A1

A2,1

A2,2

A3

A3

A4

A4

A5

c1

c2

(a)

A1

A2,1

A2,2

A3

A3

A4 A5

c1

c2

(b)

A1

A2,1

A2,2

A3 A4 A5

c1

c2

(c)

A BPMN process containing a data-based exclusive merge
gateway preceded with sets of duplicate activities is trans-
formable into a unique BPMN process by placing the data-
based exclusive merge gateway before the sets of duplicate
activities such that all duplicate activities can be eliminated.
The sets FT(P1) and FT(P2) denote, respectively, the sets of
tasks of P1 and P2. The set FT(P2) is the same as the set FT(P1)

except that the set FFT(P1) is removed and the set FFT(P2) is
added. The removal and addition of tasks eliminate the dupli-
cate tasks in P1. The sets Fk

SP(P2) and CSF(P2) are defined in
an analogous manner.

Definition 18 (DXMG-DF-equivalence) For any BPMN
processes P1 and P2, P1 is DXMG-DF-equivalent to P2,
denoted by P1 ≈DXMG

DF P2, if and only if there is a BPMN pro-
cess P3 such that P3 is a DXMG-based-duplicate-free form
of P1 and P2.

Definition 18 stipulates that two BPMN processes are
DXMG-DF-equivalent if they are capable of converting into
a BPMN process which is in DXMG-based-duplicate-free
form.

Proposition 1 The relation ≈DXMG
DF is transitive.

Proof Suppose P1 ≈DXMG
DF P2 and P2 ≈DXMG

DF P3. Since
P1 ≈DXMG

DF P2 and P2 ≈DXMG
DF P3, it follows that P4 is a

DXMG-based-duplicate-free form of P1, P2 and P3. Since
P4 is a DXMG-based-duplicate-free form of P1 and P3, we
obtain P1 ≈DXMG

DF P3. Thus, ≈DXMG
DF is transitive. 	

Proposition 2 The relation ≈DXMG
DF is an equivalence.

Proof For reflexivity and symmetry, these follow immedi-
ately from Definition 18. Thus, ≈DXMG

DF is an equivalence as
≈DXMG

DF is transitive by Proposition 1. 	

The concept of DXMG-DF-equivalence is illustrated in
Fig. 5. The BPMN processes in Fig. 5a and b are DXMG-
DF-equivalent as the BPMN process in Fig. 5c is a DXMG-
based-duplicate-free form of them.

Definition 19 (DXDG-based-duplicate-free form) Let P1 be
a process with �A, �C, �T, �SP, CSF, FT, FEmbed

SP , FReuse
SP ,

FRef
SP are replaced by �A(P1) , �C(P1) , �T(P1) , �SP(P1) , CSF(P1) ,

FT(P1) , FEmbed
SP(P1) , FReuse

SP(P1) , FRef
SP(P1) , FA(P1) = FT(P1) ∪ ⋃

i∈�SP

Fi
SP(P1) and SF(P1) = FA(P1) ∪ ⋃

i∈{E,G} Fi . If F O1, F O2 ∈
SF(P1) , A1,1, A1,2, . . ., A1,n , . . ., Am−1,1, Am−1,2, . . ., Am−1,n ,
Am,1, Am,2, . . ., Am,n ∈ FA(P1) , G1 ∈ FD

XDG, G2 ∈ FD
XMG,

c1, c2, . . ., cn ∈ SCond, (F O1, G1), (G1, A1,1), (G1, A1,2),
. . ., (G1, A1,n), . . ., (Am−1,1, Am,1), (Am−1,2, Am,2), . . .,
(Am−1,n , Am,n), (Am,1, G2), (Am,2, G2), . . ., (Am,n , G2),
(G2, F O2) ∈ CSF(P1) , �Cond((G1, A1,i)) = ci , SSA(P1) =
{A1,1, A1,2, . . ., A1,n , . . ., Am−1,1, Am−1,2, . . ., Am−1,n},
CCSF(P1) = {(F O1, G1), (G1, A1,1), (G1, A1,2), . . ., (G1,
A1,n), . . ., (Am−1,1, Am,1), (Am−1,2, Am,2), . . ., (Am−1,n ,
Am,n)}, =n

i=1 �TP(P1) (A j , Ai), FFT(P1) = {x |x ∈ SSA(P1) ∧
x ∈ FT(P1)}, FFk

SP(P1) = {x |x ∈ SSA(P1) ∧ x ∈ Fk
SP(P1)} for

i = 1, . . ., n, j = 1, . . ., m − 1 and k ∈ �S P , then there is a
unique process P2 which is in DXDG-based-duplicate-free
form such that

– �A, �C, �T, �SP, CSF, FT, FEmbed
SP , FReuse

SP , FRef
SP are

replaced by �A(P2) , �C(P2) , �T(P2) , �SP(P2) , CSF(P2) ,
FT(P2) , FEmbed

SP(P2) , FReuse
SP(P2) , FRef

SP(P2) ,

– FA(P2) = FT(P2) ∪ ⋃
i∈�SP

Fi
SP(P2) ,

– SF(P2) = FA(P2) ∪ ⋃
i∈{E,G} Fi ,

– F O1, F O2 ∈ SF(P2) ,
– A1, . . ., Am−1, Am,1, Am,2, . . ., Am,n ∈ FA(P2) ,

123

198 SOCA (2009) 3:189–204

Fig. 6 DXDG-DF-equivalent
BPMN processes

A1

A2

A2

A3

A3

A4,1

A4,2

A5

c1

c2

(a)

A1 A2

A3

A3

A4,1

A4,2

A5

c1

c2

(b)

– (F O1, A1), (Am−1, G1), (G1, Am,1), (G1, Am,2), . . .,
(G1, Am,n), (Am,1, G2), (Am,2, G2), . . ., (Am,n , G2),
(G2, F O2) ∈ CSF(P2) ,

– �Cond((G1, Am,i)) = ci ,
– SSA(P2) = {A1, . . ., Am−1},
– CCSF(P2) = {(F O1, A1), . . ., (Am−1, G1), (G1, Am,1),

(G1, Am,2), . . ., (G1, Am,n)},
– FFT(P2) = {A j |A j ∈ SSA(P2) ∧ (A j,1) ∈ FT(P1)},
– FFk

SP(P2) = {A j |A j ∈ SSA(P2) ∧ (A j,1) ∈ Fk
SP(P1)},

–
∧m−1

j=1 (�TP(P2) (A j) = �TP(P1) (A j,1)),
– FT(P2) = FT(P1)\FFT(P1) ∪ FFT(P2) ,
– Fk

SP(P2) = Fk
SP(P1)\FFk

SP(P1) ∪ FFk
SP(P2) and

– CSF(P2) = CSF(P1)\CCSF(P1) ∪ CCSF(P2)

for i = 1, . . ., n, j = 1, . . ., m − 1 and k ∈ �SP.

We consider a BPMN process which is composed of a
data-based exclusive decision gateway followed by sets of
duplicate activities. To eliminate duplicate activities, the data-
based exclusive decision gateway is moved after the sets
of duplicate activities. The definitions of FT(P2) and Fk

SP(P2)

specify the elimination of duplicate activities. The removal
of duplicate activities results in a structurally different pro-
cess P2. The set CSF(P2) is obtained by deleting and adding,
respectively, the collections of sequence flows CCSF(P1) and
CCSF(P2) .

Definition 20 (DXDG-DF-equivalence) For any BPMN
processes P1 and P2, P1 is DXDG-DF-equivalent to P2,
denoted by P1 ≈DXDG

DF P2, if and only if there is a BPMN pro-
cess P3 such that P3 is a DXDG-based-duplicate-free form
of P1 and P2.

Like DXMG-DF-equivalence, two BPMN processes are
DXDG-DF-equivalent if both of them can be transformed
into a common representation in DXDG-based-duplicate-
free form.

Proposition 3 The relation ≈DXDG
DF is transitive.

Proof By similar argument as Proposition 1. 	

Proposition 4 The relation ≈DXDG
DF is an equivalence.

Proof Analogous to Proposition 2. 	

Figure 6 shows an example of DXDG-DF-equivalence.

The BPMN processes in Fig. 6a and b are DXDG-DF-equiv-
alent.

Definition 21 (Implicit-PG form) Let P1 be a process with
�A, �G, �C, �SP, �PG, FT, FEmbed

SP , FReuse
SP , FRef

SP , FPFG,
FPJG, CSF are replaced by �A(P1) , �G(P1) , �C(P1) , �SP(P1) ,
�PG(P1) , FT(P1) , FEmbed

SP(P1) , FReuse
SP(P1) , FRef

SP(P1) , FPFG(P1) , FPJG(P1) ,
CSF(P1) , FPG(P1) = ⋃

i∈�PG
Fi (P1) , FG(P1) = ⋃

i∈{XG,IG,CG} Fi

∪ FPG(P1) , FA(P1) = FT(P1) ∪ ⋃
i∈�SP

Fi
SP(P1) , SF(P1) = FE ∪⋃

i∈{A,G} Fi (P1) . If F O1, F O2 ∈ SF(P1) , Ai ∈ FA(P1) , G1 ∈
FPFG(P1) , G2 ∈ FPJG(P1) , (F O1, G1), (G1, A1), (G1, A2),
. . ., (G1, An), (A1, G2), (A2, G2), . . ., (An , G2), (G2, F O2)

∈ CSF(P1) , SSA(P1) = {A1, A2, . . ., An}, CCSF(P1) = {(F O1,
G1), (G1, A1), (G1, A2), . . ., (G1, An), (A1, G2), (A2, G2),
. . ., (An , G2), (G2, F O2)}, FFT(P1) = {x |x ∈ SSA(P1) ∧ x ∈
FT(P1)}, FFk

SP(P1) = {x |x ∈ SSA(P1) ∧ x ∈ Fk
SP(P1)} for i = 1,

. . ., n and k ∈ �SP, then there is a unique process P2 which
is in implicit-PG form such that

– �A,�G,�C,�SP,�PG, FT, FEmbed
SP , FReuse

SP , FRef
SP , FPFG,

FPJG, CSF are replaced by �A(P2) , �G(P2) , �C(P2) , �SP(P2) ,
�PG(P2) , FT(P2) , FEmbed

SP(P2) , FReuse
SP(P2) , FRef

SP(P2) , FPFG(P2) ,
FPJG(P2) , CSF(P2) ,

– FPG(P2) = ⋃
i∈�PG

Fi (P2) ,
– FG(P2) = ⋃

i∈{XG,IG,CG} Fi ∪ FPG(P2) ,
– FT(P2) = FT(P1)\FFT(P1) ,
– FEmbed

SP(P2) = FEmbed
SP(P1) \FFEmbed

SP(P1) ∪ {S P1},
– FReuse

SP(P2) = FReuse
SP(P1)\FFReuse

SP(P1) ,

– FRef
SP(P2) = FRef

SP(P1)\FFRef
SP(P1) ,

– P1 is an embedded subprocess,
– (F O1, S P1), (S P1, F O2) ∈ CSF(P2) ,
– CCSF(P2) = {(F O1, S P1), (S P1, F O2)},
– FPFG(P2) = FPFG(P1)\{G1},
– FPJG(P2) = FPJG(P1)\{G2},
– CSF(P2) = CSF(P1)\CCSF(P1) ∪ CCSF(P2) and

123

SOCA (2009) 3:189–204 199

Fig. 7 Impl-PG-equivalent
BPMN processes

A1

A2

A3

A4

(a)
A5

A6

A7

A1

A2

A3

A4

(b)
A5

A6

A7

– �NP(SP1) = P3 which is a process where

(i) FT(P3) = FFT(P1)

(ii) Fk
SP(P3) = FFk

SP(P1)

(iii) FA(P3) = FT(P3) ∪ ⋃
i∈�SP

Fi
SP(P3)

(iv) Ai ∈ FA(P3)

(v)
∧

i∈�SE
Fi

SE(P3) = ∅
(vi)

∧
i∈�EE

Fi
EE(P3) = ∅

(vii)
∧

i∈(�IE∪�IE) Fi
IE(P3) = ∅

(viii)
∧

i∈{D,E}
∧

j∈�XG
Fi

j (P3) = ∅
(ix)

∧
i∈�IG

Fi (P3) = ∅
(x)

∧
i∈�CG

Fi (P3) = ∅
(xi)

∧
i∈�PG

Fi (P3) = ∅
(xii) ADO(P3) = ∅
(xiii) CSF(P3) = ∅
(xiv) CDA(P3) = ∅
(xv) SCond(P3) = ∅

for i ∈ 1, . . . , n and k ∈ �SP.

Definition 21 specifies that a BPMN process consisting of
a set of concurrent activities enclosed within an embedded
subprocess is substitutable for a BPMN process comprising
the set of concurrent activities connected to a pair of parallel
fork gateway and parallel join gateway. The former provides
a more compact representation of the latter through the use
of a hierarchical structure. The deletion of the parallel fork
gateway G1 is defined by FPFG(P2) , whereas the removal of
the parallel join gateway G2 is specified by FPJG(P2) .

Definition 22 (Impl-PG-equivalence) For any BPMN pro-
cesses P1 and P2, P1 is impl-PG-equivalent to P2, denoted
by P1 ≈ Impl

PG P2, if and only if there is a BPMN process P3

such that P3 is an implicit-PG form of P1 and P2.

Definition 22 is a principle that states when two BPMN
processes are equal in terms of implicit-PG form.

Proposition 5 The relation ≈Impl
PG is transitive.

Proof By similar argument as Proposition 1. 	

Proposition 6 The relation ≈Impl
PG is an equivalence.

Proof Analogous to Proposition 2. 	

Figure 7 is an illustration on implicit-PG-equivalence. Fig-

ure 7b improves the visual clarity of Fig. 7a by removing a
pair of parallel fork gateway and parallel join gateway as
well as enclosing the activities A5 and A6 within an embed-
ded subprocess.

Definition 23 (Activity-based-implicit-PFG form) Let P1 be
a process with �G, �C, �PG, FPFG, CSF are replaced by
�G(P1) , �C(P1) , �PG(P1) , FPFG(P1) , CSF(P1) , FPG(P1) = FPFG(P1)

∪ FPJG, FG(P1) = ⋃
i∈{XG,IG,CG} Fi ∪ FPG(P1) and SF(P1)

= FG(P1) ∪ ⋃
i∈{E,A} Fi . If F Oi ∈ SF(P1) , A1 ∈ FA, G1 ∈

FPFG(P1) , (F O1, A1), (A1, G1), (G1, F O2), (G1, F O3), . . .,
(G1, F On) ∈ CSF(P1) , CCSF(P1) = {(A1, G1), (G1, F O2),
(G1, F O3), . . ., (G1, F On)} for i = 1, . . ., n, then there is
a unique process P2 which is in activity-based-implicit-PFG
form such that

– �G, �C, �PG, FPFG, CSF are replaced by �G(P2) , �C(P2) ,
�PG(P2) , FPFG(P2) , CSF(P2) ,

– FPG(P2) = FPFG(P2) ∪ FPJG,
– FG(P2) = ⋃

i∈{XG,IG,CG} Fi ∪ FPG(P2) ,
– SF(P2) = FG(P2) ∪ ⋃

i∈{E,A} Fi ,
– F Oi ∈ SF(P2) ,
– A1 ∈ FA,
– (F O1, A1), (A1, F O2), (A1, F O3), . . ., (A1, F On) ∈

CSF(P2) ,
– CCSF(P2) = {(A1, F O2), (A1, F O3), . . ., (A1, F On)},
– FPFG(P2) = FPFG(P1)\{G1} and
– CSF(P2) = CSF(P1)\CCSF(P1) ∪ CCSF(P2)

for i = 1, . . ., n.

Definition 23 says that an activity with multiple outgo-
ing sequence flows is an alternative representation of using
a sequence flow for connecting the activity to a parallel fork
gateway with multiple outgoing sequence flows.

123

200 SOCA (2009) 3:189–204

A1

A2

A 3

A4

A5

A1

A2

A3

A4

A5

(a)

(b)

Fig. 8 AImpl-PFG-equivalent BPMN processes

Definition 24 (AImpl-PFG-equivalence) For any BPMN
processes P1 and P2, P1 is AImpl-PFG-equivalent to P2,
denoted by P1 ≈AImpl

PFG P2, if and only if there is a BPMN
process P3 such that P3 is an activity-based-implicit-PFG
form of P1 and P2.

Proposition 7 The relation ≈AImpl
PFG is transitive.

Proof By similar argument as Proposition 1. 	

Proposition 8 The relation ≈AImpl

PFG is an equivalence.

Proof Analogous to Proposition 2. 	

Figure 8 depicts two BPMN processes which are AImpl-

PFG-equivalent.

Definition 25 (CDG-implicit-start-event form) Let P1 be a
process with �E, �C, �SE, FNone

SE , CSF are replaced by
�E(P1) , �C(P1) , �SE(P1) , FNone

SE(P1) , CSF(P1) , FSE(P1) = FNone
SE(P1)

∪ ⋃
i∈�SE\{None} Fi

SE, FE(P1) = FSE(P1) ∪ ⋃
i∈{EE,IE} Fi and

SF(P1) = FE(P1) ∪ ⋃
i∈{G,C} Fi . If F Oi ∈ SF(P1) , E1 ∈ FNone

SE(P1) ,
G1 ∈ FCDG, (E1, G1), (G1, F O1), (G1, F O2), . . ., (G1,
F On) ∈ CSF(P1) for i = 1, . . ., n, then there is a unique
process P2 which is in CDG-implicit-start-event form such
that

– �E, �C, �SE, FNone
SE , CSF are replaced by �E(P2) , �C(P2) ,

�SE(P2) , FNone
SE(P2) , CSF(P2) ,

– FSE(P2) = FNone
SE(P2) ∪ ⋃

i∈�SE\{None} Fi
SE,

– FE(P2) = FSE(P2) ∪ ⋃
i∈{EE,IE} Fi ,

– SF(P2) = FE(P2) ∪ ⋃
i∈{G,C} Fi ,

– F Oi ∈ SF(P2) ,
– G1 ∈ FCDG,
– (G1, F O1), (G1, F O2), . . ., (G1, F On) ∈ CSF(P2) ,

A 1

A 2

A 1

A 2

(a)

(b)

Fig. 9 CDG-ImplSE-equivalent BPMN processes

– FNone
SE(P2) = FNone

SE(P1)\{E1} and
– CSF(P2) = CSF(P1)\{(E1, G1)}

for i = 1, . . ., n.

Removing a none start event which precedes a complex
decision gateway with multiple outgoing sequence flows, a
respective BPMN process which is in CDG-implicit-start-
event form is obtained.

Definition 26 (CDG-ImplSE-equivalence) For any BPMN
processes P1 and P2, P1 is CDG-ImplSE-equivalent to P2,
denoted by P1 ≈CDG

ImplSE P2, if and only if there is a BPMN
process P3 such that P3 is a CDG-implicit-start-event form
of P1 and P2.

Proposition 9 The relation ≈CDG
ImplSE is transitive.

Proof By similar argument as Proposition 1. 	

Proposition 10 The relation ≈CDG

ImplSE is an equivalence.

Proof Analogous to Proposition 2. 	

Figure 9 delineates two BPMN processes in which the

BPMN process in Fig. 9a is CDG-ImplSE-equivalent to the
BPMN processes in Fig. 9b.

Definition 27 (DXDG-default-SF form) Let P1 be a pro-
cess with �C, SCond are replaced by �C(P1) , SCond(P1) . If
F Oi ∈ SF, G1 ∈ FD

XDG, c1, c2, . . ., cn−2, ¬(c1 ∨ c2 ∨
. . . ∨ cn−2) ∈ SCond, (F O1, G1), (G1, F O2), (G1, F O3),
. . ., (G1, F On−1), (G1, F On) ∈ CSF, �Cond((G1, F O j))

= c j−1, �Cond((G1, F On)) = ¬(c1 ∨ c2 ∨ . . . ∨ cn−2) for
i = 1, . . ., n and j = 2, . . ., n − 1, then there is a unique
process P2 which is in DXDG-default-SF form such that

– �C, SCond are replaced by �C(P2) , SCond(P2) ,

123

SOCA (2009) 3:189–204 201

– F Oi ∈ SF,
– G1 ∈ FD

XDG,
– c1, c2, . . . , cn−2 ∈ SCond,
– (F O1, G1), (G1, F O2), (G1, F O3), . . ., (G1, F On−1),

(G1, F On) ∈ CSF,
– �Cond((G1, F O j)) = c j−1,
– �IsDf ((G1, F O j)) = true and
– SCond(P2) = SCond(P1)\{¬(c1 ∨ c2 ∨ . . . ∨ cn−2)}

for i = 1, . . ., n and j = 2, . . . , n − 1.

A data-based exclusive decision gateway with n − 2 out-
going sequence flows associated with conditions c1, c2, . . . ,

cn−2 and a default flow is another way of expressing a data-
based exclusive decision gateway with n − 1 outgoing seq-
uence flows associated with conditions c1, c2, . . . , cn−2 and
¬(c1 ∨ c2 ∨ . . . ∨ cn−2). This is stated in Definition 27.

Definition 28 (DXDG-DefSF-equivalence) For any BPMN
processes P1 and P2, P1 is DXDG-DefSF-equivalent to P2,
denoted by P1 ≈DXDG

DefSF P2, if and only if there is a BPMN
process P3 such that P3 is a DXDG-default-SF form of P1

and P2.

Proposition 11 The relation ≈DXDG
DefSF is transitive.

Proof By similar argument as Proposition 1. 	

Proposition 12 The relation ≈DXDG

DefSF is an equivalence.

Proof Analogous to Proposition 2. 	

We illustrate the concept of DXDG-DefSF-equivalence

with an example (see Fig. 10). The BPMN processes in
Fig. 10a and b are DXDG-DefSF-equivalent.

Definition 29 (IDG-free form) Let P1 be a process with �G,
�C, �IG, F IDG, CSF are replaced by �G(P1) , �C(P1) , �IG(P1) ,
F IDG(P1) , CSF(P1) , F IG(P1) = F IDG(P1) ∪ F IMG, FG(P1) =⋃

i∈{XG,CG,PG} Fi ∪ F IG(P1) , SF(P1) = FG(P1) ∪ ⋃
i∈{E,A} Fi .

If F Oi ∈ SF(P1) , A1 ∈ FA, G1 ∈ F IDG(P1) , (A1, G1), (G1,
F O1), (G1, F O2), . . ., (G1, F On) ∈ CSF(P1) , �Cond((G1,

F Oi)) = ci , CCSF(P1) = {(A1, G1), (G1, F O1), (G1, F O2),
. . ., (G1, F On)} for i = 1, . . . , n, then there is a unique
process P2 which is in IDG-free form such that

– �G, �C, �IG, F IDG, CSF are replaced by �G(P2) , �C(P2) ,
�IG(P2) , F IDG(P2) , CSF(P2) ,

– F IG(P2) = F IDG(P2) ∪ F IMG,
– FG(P2) = ⋃

i∈{XG,CG,PG} Fi ∪ F IG(P2) ,
– SF(P2) = FG(P2) ∪ ⋃

i∈{E,A} Fi ,
– F Oi ∈ SF(P2) ,
– A1 ∈ FA,
– (A1, F O1), (A1, F O2), . . ., (A1, F On) ∈ CSF(P2) ,
– CCSF(P2) = {(A1, F O1), (A1, F O2), . . ., (A1, F On)},

A1

A2

A3

A5

A6

(a)

A4 A7

c1

c2

(c1 c2)

c3

c4

(c3 c4)

A1

A2

A3

A5

A6

(b)

A4 A7

c1

c2

c3

c4

(c3 c4)

Fig. 10 DXDG-DefSF-equivalent BPMN processes

– �Cond((A1, FOi)) = ci ,
– F IDG(P2) = F IDG(P1)\{G1} and
– CSF(P2) = CSF(P1)\CCSF(P1) ∪ CCSF(P2)

for i = 1, . . ., n.

Definition 29 describes an activity which connects to an
inclusive decision gateway with multiple outgoing sequence
flows associated with conditions can be represented as an
activity with multiple outgoing conditional sequence flows.

Definition 30 (IDG-F-equivalence) For any BPMN
processes P1 and P2, P1 is IDG-F-equivalent to P2, denoted
by P1 ≈IDG

F P2, if and only if there is a BPMN process P3

such that P3 is an IDG-free form of P1 and P2.

Proposition 13 The relation ≈IDG
F is transitive.

Proof By similar argument as Proposition 1. 	

Proposition 14 The relation ≈IDG

F is an equivalence.

Proof Analogous to Proposition 2. 	

A pair of BPMN processes that are IDG-F-equivalent is

given in Fig. 11.
With the theory of equivalences for BPMN processes in

place, the rest of this section is concerned with the use of an
elaborated example to demonstrate the practical application
of the proposed equivalences. We consider two structurally
different BPMN processes as shown in Figs. 12 and 13.

123

202 SOCA (2009) 3:189–204

A1

A2

A3

A4

A5

A1

A2

A3

A 4

A5

(a)

(b)

c3

c4

c1

c2

c1

c2

c3

c4

Fig. 11 IDG-F-equivalent BPMN processes

BPMN process 1 (Fig. 12) contains a number of nota-
tional elements that can be transformed into equivalent rep-
resentations by repeated applications of Definitions 17, 19,
21, 23, 25, 27 and 29. These encompass the none start event,
data-based exclusive decision gateways associated with con-
ditions ¬(c1 ∨ c2) and ¬(c8 ∨ c9), inclusive decision gate-
ways, parallel fork gateways, data-based exclusive decision
gateway followed by the duplicate activity A24 and data-
based exclusive merge gateway preceded with the duplicate
activity A27.

Likewise, BPMN process 2 (Fig. 13) embodies graphical
constructs that can be represented as equivalent forms. These
comprise the inclusive decision gateway with an incoming
sequence flow from the activity A11, the data-based exclusive
decision gateway associated with condition ¬(c1 ∨ c2), the
parallel fork gateway with an incoming sequence flow from

the activity A17 as well as the data-based exclusive decision
gateway followed by the duplicate activity A24.

To determine whether BPMN processes 1 and 2 exhibit the
same behaviour, we need to show that through a sequence of
transformations they are both capable of converting into the
same representation in DXMG-based-duplicate-free form,
DXDG-based-duplicate-free form, implicit-PG form, activ-
ity-based-implicit-PFG form, CDG-implicit-start-event form,
DXDG-default-SF form and IDG-free form. Consider the
none start event in BPMN process 1 (Fig. 12). Applying
Definition 25, the none start event is eliminated to yield an
equivalent BPMN process in CDG-implicit-start-event form
as depicted in Fig. 14. Replacing the conditions ¬(c1 ∨ c2)

and ¬(c8 ∨c9) of the data-based exclusive decision gateways
with default flows, we get an equivalent BPMN process in
DXDG-default-SF form in accordance to Definition 27. By
substituting the activities A4 and A11 with outgoing con-
ditional sequence flows (Fig. 14) for the activities A4 and
A11 that connect to inclusive decision gateways with outgo-
ing sequence flows associated with conditions (Fig. 12), an
equivalent BPMN process in IDG-free form is obtained as
specified in Definition 29.

The use of an embedded subprocess to enclose the activ-
ities A19 and A20 eliminates the corresponding pair of par-
allel fork gateway and parallel join gateway (Definition 21).
The other two parallel fork gateways in Fig. 12 are removed
through two successive applications of Definition 23 as
shown in Fig. 14. An equivalent representation for BPMN
process 1 as delineated in Fig. 14 is ultimately produced by
using Definitions 19 and 17 to eliminate the duplicate activ-
ities A24 and A27 in Fig. 12.

In the same way, we apply Definitions 29 and 27 to BPMN
process 2 (Fig. 13) for converting the inclusive decision gate-
way with an incoming sequence flow from the activity A11

and the data-based exclusive decision gateway associated
with condition ¬(c1 ∨c2) into the activity A11 with outgoing

Fig. 12 BPMN process 1
A1

A2

A3

A4

A11

A12

A13

A14

A15

A16

A5

A6

A7

A8

A9

A10

A17

A19

A20

A18

A21

A22

A23

A24

A24

A25

A26

A27

A27

c1

c2

(c1 c2

c3

c4

c5

c6

c7

c8

c9

(c8 c9

c10

c11

P
oo

l 1

123

SOCA (2009) 3:189–204 203

Fig. 13 BPMN process 2

A1

A2

A3

A4

A11

A12

A13

A14

A15

A16

A5

A6

A7

A8

A9

A10

A17

A19

A20

A18

A21

A22

A23 A24

A24

A25

A26

A27

c1

c2

(c1 c2

c3

c4

c5

c6

c7

c8

c9

c10

c11
P

oo
l 1

Fig. 14 An equivalent BPMN
process for BPMN processes 1
and 2

A1

A2

A3

A4

A11

A12

A13

A14

A15

A16

A5

A6

A7

A8

A9

A10

A17

A19

A20

A18

A21

A22

A23

A24

A25

A26

A27

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

P
oo

l 1

conditional sequence flows and the data-based exclusive gate-
way with default flow as illustrated in Fig. 14. The elimina-
tion of the parallel fork gateway with an incoming sequence
flow from the activity A17 and the duplicate activity A24

yields an equivalent representation for BPMN process 2 as
depicted in Fig. 14. As there is a common representation for
both BPMN processes 1 and 2, they are regarded as equiva-
lent and can be used interchangeably.

6 Conclusions

This paper is positioned as part of a larger effort to explore the
equivalences of business processes in the domain of business
process management. Our earlier work is devoted to the clas-
sification of equivalences of UML ADs. In this study, it takes
on the challenge of categorizing various types of equivalenc-
es for BPMN processes. To formalize the notions of equi-
valences, a formal foundation of BPMN processes has been

developed. Based on this underlying model, seven kinds of
equivalences have been proposed. These encompass DXMG-
DF-equivalence, DXDG-DF-equivalence, Impl-PG-equiva-
lence, AImpl-PFG-equivalence, CDG-ImplSE-equivalence,
DXDG-DefSF-equivalence and IDG-F-equivalence. The
theoretical framework contributes to the design of business
processes through the application of mathematical techniques
for

(i) the equivalence checking of BPMN processes;
(ii) the generation of alternative representations for BPMN

processes; and
(iii) the simplification and restructuring of BPMN pro-

cesses.

We intend to continue pursuing this line of investigation in
a series of further studies. An extended discussion of other
equivalences is among one of the many topics to be explored
in future research.

123

204 SOCA (2009) 3:189–204

References

1. OMG (2006) Business process modeling notation specification,
February 2006. http://www.bpmn.org/. Accessed 28 December
2007

2. OMG (2008) Business process modeling notation, v1.1, January
2008. http://www.bpmn.org/. Accessed 7 January 2009

3. Havey M (2005) Essential business process modeling. O’Reilly
Media, Inc., Sebastopol

4. Bog A, Puhlmann F, Weske M (2007) The PiVizTool: Simulat-
ing choreographies with dynamic binding. In: Demo session of
the 5th international conference on business process management,
2007. http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/
bpm2007-piviztool.pdf. Accessed 17 February 2008

5. Bog A, Puhlmann F (2006) A tool for the simulation of π -calculus
systems. In: Open.BPM 2006: Geschäftsprozessmanagement mit
Open Source-Technologien, 2006. http://bpt.hpi.uni-potsdam.
de/pub/Public/FrankPuhlmann/PiSimulator_openBPM.pdf.
Accessed 9 January 2009

6. Bog A (2006) Introduction to the PiVizTool. Hasso Plattner Insti-
tute, University of Potsdam, 2006. http://bpt.hpi.uni-potsdam.
de/pub/Piworkflow/Simulator/piviztool-intro.pdf. Accessed 13
January 2009

7. Bog A (2006) A visual environment for the simulation of
business processes based on the pi-calculus. Master’s thesis,
Hasso Plattner Institute, University of Potsdam, 2006. http://bpt.
hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/AnjaBogThesis
Final.pdf. Accessed 13 January 2009

8. Puhlmann F (2007) Soundness verification of business processes
specified in the pi-calculus. In: CoopIS 2007. LNCS, vol 4803,
pp 6–23

9. Briais S (2005) The ABC User’s Guide, 2005. http://lamp.epfl.ch/
~sbriais/abc/abc_ug.pdf. Accessed 17 February 2008

10. Ou-Yang C, Lin YD (2008) BPMN-based business process model
feasibility analysis: A Petri Net approach. Int J Prod Res
46(14):3763–3781

11. Ratzer AV, Wells L, Lassen HM, Laursen M, Qvortrup JF,
Stissing MS, Westergaard M, Christensen S, Jensen K (2003) CPN
tools for editing, simulating, and analysing coloured petri nets. In:
ICATPN 2003. LNCS, vol 2679. Springer, Berlin, pp 450–462

12. Raedts I, Petkovic M, Usenko YS, van der Werf JM, Groote JF,
Somers L (2007) Transformation of BPMN models for behaviour
analysis. In: MSVVEIS 2007, pp 126–137

13. Dijkman RM, Dumas M, Ouyang C (2007) Formal semantics
and analysis of BPMN process models using Petri Nets. Preprint
(2007); available at http://eprints.qut.edu.au/archive/00007115/
01/7115.pdf. Accessed 6 July 2008

14. Dijkman RM, Dumas M, Ouyang C (2007) Formal semantics and
automated analysis of BPMN process models. Preprint (2007);
available at http://eprints.qut.edu.au/archive/00006859/. Accessed
6 July 2008

15. Wong PYH, Gibbons J (2008) A process semantics for BPMN. In:
Proceedings of 10th international conference on formal engineer-
ing methods. LNCS 5256, pp 355–374

16. Hoare CAR (1985) Communicating Sequential Processes.
Prentice-Hall, Englewood Cliffs

17. Formal Systems (Europe) Ltd. (2003) Failures-divergence refine-
ment: FDR2 user manual, May 2003. http://www.fsel.com/
fdr2_download.html. Accessed 20 January 2005

18. Gruber W (2003) Modelling and transformation of workflows with
temporal constraints. PhD thesis, Vienna University of Technol-
ogy, 2003. http://www.isys.uni-klu.ac.at/PDF/2003-0178-WLG.
pdf. Accessed 13 January 2009

19. Eder J, Gruber W, Pichler H (2005) Transforming workflow graphs.
In: First international conference on interoperability of enterprise
software and applications, pp 23–25

20. Lam VSW (2008) Theory for classifying equivalences of UML
activity diagrams. IET Softw J 2(5):391–403

21. Lam VSW Formal analysis of BPMN models: a NuSMV-based
approach. (submitted)

123

http://www.bpmn.org/
http://www.bpmn.org/
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/bpm2007-piviztool.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/bpm2007-piviztool.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/PiSimulator_open BPM.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/PiSimulator_open BPM.pdf
http://bpt.hpi.uni-potsdam.de/pub/Piworkflow/Simulator/piviztool-intro.pdf
http://bpt.hpi.uni-potsdam.de/pub/Piworkflow/Simulator/piviztool-intro.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/AnjaBogThesisFinal.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/AnjaBogThesisFinal.pdf
http://bpt.hpi.uni-potsdam.de/pub/Public/FrankPuhlmann/AnjaBogThesisFinal.pdf
http://lamp.epfl.ch/~sbriais/abc/abc_ug.pdf
http://lamp.epfl.ch/~sbriais/abc/abc_ug.pdf
http://eprints.qut.edu.au/archive/00007115/01/7115.pdf
http://eprints.qut.edu.au/archive/00007115/01/7115.pdf
http://eprints.qut.edu.au/archive/00006859/
http://www.fsel.com/fdr2_download.html
http://www.fsel.com/fdr2_download.html
http://www.isys.uni-klu.ac.at/PDF/2003-0178-WLG.pdf
http://www.isys.uni-klu.ac.at/PDF/2003-0178-WLG.pdf

	Equivalences of BPMN processes
	Abstract
	1 Introduction
	2 Related work
	3 An overview of BPMN
	4 Formal model of BPMN processes
	5 Classification of equivalences of BPMN processes
	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

