
SOCA (2008) 2:93–110
DOI 10.1007/s11761-008-0023-6

SPECIAL ISSUE PAPER

Log-based mining techniques applied to Web service composition
reengineering

Walid Gaaloul · Karim Baïna · Claude Godart

Received: 31 October 2007 / Accepted: 24 March 2008 / Published online: 8 May 2008
© Springer-Verlag London Limited 2008

Abstract Web service compositions are becoming more
and more complex, involving numerous interacting ad-hoc
services. These services are often implemented as business
processes themselves. By analysing such complex web ser-
vice compositions one is able to better understand, control
and eventually re-design them. Our contribution to this pro-
blem is a mining algorithm, based on a statistical technique
to discover composite web service patterns from execution
logs. Our approach is characterised by a “local” pattern’s
discovery that covers partial results through a dynamic pro-
gramming algorithm. Those locally discovered patterns are
then composed iteratively until the composite Web service is
discovered. The analysis of the disparities between the disco-
vered model and the initial ad-hoc composite model (delta-
analysis) enables initial design gaps to be detected and thus
to re-engineer the initial Web service composition.

Keywords Composite service mining · Service
intelligence · Service analysis · Service validation ·

The work presented in this paper was partially supported by the EU
funding under the SUPER project (FP6-026850) and by the Lion
project supported by Science Foundation Ireland under Grant No.
SFI/02/CE1/I131.

W. Gaaloul (B)
DERI-NUIG, IDA Business Park, Galway, Ireland
e-mail: walid.gaaloul@deri.org

K. Baïna
ENSIAS, Université Mohammed V-Souissi,
BP 713, Agdal-Rabat, Morocco
e-mail: baina@ensias.ma

C. Godart
LORIA-INRIA-UMR 7503, BP 239,
54506 Vandœuvre-les-Nancy Cedex, France
e-mail: godart@loria.fr

Service reengineering frameworks ·Model driven
reengineering ·Workflow patterns

1 Introduction

Service Oriented Architectures (SOAs) are suffering from
their own success: a lack of an explicit process model, dif-
ficult maintainability, and poor monitoring facilities. Our
paper is a contribution to this problem through our com-
posite service (CS) mining algorithm. CS mining supports
business process rediscovery based on a log analysis and can
be used to retroactively (re)design models to better unders-
tand the actual process execution reality. Our approach aims
to support composite web service continuous evolution by
analysing composite web service execution logs, discovering
effective web service compositions and helping to improve
and to correct the initially designed process models.

The main idea of our algorithm is that a set of web services
interact in an ad-hoc manner with their execution logic impli-
cit to the implementation (i.e., no explicit process model).
This ad-hoc web service interactions can be better abstracted
and formalised as an orchestration process. Our objective,
through structural web service mining, is (1) to discover the
implicit orchestration protocol behind a set of web services;
interactions, and (2) to explore to which extent this implicit
protocol can be mapped to an explicit orchestration proto-
col (e.g., a BPEL process) either: (a) to be well managed
and controlled, or (b) to be well analysed and understood,
or (c) to be verified from either a structural or a behavioural
point of view. Our algorithm starts by collecting log informa-
tion from CS execution instances. Then, through statistical
techniques, a graphical intermediary representation is built
to model service elementary dependencies. These dependen-
cies are then refined to discover control flow patterns. The

123



94 SOCA (2008) 2:93–110

Fig. 1 CS running example: an ad-hoc composite web service
orchestration

discovered results are used thereafter in re-engineering and
analysis phase.

Motivating example

In this article, we motivate our approach with an example
of a composite (web) service supposedly implemented as an
ad-hoc composite web service orchestration. This CS repre-
sents a car rental application (see Fig. 1). It acts as a broker
offering to its customers a set of car choices made from their
requirements expressed in the (web) service S1. S4 checks
the customer ID while S2 checks the car availability and S3

provides further information about available cars and the res-
pective car rental supplier. Afterwards, the customer makes
his choice and agrees on rental terms in S5 service. The cus-
tomer is requested to pay either by credit card (S6), by cash
(S7), or by check (S8) or by combining the payment by credit
card and by cash. Finally, the bill is sent to the customer by S9.

Previous approaches primarily developed a set of tech-
niques to analyse and check the composition model, based
on a specific modelling formalisms. Although powerful these
approaches may fail to ensure CS reliable executions in some
cases, even if they formally validate the CS model. This
is because properties specified in the studied composition
models remain assumptions that may not coincide with the
reality. In fact, the users can express different needs from
the initial ad-hoc CS model during execution, by choosing
a different payment process or by removing a concurrent
behaviour. Formal approaches cannot report these dynamic
requirements.

Overview

In this article, we describe a set of mining techniques and
algorithms for a CS patterns discovery which we have spe-
cified, proved and implemented. Our approach allows one
to detect and correct design errors caused by omissions or
errors at the initial (ad-hoc) design phase and caters for CS
evolutions observed at run time. As such, we can rediscover
the effective or “real” service interactions from a CS log. Our
approach can be summarised as follows:

• Collecting execution history The purpose of this phase
is to keep track of the composite service execution by

Fig. 2 Patterns mining steps

capturing the relevant generated events. The number of
instances and the log structure should be sufficiently rich
to enable CS mining.

• Analysing the execution history The purpose of this
phase is to mine the effective control flow of a compo-
site service. In particular, we proceed in two steps (see
Fig. 2) to discover the CS model based on its log only.
First, we perform statistical analyses to extract a statisti-
cal dependencies table. Second, a statistical specification
of the control flow properties is extracted with discovery
rules which are applied on the statistical dependencies
tables.

• Improving the composition model Based on the exe-
cution history analysis and the mined results we enable
a re-engineering phase to improve the composite service
model.

To describe our algorithm, Sect. 2 explains our CS log
model. Section 3 details our structural control flow patterns
mining algorithm. Validation and reengineering elements of
the initial designed process model with the discovered pro-
cess model are given in Sect. 4. Implementation aspects are
discussed in Sect. 5. Finally, Sect. 6 discusses related work,
before we conclude in the same section.

2 Composite service log

In the following, we are interested in CS log-related issues.
First, we describe techniques to collect WS logs, followed
by our CS log model in Sect. 2.2. Thereafter, we propose in
Sect. 2.3 the log structure and the minimal conditions, which
WS logs have to fulfill, to be able to apply our control flow
mining algorithm.

2.1 Collecting Web service logs

Following a common requirement in the area of business pro-
cess and service management, we expect composite services
to be traceable, meaning that the system should in one way or
another keep track of ongoing and past executions. Several
research projects deal with the technical solutions necessary

123



SOCA (2008) 2:93–110 95

for collecting and logging of Web service’s execution logs
[1–3]. In the following, we examine the common logging
possibilities in service-oriented architectures.

2.1.1 Traditional Web logging solutions

There are two main data sources for Web log collecting, cor-
responding to the client–server computing paradigm. The
existing techniques are commonly achieved by enabling the
respective Web server’s logging facilities. There are many
investigations and proposals on Web server log and associa-
ted analysis techniques. A survey on Web Usage Mining [4]
describes the most well-known means of Web log collection.
Basically, server logs are either stored in the Common Log
Format1 or the more recent Combined Log Format.2 They
primarily consist of various types of logs generated by the
Web server. Most of the Web servers support as default option
the Common Log Format, which is a fairly basic form of Web
server logging.

However, the emerging paradigm of Web services requires
richer information in order to fully capture business inter-
actions. Since the Web server log is derived from requests
resulting from users accessing pages, it is not tailored to cap-
ture service composition or orchestration. In the following,
we describe a set of advanced logging techniques that allows
to record the additional information to mine more advanced
behaviour.

2.1.2 Process-based logging solutions

CS mining requires choreography or orchestration identifier
and instance (case) identifier in the log record. Such infor-
mation is not available in conventional Web server logs. In
the following, we describe advanced solution to collect this
information in choreography or orchestration execution.

A known method for debugging, is to insert logging state-
ments into the source code of each service in order to call ano-
ther service or component, responsible for logging. However,
this solution has a main disadvantage: we do not have owner-
ship over third partie’s code and we cannot guarantee they are
willing to change it on someone else, behalf. Furthermore,
modifying existing applications may be time consuming and
error prone (solution 1). Since all interactions between Web
Services happen through the exchange of SOAP message,
an other alternative is to use SOAP headers that can provide
additional information on the message’s content concerning
the executed choreography. Basically, we modify SOAP hea-
ders to include and gather the additional needed informa-
tion capturing choreography-ID and its instance-ID. We use

1 http://httpd.apache.org/docs/logs.html.
2 http://www.w3.org/TR/WD-logfile.html.

SOAP intermediaries [5] which are applications, located bet-
ween a client and a service provider. These intermediaries are
capable of both receiving and forwarding SOAP messages.
They are located on web services provider and they intercept
SOAP request messages from a Web service sender or cap-
ture SOAP response messages from a Web service provider.
On Web service client-side, this remote agent can be imple-
mented to intercept those messages and extract the needed
information. The implementation of client-side data collec-
tion methods requires user cooperation, either in enabling the
functionality of the remote agent, or to voluntarily use and
process the modified SOAP headers, but without changing
the Web service implementation itself (the disadvantage of
solution 1).

For orchestration log collecting, since most web service
orchestration are using a WSBPEL engine, which coordi-
nates the various orchestration’s web services, interprets and
executes the grammar describing the control logic, we can
extend this engine with a sniffer that captures orchestration
information, i.e., the orchestration-ID and its instance-ID.
This solution is centralized, but less constrained than the pre-
vious one which collects choreography information.

Using these advanced logging facilities, we aim at taking
into account web services’ neighbors in the mining process.
The term neighbors refers to other Web services that the exa-
mined Web Service interacts with. The concerned levels deal
with mining web service choreography interface (abstract
process) through which it communicates with other web ser-
vices to accomplish a choreography, or discovering the set
of interactions exchanged within the context of a given cho-
reography or composition.

The exact structure of the web logs or the event collec-
tor depends on the used execution engine. In our experi-
ments, we used the bpws4j3 engine which itself uses log4j4

to generate logging events. Log4j is an OpenSource logging
API developed under the Jakarta Apache project. It provides
a robust, reliable, fully configurable, easily extendible, and
easy to implement framework for logging Java applications
for debugging and monitoring purposes. The event collector
(which is implemented as a remote log4j server) sets some
log4j properties of the bpws4j engine to specify level of event
reporting (INFO, DEBUG, etc.), and the destination details
of the logged events. At runtime bpws4j generates events
according to the log4j properties set by the event collector.

2.2 Composite Service log structure

Definition 1 defines our CS log model converted from the
event collector described in the previous section to select
only the required information. A CSLog is composed of a set

3 http://alphaworks.ibm.com/tech/bpws4j.
4 http://logging.apache.org/log4j.

123

http://httpd.apache.org/docs/logs.html
http://www.w3.org/TR/WD-logfile.html
http://alphaworks.ibm.com/tech/bpws4j
http://logging.apache.org/log4j


96 SOCA (2008) 2:93–110

Definition 1 (CSLog)
An event reports a service terminated state and its related execution
time, and is defined as a tuple: Event= (serviceId, TimeStamp).
An EventStream represents the history of a CS instance events as a
tuple EventStream= (begin, end, sequenceLog, SOccurrence)
where:

�(begin:TimeStamp) and (end:TimeStamp) are the ins-
tance beginning and end time;

�sequenceLog: Event*; is an ordered Event set reporting ser-
vice executions;

�SOccurrence: int; is the instance ID.
ACSLog is a set ofEventStreams.CSLog=(ID, {EventStreami ,
0 ≤ i < number of CS instances}) where EventStreami is the event
stream of the i th CS instance.
Let T the set of services belonging to a CS. We note σ ∈ T ∗ a simpli-
fied EventStream format by omitting TimeStamp from Event as
Events are ordered according to their occurrence time.

of EventStreams. Each EventStream traces the execution
of one case (instance). It consists of a set of events (Event)
that captures services execution. WS logging functionalities
might collect external events that capture the service life
cycle (such as activated, aborted, failed, and terminated).
However, existing logging solutions can propose different
levels of granularity and collect only one part of the set of
event states. Moreover, the nomenclatures of these states are
generally different from one system to another. As a solu-
tion, we can choose to filter them or/and designate them as
a default state. In our case (i.e., we aim to only mine the
control flow), it is more practical to simply consider ordered
service atomic terminated state events, which omit execu-
tion times and other intermediate service states (simplified
EventStream).

Although the combination of activated and terminated
states can be very useful to detect concurrent behaviour impli-
citly from logs, our log structure reports only the event of
successful termination to simplify and to minimize the
constraints of log collecting. This “minimalist” feature
enables us to exploit “poor” logs which contain only informa-
tion concerning the successfully executed services sequence
without collecting for example services execution interme-
diate states or execution occurrence times.

2.3 Sufficient and minimal number of CS instances

To enable correctly the mining process, the CS logs must be
“complete” by respecting the log completeness conditions
[6]. These conditions are depicted as follows:

• Condition 1 if a service precedes another in the control
flow then there should be one instance log, at least, repor-
ting two respective related events keeping the same order.
Particularly, if the execution of one service depends
directly on the termination of another service, then the

Lemma 1 (Number of instances for a complete log) The sufficient num-
ber of different EventStreams to discover a CS’s control flow is com-
puted as follows:

1. The minimal number is equal to 1. For example, a CS containing
only one sequential services flow without concurrent or conditional
behaviour reports always the same sequence of services;

2. A conditional behaviour between n services before a “join” point
or after a “fork” point requires n−1 different additional EventS-
treams.

3. A concurrent behaviour between n control flows, each flow i;
0 < i < n + 1 contains nai ; nai ≤ nai+1 services, requires
(�i=1..n(nai + i − 1))− 1 = na1 ∗ (na2+ 1) ∗ (na3+ 2) ∗ (na4+
3) ∗ ..... ∗ (nan + n− 1)− 1 different additional EventStreams.

event related to the first service must directly (immedia-
tely, without intercalated events between them) follow at
least once the event related to the second service in an
instance log. For instance, in our motivating example the
execution of S8 directly depends on the termination of
S5. Thereafter, the related CS log in order to be complete
should contain an EventStream where S8 follows directly
S5 (as shown in instance 3 in Table 1).

• Condition 2 To discover the parallel behaviour of two
concurrent services with a lack of indication related to
the services’ begin and end execution time, we require
that the events of the two parallel services should appear
at least in two EventStreams without order of precedence.
Basically, two parallel services must directly follow each
other in two instances in different order to indicate that
each service can finish its execution before the other. For
instance, in our motivating example S2 and S4 are two
parallel services. Thereafter, the related CS log in order
to be complete should contain two EventStreams where
S4 follows S2 in the first one, and S2 follows S4 in the
second one (as shown in instances 4 and 5 in Table 1).

Based on these two conditions, we have specified “com-
plete” log features describing the properties required by our
control flow mining approach from logs. Concretely, we have
specified “minimalist” conditions on a log structure and “suf-
ficient” conditions on log quantity (i.e., number of logged ins-
tances) to be “complete”. We deducted, for a given CS, the
sufficient number of different instances logs for a “complete”
CS log (Lemma 1). This lemma indicates for each behaviour,
the necessary number of instance logs to enable our control
flow mining approach. This feature defines a “local specifi-
cation” on the sufficient number of instance logs for a “com-
plete” CS log. Accordingly, we do not require to collect all
possible instances logs to satisfy the log completeness condi-
tions. For example, for a CS containing n concurrent services
followed by m concurrent services, the number of possible
scenarios (number of instances logs) is equal to n! ∗m!. But,
by applying our lemma we need only n!+m! instances logs.

123



SOCA (2008) 2:93–110 97

Table 1 Six simplified EventStreams of our motivating example

Instance ID EventStream

Instance1 S1 S2 S3 S4 S5 S7 S9

Instance2 S1 S2 S3 S4 S5 S6 S9

Instance3 S1 S2 S3 S4 S5 S8 S9

Instance4 S1 S2 S4 S3 S5 S7 S9

Instance5 S1 S4 S2 S3 S5 S6 S7 S9

Instance6 S1 S4 S2 S3 S5 S7 S6 S9

Proof (Proof of Lemma 1):

1. If CS is a simple sequence of services {Si , 0 < i < n+1}
without concurrent or conditional behaviour then CS is
a combination of sequence patterns. Consequently, only
Condition 1 is concerned.
The EventStream “S1S2S3 . . . Sn” satisfies this point.

2. A conditional behaviour between n services {Si , 0 <

i < n + 1} and a service B exists after a “fork” point
(OR-split and XOR-split patterns) or before a “join” point
(OR-join and M-out-of-N patterns ). Consequently, only
Condition 1 is concerned. We are interested in the follo-
wing on “join” patterns, the proof for the “fork” patterns
can be done symmetrically.
The n EventStreams “...Si B....”; 0 < i < n + 1 satisfy
this point.

3. For the third point proof, firstly we are interested on
the concurrent behaviour between n control flows each
containing only one service. This behaviour is described
by a set of {Si , 0 < i < n + 1}. Consequently, only
Condition 2 is concerned.

The set of permutation of size n computed from {Si ,
0 < i < n + 1} is n! = �i=1...n(i) EventStream satisfies
this condition.

We suppose now that the control flow i contains more that
one service and { Sk, j , 0 < j < m + 1 } is the set of these
services, then it is enough to compute permutations of size n
from { Sk, j , Si ; 0 < i < k, k < i < n+ 1 } for each service
Sk, j creating �0<i<k,k<i<n+1(i)∗(k−1+m)EventStreams.
By extending this reasoning to the other control flows we find
the lemma’s formula (�i=1..n(nai+i−1))−1 = na1∗(na2+
1) ∗ (na3 + 2) ∗ (na4 + 3) ∗ · · · ∗ (nan + n − 1)− 1, where
each flow i ; 0 < i < n + 1 contains nai services. ��

Table 2 represents the execution of six instances of our run-
ning example. This table contains the sufficient information
which we assume to be present to correctly apply our control
flow mining approach. Indeed, our CS example contains a
conditional behaviour between three services (S6, S7, and
S8), which implies 3 EventStreams 1 + (3 − 1) = 3 by
applying the second point of our lemma and by adding the
necessary instance to satisfy the first point. In addition, the

Table 2 Initial statistical dependencies table (P(x/y)) and service
frequencies (#)

P(x/y) S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 0 0 0 0 0 0 0 0 0

S2 0.54 0 0 0.46 0 0 0 0 0

S3 0 0.69 0 0.31 0 0 0 0 0

S4 0.46 0.31 0.23 0 0 0 0 0 0

S5 0 0 0.77 0.23 0 0 0 0 0

S6 0 0 0 0 1 0 0 0 0

S7 0 0 0 0 1 0 0 0 0

S8 0 0 0 0 0 0 0 0 0

S9 0 0 0 0 0 0.38 0.62 0 0

#S1 = #S2 = #S3 = #S4 = #S5 = #S9 = 100,

#S6 = 38, #S7 = 62, #S8 = 0

two concurrent flows, containing, respectively, S2, S3, and
S4 imply (1 ∗ (2+ 1))− 1 = 2 additional EventStreams by
applying the third point of our lemma. Finally, the paral-
lel behaviour that can be observed between S6 and S7 if
the user decides to pay using credit card and cash implies
(1 ∗ (1 + 1)) − 1 = 1 additional EventStreams. The total
of sufficient EventStreams equals 3+ 2 + 1 = 6, shown in
Table 1.

In this table, the EventStreams 1 and 4 describe the case
where a user chooses to pay by cash. Although these dif-
ferentEventStreams (1 and 4) describe the same scenario, the
concurrent services execution scenario is not the same (i.e.,
services S2, S3 and S3 do not have the same order). These dif-
ferent EventStreams, (in the same way for the EventStreams
5 and 6) allow to describe the various possible choices of the
processing as well as the various possible combinations of
concurrent services’ execution in these choices.

3 Mining structural control flow patterns

The control flow (or skeleton) of a CS specifies the partial
ordering of component services activations. We use
(workflow-like) patterns to define a composite service ske-
leton. As defined in [7], a pattern is the abstraction from a
concrete form which keeps recurring in specific non-arbitrary
contexts”. A workflow pattern [8] can be seen as an abstract
description of a recurrent class of interactions based on (pri-
mitive) activation dependency. In the following, we describe
a bottom-up approach, as illustrated in Fig. 3, to discover
these patterns:

1. Discovering activation dependencies First, we specify
dependencies linking the component services during exe-
cution. These dependencies are of two kinds: causal and
non-causal. A causal dependency between two services
expresses that the occurrence of a service event involves

123



98 SOCA (2008) 2:93–110

Fig. 3 Hierarchical view of our
patterns mining approach

the activation of another service event. While a non-
causal dependency specifies any other services behaviou-
ral dependency (concurrent behaviour, for instance).

2. Computing statistical behavioral properties Second,
we compute the statistical behavioural properties from
log. These properties tailor the main behaviour features
of the discovered patterns. These properties are of three
types: “sequential”, “concurrent” and “choice”. The
“sequential” and “choice” properties inherit from cau-
sal dependency. The first expresses an exclusive causal
dependency between two services. While the second spe-
cifies a causal dependency between a service on the one
hand and one or many services belonging to a set of
services, on the other hand. The “concurrent” property
inherits from non-causal dependency and characterises
the concurrent behaviour of a set of services.

3. Discovering control flow patterns Finally, we use a
First of rules to discover a set of the most useful patterns.
These rules are expressed using the statistical properties
and could be expressed as a first order logic predicate,
for instance. In this work, we have chosen to discover
the most useful patterns: sequence, xor-split, and-split,
or-split, xor-join , and-join and M-out-of-N-Join. Howe-
ver, the adopted approach allows to enrich this set of pat-
terns by specifying new statistical dependencies and their
associated properties by using the existing properties in
new combinations.

It has to be noted that the only input of our mining approach
is a CS log. In the following, we suppose, after sufficient
execution cases, that the CS log collecting cannot report new
different cases, and the collected log should be complete for
the discovered CS. However, if this log is not complete for

the initially designed ad-hoc CS model we cannot faithfully
mine this model (see Sect. 4 for more details).

3.1 Discovering activation dependencies

The aim of this section is to explain our algorithm for dis-
covering activation dependencies among a CSLog and build
an intermediary model representing these dependencies: the
statistical dependency table (SDT).

3.1.1 Discovering direct dependencies

A direct dependency is an “immediate” dependency linking
two services in the sense that the termination of the first
causes directly the activation of the last. Thus, the event of ter-
mination of the first service is considered as the pre-condition
of the activation of the last and reciprocally the activation of
the last is considered as a post-condition of the termination
of the first service. In order to discover direct dependencies
from a CSLog, we need an intermediary representation of
this CSLog through a statistical analysis. We call this inter-
mediary representation: SDT, which is based on a notion of
frequency table [9].

Basically, SDT is built through statistical calculus that
extracts event direct dependencies. For each service S, we
extract from CSLog the following information in the statis-
tical dependency table (SDT): (a) The overall occurrence
number of this service (denoted #S) and (b) The elementary
dependencies to previous services Si (denoted P(S/Si )). The
size of SDT is n ∗ n, where n is the number of component
services. The (m,n) table entry is the frequency of the nth
service immediately preceding the mth service. Based on
this, Algorithm 1 computes the “initial” SDT (Table 2) of

123



SOCA (2008) 2:93–110 99

Algorithm 1 Computing initial SDT
1: procedure ComputingSDT(SDT, M SDT )
2: input: CSLog: CSLog
3: output: #: service occurrence table ; SDT : Statistical dependency

table;
4: Variable: streamsize: int; T DSsize: int;
5: #: int[]; depFreq: int[][]; � initialized to 0;
6:
7: for every stream: EventStream in CSLog do
8: streamsize ← stream.size(); � size returns the number of

services in a stream
9: for int i=1; i < streamsize; i++; do
10: #[stream.get(i)]++; � get returns the service whose index
11: depFreq[stream.get(i)][stream.get(i-1)]++;
12: is i
13: end for
14: end for
15: SDTsize = Size-tab(#); /*return the size of #*/
16: for int j=0; j < SDTsize; j++; do
17: for int k=0; k < SDTsize; k++; do
18: SDT [j, k]← depFreq[j][k]/ #[j];
19: end for
20: end for
21: end procedure

our motivating example given in Fig. 1. For instance, in this
table P(S3/S2) = 0.69 expresses that we have 69% of chance
that S2 occurs directly before S3 in the log. This table was
computed using 100 EventStreams captured after executing
100 instances (cases) of our motivating example.5

We demonstrated a correlation between the service acti-
vation dependencies and the log statistics expressed in SDT
(see Theorem 1). Each dependency between two services
is expressed by a positive value in the corresponding SDT
entry. This expresses a relation of equivalence between the
positive entries in SDT and the dependencies between the
related services.

Theorem 1 (Correlation between SDT and services dependencies) Let
w f t be a CS whose control flow is composed using the set of 7 descri-
bed patterns and does not contain short loops. ∀a, b ∈ w f t where a
precedes b⇔ P(b/a) > 0 ∧ P(a/b) = 0

Proof (Proof of Theorem 1): Proofing first right implication
“⇒”

Let L the CSLog capturing a and b execution. By applying
the log completeness conditions specified in section 2.3 we
can deduce that:

∃σ1 = t1t2t3 . . . tn−1 ∈ L ∧ ∃0 < i < n, |ti = a, ti+1 = b

And through SDT building definition and based on ins-
tance log, we can deduce that:

a ≺ b⇒ P(b/a) > 0

5 Table 1 is not used to compute this table.

Furthermore, supposing now (proof by contradiction) that
P(a/b) > 0 this implies:

∃σ1= t1t2t3 . . . tn−1∈ L∧∃0 < i < n, |ti = b, ti+1 = a

and as we have yet P(b/a) > 0 this implies:

∃σ1= t1t2t3 . . . tn−1∈ L∧∃0 < i < n, |ti =a, ti+1=b

However, this is meaningless because this case arises only
in a short6 loop or if we have concurrent services. Thus we
have:

a ≺ b⇒ P(b/a) > 0 ∧ P(a/b) = 0

Proofing second left implication “⇐” (proof by contradict-
ion)

We have P(b/a) > 0 ∧ P(a/b) = 0, thus based on the
SDT building definition we can deduce:

∃σ1 = t1t2t3 . . . tn−1 ∈ L ∧ ∃0 < i < n, |ti = a, ti+1 = b

∧�σ1 = t1t2t3 . . . tn−1 ∈ L ∧ ∃0 < i < n, |ti = a, ti+1=b

(1)

And as a and b belong to the set of the seven described pat-
terns, two sub cases happen if they are causally independent:

1. The two services a and b belong to two different separa-
ted patterns. This is meaningless based on instance log
(1) that shows that the two services happen one after the
other.

2. The two services a and b are in concurrence. This is
meaningless based on instance log (1) and the log com-
pleteness conditions.

Thus a precedes b. Indeed, the case b precedes a is trivially
meaningless by applying “⇒” way. In conclusion, we have:

a ≺ b⇐ P(b/a) > 0 ∧ P(a/b) = 0

��
But as it was calculated, SDT presents some problems

to express “correctly” and “completely” service dependen-
cies related to the concurrent and the conditional behaviour.
Indeed, these entries are not able to identify the conditional
behaviour and to report the concurrent behaviour pertinently.
In the following, we detail these problems and we propose
solutions to correct and complete these statistics.

3.1.2 Discarding erroneous dependencies

If we assume that each EventStream from CSLog comes
from a sequential (i.e., no concurrent behaviour) CS, a zero
entry in SDT represents a causal independence and symme-
trically a non-zero entry means a causal dependency rela-
tion (i.e., sequential or conditional relation). But, in case of

6 Contain one or two services.

123



100 SOCA (2008) 2:93–110

concurrent behaviour, as we can see in patterns (like and-
split, and-join, etc.), the EventStreams may contain
interleaved events sequences from concurrent threads. As
consequence, some entries in initial SDT can indicate non-
zero entries that do not correspond to causal dependencies.
For instance, the EventStream 4 in Table 1 “suggests” erro-
neous causal dependencies between S2 and S4 in one side,
and between S4 and S3 in another side. Indeed, S2 comes
immediately before S4 and S4 comes immediately before S3

in this EventStream. These erroneous entries are reported by
P(S4/S2) and P(S3/S4) in initial SDT which are different to
zero. These entries are erroneous because there are no causal
dependencies between these services as suggested (i.e., noisy
SDT). Underlined values in Table 2 report this behaviour for
other similar cases.

Algorithm 2 Marking concurrent services in SDT
1: procedure MarkingSDT(SDT, M SDT )
2: input: SDT Statistical dependencies table
3: output: M SDT Marked Statistical dependencies table
4: Variable: M SDTsize: int;
5:
6: M SDT ← SDT ;
7: M SDTsize ← Size-tab(M SDT ); � calculates MSDT size
8: for int i=0; i< M SDTsize; i++; do
9: for int j=0; j<i; j++; do
10: if SDT [i][j] > 0 ∧ SDT [j][i]>0 then
11: MSDT[i][j]← -1;
12: MSDT[j][i]← -1;
13: end if
14: end for
15: end for
16: end procedure

Formally, based on the log completeness conditions, we
can easily deduce that from a complete CS log that two ser-
vices A and B are in concurrence iff P(A/B) and P(B/A)

entries in SDT are non-zero entries in SDT. Based on this,
we propose an algorithm to discover services parallelism and
then mark the erroneous entries in SDT. Through this mar-
king, we can eliminate the confusion caused by the concur-
rent behaviour producing these erroneous non-zero entries.
The algorithm 2 scans the initial SDT and marks concurrent
services dependencies by changing their values to (−1). For
instance, we can deduce from Table 2 that S2 and S4 services
are in concurrence (i.e., P(S2/S4) �= 0 ∧ P(S4/S2) �= 0),
so after applying our algorithm P(S2/S4) and P(S4/S2) the

result will be equal to −1 in the final table. The algorithm’s
output is an intermediary table that we called marked SDT
(MSDT).

3.1.3 Discovering indirect dependencies

For concurrency reasons, a service might not depend on
its immediate predecessor in the EventStream, but it might
depend on another “indirectly” preceding services. As an
example of this behaviour, S4 is logged between S2 and S3 in
the EventStream 4 in the Table 1. As consequence, S2 does
not occur always immediately before S3 in the CS log. Thus,
we have only P(S3/S2) = 0.69 that is an underestimated
dependency frequency. In fact, the right value is 1 because
the execution of S3 depends exclusively on S2. Similarly,
values in bold in the initial SDT report this behaviour for
other cases.

Definition 2 (Concurrent window) Formally, a concurrent window
defines a triplet window(bWin, eWin, wLog, SerID) as a log slide over
anEventStreamS:EventStream (bStream, eStream, sLog, CSocc)
where:

• bStream ≤ bWin ∧ eWin ≤ eStream
• wLog⊂ sLog and ∀ e: event ∈ S.sLog where bWin≤ e.TimeStamp
≤ eWin⇒ e ∈ wLog.

We define the function width(window) which returns the number of
services in the window.

To discover these indirect dependencies, we introduce the
notion of concurrent window (Definition 2) that defines a set
of contiguous Event interval over anEventStream. A concur-
rent window (CW) is related to the service of its last event
(SerID) covering its causal preceding services. Using this
window, we will not only consider for a concurrent service the
immediate previous event but also the previous events cove-
red by the interval. For instance, in our motivating example
S3 and S4 are two parallel services. Due to this concurrent
behaviour, S2 does not occur always immediately before S3

in CS log because S4 can be logged between S2 and S3. There-
fore, the concurrent window of S3, as shown in Fig. 4, covers
S2 in addition to S4. Thus, S2 is considered as a preceding
service when SDT is computed.

Initially, the width of CW of a service is equal to 2. Each
time the service is in concurrence with another service we
add 1 to this width. If this service is not in concurrence with

Fig. 4 EventStream partition

123



SOCA (2008) 2:93–110 101

other services and has preceding concurrent services, then we
add their number to CW width. For example, when S3 is in
concurrence with S4 the width of its CW is equal to 3. Based
on this, the Algorithm 3 computes the concurrent window of
each service grouped in the CW table. This algorithm scans
the “marked” SDT calculated in the last section and updates
the CW table in consequence.

Algorithm 3 Calculating concurrent window size
1: procedure WindowWidth(M SDT, ACW T )
2: input: M SDT : Marked Statistical dependencies table
3: output: ACW T : CW size table
4: Variable: M SDTsize: int;
5:
6: M SDTsize ← Size-tab(M SDT ); � calculates MSDT size
7: for int i=0; i< M SDTsize; i++; do
8: ACWT[i]=2;
9: end for
10: for int i=0; i< M SDTsize; i++; do
11: for int j=0; j < M SDTsize; j++; do
12: if MSDT[i][j] =-1 then
13: ACWT[i]++;
14: ACWT[j]++;
15: end if
16: for int k=0; k< M SDTsize; k++; do
17: if MSDT[k][i] >0 then
18: ACWT[k]++;
19: end if
20: end for
21: end for
22: end for
23: end procedure

After that, we proceed through an EventStream partition
(Definition 3) that builds a set of partially overlapping win-
dows over the EventStreams using the CW table. Definition 3
specifies that each window shares the set of its elements with
the window which precedes it except the last event which
contains the reference service of the window.

Definition 3 (Partition) A Partition builds a set of partially overlap-
ping windows over an EventStream.
Partition: CSLog→ (Window)*
S: EventStream(bStream, eStream, sLog, CSocc)→ {wi :Window;
0≤i<n}:

• w1.bWin = bStream and wn .eWin = eStream,
• ∀w : window ∈ parti tion, e:Event= the last event in w,

width(w)= ACWT[e.ServiceID],
• ∀ 0≤i<n; wi+1.wLog - {the last event e:Event in wi+1.wLog} ⊂

wi .wLog ∧ wi+1.wLog �= wi .wLog.

In Figure 4 we have applied a partition over the Event-
Stream of the running example presented in the EventStream
4 in Table 1. For example, the size of the CW of S5 is equal to
3 because this service has two concurrent services S3 and S4

that precede it. We note that for each service in this Event-
Stream its CW enables it to cover only all its causal preceding
services.

Finally, Algorithm 4 computes the final SDT. For each
concurrent window, it computes for its reference (last) ser-
vice the frequencies of its preceding services. The final SDT
will be found by dividing each row entry by the frequency of
the row’s service.

Algorithm 4 Calculating final SDT
1: procedure FinalSDT(Wlog, #, M SDT )
2: input: Wlog: CSLog, #: Service Frequencies Table; M SDT : Mar-

ked Statistical Dependencies Table;
3: output: F SDT :Final Statistical Dependencies Table
4: Variable: Sre f erence: int; Spreceding : int; fWin: window; depFreq:

int[][]; freq: int;
5:
6: M SDTsize ← Size-tab(M SDT ); � returns MSDT size
7: for all win:window in partition(Wlog) do
8: Sre f erence = last-service(win); � returns the last service’s

event
9: fwin = preceding-events(win); � returns “win” without the

last event
10: for all e:event in fwin.wLog do
11: Spreceding= e.serviceId;
12: if MSDT[Sre f erence , Spreceding]>0 then
13: depFreq[Sre f erence , Spreceding]++;
14: end if
15: end for
16: end for
17: for int tre f =0; tre f < M SDTsize; tre f ++; do
18: for int tpr =0; tpr < M SDTsize; tpr ++ do
19: F SDT [tre f , tpr ]= depFreq[tre f , tpr ]/#tre f ;
20: end for
21: end for
22: end procedure

Now by applying these algorithms, we can compute the
final SDT (FSDT) which will be used in the next section
to discover the patterns (Table 3). Note that, our approach

Table 3 Final statistical dependencies table (FSDT)

P(x/y) S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 0 0 0 0 0 0 0 0

S2 1 0 0 −1 0 0 0 0 0

S3 0 1 0 −1 0 0 0 0 0

S4 1 −1 −1 0 0 0 0 0 0

S5 0 0 1 1 0 0 0 0 0

S6 0 0 0 0 1 0 0 0 0

S7 0 0 0 0 1 0 0 0 0

S8 0 0 0 0 0 0 0 0 0

S9 0 0 0 0 0 0.38 0.62 0 0

#S1 = #S2 = #S3 = #S4 = #S5 = #S9 = 100,

#S6 = 38, #S7 = 62, #S8 = 0

123



102 SOCA (2008) 2:93–110

adjust dynamically, through the width of CW, the process
of calculating the services’ dependencies. Indeed, this width
is meaningfull to concurrent behaviour: it increases in case of
concurrence and is “neutral” (equal to 2) in case absence of
concurrent behaviour. Thus, our algorithm adapts its beha-
viour to the “concurrent” context. This strategy allows the
improvement of the algorithm’s complexity and runtime exe-
cution comparing to an analog pattern’s discovery [10] which
uses an invariable concurrent window width. Indeed, the use
of an invariable width could apply a width superior to 2 for
nonconcurrent services or simply a non-optimal width and
then involve unnecessary computations increasing simply the
algorithm’s complexity.

3.2 Control flow statistical properties

We have identified three kinds of behaviour: sequential exclu-
sive, conditional, and concurrent, which specify the patterns
that we aim to discover. We have described these behavioural
features by statistical properties using SDT (see Fig. 3). We
use these properties to separately identify patterns from CS
logs. These properties bind a correlation link between log sta-
tistics represented in the SDT and patterns’ main behaviour
using a set of corollaries deduced from Theorem 1.

We begin with the statistical exclusive dependency pro-
perty (Corollary 1) which characterises a single sequential
flow. The behaviour of the mutual exclusive dependency bet-
ween two services specifies that the execution of one of the
two services depends only on the end of the execution of the
other, and the end of the execution of the first service starts
only the execution of the second.

Corollary 1 (P1: Mutually exclusive dependency property)
Let Si and S j be two services. Si and S j describe a mutually exclusive
dependency property (P1) from Si to S j iff in terms of:

• services frequencies: #Si = #S j
• services dependencies : P(Si /S j ) = 1 ∧ ∀(0 ≤ k, l < n; k �=

j; l �= i; P(Si /Sk) = 0 ∧ P(Sl/S j ) = 0).

The parallel behaviour (Corollary 2) inherits from a
non-causal relation. It specifies, in terms of concurrence, the
execution of a set of services. This set of services is located
after a “fork” or before a “join” operator. We distinguish three
types of parallel behaviour:

1. P2.1: Global concurrency where in the same instantia-
tion the services are performed simultaneously;

2. P2.2: Partial concurrency where in the same instan-
tiation we have at least a partial concurrent execution
between the services;

3. P2.3: No concurrency where there is no concurrency
between the services.

Corollary 2 (P2: Concurrency property)
Let {Si , 0 ≤ i < n} a set of services that describes a:

1. P2.1: Global concurrency property iff ∀i, j; 0 ≤ i < j < n;
#Si = #S j ∧ P(Si /S j ) = −1

2. P2.2: Partial concurrency property iff ∃i, j; 0 ≤ i < j < n;
P(Si /S j ) = −1

3. P2.3: No concurrency property iff ∀i, j; 0 ≤ i < j <

n; ∧P(Si /S j ) �= −1

Corollary 3 (P3: Choice property) Let A be a service and {Si , 0 ≤
i < n} a group of services forming the operands of a “fork” operator
or a “join” operator. A and {Si , 0 ≤ i < n} describe a:

• P3.1: Free choice property iff in terms of services frequencies we
have (#A ≤ �n−1

i=0 (#Si )) ∧ (#Si ≤ #A) and in terms of services
dependencies we have:

• In “fork” operator : ∀0 ≤ i < n; P(Si /A) = 1 (Si occurs
certainly after occurrence A)

• In “join” operator : 1 < �n−1
i=0 P(A/Si ) < n (A occurs cer-

tainly after some Si occurrences “1 <”, but not always after all
Si “< n”)

• P3.2: Single choice property iff in terms of services frequencies we
have (#A = �n−1

i=0 (#Si ))) and in terms of services dependencies we
have:

(a) In “fork” operator : ∀0 ≤ i < n; P(Si /A) = 1 (Si occurs
certainly after A occurrence)

(b) In “join” operator : �n−1
i=0 P(A/Si ) = 1 (A occurs certainly

after only one of Si occurrences)

• P3.3: No choice property iff in terms of services frequencies we
have ∀0 ≤ i < n, #A = #Si and in terms of services dependencies
we have:

• In “fork” operator : ∀0 ≤ i < n; P(Si /A) = 1 (Si occurs
certainly after A occurrence)

• In “join” operator : ∀0 ≤ i < n; P(A/Si ) = 1 (A occurs
certainly after all Si occurrences)

The conditional behaviour (Corollary 3) specifies how the
activation choice is carried out among a group of services
after a “fork” operator or before a “join” operator. It defines
a causal relation between a service and a group of services
forming the operands of the “fork” operator or the “join” ope-
rator. We distinguish three types of conditional behaviour:

• P3.1: Free choice where a part of the group of services
is executed according to the constraints and parameters
of each instantiation;

• P3.2: Single choice where only one service is executed.
The choice of this service depends on the constraints and
parameters on the executed instance;

• P3.3: No choice where all services are executed for each
instantiation.

3.3 Patterns discovering rules

Using the previous statistical properties, the last step is the
patterns discovery through a set of rules. Our approach

123



SOCA (2008) 2:93–110 103

Fig. 5 Patterns categories

provides a dynamic algorithm that builds iteratively a global
solution (i.e., global CS) based on local solutions (i.e., CS pat-
terns). Each pattern has its own statistical rules which abstract
statistically its causal and non-causal dependencies, and iden-
tifies it in an unique manner. Our control flow mining rules are
characterised by a “local” patterns discovery. Indeed, these
rules proceed through a local log analysis that allows to
recover partial results of mining patterns. To discover a
particular pattern we only need events relating to pattern’s
elements. Thus, even using only fractions of CS logs, we can
discover correctly corresponding patterns (with their events
belonging to these fractions).

We divided the CSs patterns in three categories (cf. Fig. 5) :
sequence, split and join patterns. In the following, we present
rules to discover the most useful patterns belonging to these
three categories.

3.3.1 Discovering sequence pattern

In this category, we only find the sequence pattern (Table 4).
In this pattern, the enactment of B depends only on the
completion of service A. By using the statistically exclu-
sive dependency property (Corollary 1) we can ensure this
relation linking B to A.

For instance, by applying the rules on this pattern over
Table 3, we discover a sequence pattern linking S2 and S3.

Indeed, (#S2 = #S3) and (P(S2/S3) = 1) and ∀S0≤i<n �=
S2; P(S3/Si ) ≤ 0 and ∀S0≤ j<n �= S2; P(S j/S3) ≤ 0.

3.3.2 Discovering split patterns

This category (Table 5) has a “fork” operator where a single
thread of control splits into multiple threads of control which
can be, according to the used pattern, either executed or not.
The dependency between services A and {Si ; 0 ≤ i ≤ n}
before and after “fork” operator differs in the three patterns of
this category: xor-split, and-split, and or-split. These depen-
dencies are characterised by the statistical choice properties
(Corollary 3). The xor-split pattern, where one of the flows
after the “fork” operator is chosen, adopts the single choice
property (P3.2). And-split and xor-split patterns differentiate
themselves through the no choice (P3.3) and free choice
(P3.1) properties. Ultimately, only a part of the services is
executed in an or-split pattern after “fork” operator, while
all Si are executed in and-split patterns. The non-parallelism
between Si , in xor-split patterns is ensured by the no concur-
rency property P2.3, while the partial and the global paral-
lelism in or-split and and-split patterns is identified through
the application of the statistical partial and global concur-
rency properties P2.1 and P2.2. For instance, Table 3 indi-
cates that we have an and-split pattern linking S1, S2 and
S4. In fact, there is a global parallelism between S2 and S4

((P(S4/S2) = −1 ∧ P(S2/S4) = −1)) and these services
depend exclusively on S1 ((P(S4/S1) = 1∧P(S2/S1) = 1)).

3.3.3 Discovering join patterns

This category (Table 5) has a “join” operator where multiple
threads of control merge in a single thread of control. The

Table 4 Rules of sequence
pattern Sequence Rules

(#B = #A) ∧
(P(B/A) = 1) ∧ ∀S0≤i<n �= A; P(B/Si ) ≤ 0 ∧ ∀S0≤ j<n �= B; P(S j /A) ≤ 0

Table 5 Rules of split and join
patterns Split Rules Join Rules

(�n−1
i=0 (#Si )=#A) ∧ (�n−1

i=0 (#Si )=#B) ∧
(xor) (∀0 ≤ i < n; P(Si /A) = 1) ∧ (xor) (�n−1

i=0 P(B/Si )=1) ∧
(∀0 ≤ i �= j < n; P(Si /S j ) = 0) ∀0 ≤ i �= j < n; P(Si /S j ) = 0

((∀0 ≤ i < n; #Si =#A) ∧ (∀0 ≤ i < n; #Si =#B) ∧
(and) (∀0 ≤ i < n; P(Si /A) = 1)∧ (and) (∀0 ≤ i < n; P(B/Si ) = 1)∧

(∀0 ≤ i �= j < n P(Si /S j ) = −1) (∀0 ≤ i �= j < n P(Si /S j ) = −1)

(#A ≤ �n−1
i=0 (#Si )) ∧ (m ∗ #B ≤ �n−1

i=0 (#Si ))

(or) (∀0 ≤ i < n; #Si ≤ #A) (M-out ∧ (∀0 ≤ i < n; #Si ≤ #B)

(∀0 ≤ i < n; P(Si /A) = 1)∧ -of-N) (m ≤ �n−1
i=0 P(B/Si ) ≤ n)

(∃0 ≤ i �= j < n; P(Si /S j ) = −1) ∧ (∃0 ≤ i �= j < n; P(Si /S j ) = −1)

123



104 SOCA (2008) 2:93–110

Table 6 Rewriting rules
defining a coherent pattern
composition grammar

{pi } remaining terminal set
Fsn = B ∨ C ∨D
J nt = E ∨ F ∨ G

RR1 sequence(a, b),{pi } −→ A(a, b),{pi }

RR2 and-split(a, b1, b2, ..., bn),{pi } −→ B (a, b1, b2, ..., bn),{pi }

RR3 or-split(a, b1, b2, ..., bn),{pi } −→ C (a, b1, b2, ..., bn),{pi }

RR4 xor-split(a, b1, b2, ..., bn),{pi } −→ D (a, b1, b2, ..., bn),{pi }

RR5 and-join(a1, a2, ..., an, b),{pi } −→ E (a1, a2, ..., an, b),{pi }

RR6 M-out-of-N(a1, a2, ..., an, b),{pi } −→ F {a1, a2, ..., an, b),{pi }

RR7 xor-join(a1, a2, ..., an, b),{pi } −→ G (a1, a2, ..., an, b),{pi }

RR8 A(a, b), A(b, c),{pi } −→ A(a, c),{pi }

RR9 A(x, a), Fsn(a, b1, b2, ..., bn), {pi } −→ Fsn(x, b1, b2, ..., bn),{pi }

RR10 Fsn(a, b1, ..., bn), A(bi , x), {pi } −→ Fsn(a0, b1, ..., bi−1, x, bi+1, ..., bn),{pi }

RR11 A(x, ai ), J nt (a1, ..., an, b), {pi } −→ J nt (a1, ..., ai−1, x, ai+1, ..., an, b),{pi }

RR12 J nt (a1, a2, ..., an, b), A(b, x), {pi } −→ J nt (a1, a2, ..., an, x){pi }

RR13 B (a, b1, b2, ..., bn), E (b1, b2, ..., bn, c), {pi } −→ A(a, c), {pi }

RR14 B (a, b1, b2, ..., bn), F (b1, b2, ..., bn, c), {pi } −→ A(a, c), {pi }

RR15 B (a, b1, b2, ..., bn), G (b1, b2, ..., bn, c), {pi } −→ A(a, c), {pi }

RR16 C (a, b1, b2, ..., bn), F (b1, b2, ..., bn, c), {pi } −→ A(a, c), {pi }

RR17 C (a, b1, b2, ..., bn), G (b1, b2, ..., bn, c), {pi } −→ A(a, c), {pi }

RR18 D (a, b1, b2, ..., bn), G (b1, b2, ..., bn, c), {pi } −→ A(a, c), {pi }

RR19 A(a, b), ε −→Work f low

number of necessary branches for the activation of service
B after the “join” operator depends on the used pattern. To
identify the three patterns of this category: xor-join, and-join
and M-out-of-N-Join, we have analysed dependencies bet-
ween Si and B before and after the “join” operator. Thus, the
single choice (P3.2) and the no concurrency (P2.3) proper-
ties are used to identify xor-join pattern where two or more
alternative branches come together without synchronisation
and none of the alternative branches is ever executed in paral-
lel. As for and-join pattern where multiple parallel services
converge into one single thread of control, the no choice
(P3.3) and the global concurrency (P2.3) are both used to
discover this pattern. Contrary to the M-out-of-N-Join pat-
tern, where we need only the termination of M services from
the incoming n parallel paths to enact B, the concurrency
between Si is partial (P2.2) and the choice is free (P3.1). For
instance, using a FSDT table we mine an xor-join pattern
linking S6, S7 and S9. In fact, FSDT’s entries of these ser-
vices indicate a non-concurrent behaviour between S6 and S7

(P(S6/S7)= P(S6/S7) �=−1) and the execution of S9 depe-
nds on the termination of S6 or S7 (P(S9/S6)+P(S9/S7)= 1).

3.4 Coherent composition of the discovered patterns

The construction of the CS complete graph is made by linking
one by one the discovered patterns. Indeed, in our approach
we define the control flow as a union of patterns. We use
rewriting rules (illustrated in Table 6) to bind the discovered
patterns (terminals). We consider a composite service as a
word that has patterns as terminals (laterals). These terminals

can be associative and commutative in the word constituting
the composite service when applying the rewriting rules.

Discovering a pattern-oriented model ensures a sound and
well-formed mined CS model. Therefore, by using this kind
of model, we are sure that the discovered CS model does
not contain any deadlocks or other flow anomalies. Indeed,
this set of rules allows to discover a coherent and well-
formed pattern-oriented CS model. Consequently, by using
these rewriting rules we are sure that the discovered pat-
terns do not contain any incoherent flow. In fact in order to
not have senseless unions (disjoined patterns) or incoherent
flows (deadlocks, liveness, etc.), the grammar of this rewri-
ting rules system defines a language of coherent unions that
reduces the discovered patterns to the final word Work f low.
Concretely, rules RR1 to RR7 rewrite the discovered in fede-
rated expressions that are reduced thereafter in rules RR8
to RR19 in the final word Work f low. Thus, a discovered
control flow is coherent iff the union of the corresponding
discovered patterns is a word generated by this grammar.
Concretely this grammar, which was specified for the set of
the seven studied patterns, postulates that:

• A control flow should start with one of these patterns:
sequence, and-split, or-split or xor-split (rewriting rules
RR8, RR13, RR14, RR15, RR16, RR17, RR18, RR19).

• All patterns can be followed or preceded by the sequence
pattern (rewriting rules RR8, RR9, RR10, RR11, RR12).

• An and-split pattern should be followed by one of these
patterns: and-join, M-out-of-N, xor-join or sequence
(rewriting rules RR10, RR13, RR14, RR15).

123



SOCA (2008) 2:93–110 105

Fig. 6 CS discovered example

• An or-split pattern should be followed by one of these pat-
terns M-out-of-N, xor-join or sequence (rewriting rules
RR10, RR16, RR17).

• An xor-split pattern should only be followed by an xor-
join pattern or a sequence pattern (rewriting rules RR10,
RR18).

By applying the discovering rules (Tables 4, 5) over the
final SDT (Table 3) we discovered the composite service
illustrated in Fig. 6. We built the control flow as a pattern
composition over this pattern word:

and-split(S1,S2,S4), sequence(S2, S3),and-join(S3,S4,S5),
xor-split(S5, S6, S7), xor-join(S6, S7, S9).

Concretely, by applying the rewriting rules (Table 6) to
this word, we can combine these discovered patterns, by bin-
ding them in a coherent structure to rebuild and analyze the
coherence of our discovered composite service:

and-split(S1,S2,S4), sequence(S2, S3),and-join(S3, S4,S5),
xor-split(S5, S6, S7), xor-join(S6, S7, S9).
−→R R1,R R2,R R3,R R4,R R5,R R6,R R7 B(S1,S2,S4), D(S5, S6,
S7), G(S6, S7, S9), A(S2, S3), E(S3,S4,S5)−→R R11 B(S1,S2,
S4), D(S5, S6, S7), G(S6, S7, S9), E(S2, S4, S5) −→R R18

B(S1, S2, S4), A(S5, S9), E(S2, S4, S5) −→R R13 A(S1,S5),
A(S5, S9) −→R R8 A(S1,S9) −→R R19 Work f low

4 Composite service validation and re-engineering

There are two important process validation questions [11] :
(1) “Does our model reflect what we actually do ?” and (2)
“Do we follow our model” ?. Within the context of a business
process re-engineering, we address question (2) to propose
a set of improvement and correction tools based on the CS
discovery results. We are interested, in particular, on the cor-
rection and the improvement of the CS’s control flow. The
goal is to provide an assistance tool to correct the CS design
by applying semantic (adding services, suppressing services,
and/or modifying pattern type) corrections. Our aim is to be
close to the business and conceptual choices of CS designers
and the evolution needs of CS users expressed during runtime
and reported by the CS discovery results.

We will use the process discovery for a delta analysis
(cf. Sect. 4.1), i.e., to compare the real operational process,
represented by the discovered CS, with the initially designed
CS model (for example, an ad-hoc composite web service
orchestration). By comparing the initial CS with the disco-
vered CS, the discrepancies between the two models can be

Fig. 7 Delta analyse for CS re-engineering

detected and used to improve, in particular, the control flow.
With this intention, we propose, thereafter, a set of actions
which allow to correct or to remove, if necessary, any erro-
neous or useless flow and optimize the process execution
(c.f., Sect. 4.2). By erroneous or useless behaviour, we mean
any initially designed flow which is not necessary or which
does not coincide with the execution reality expressing new
users’ needs or conceptual choice errors made in the initial
design phase.

4.1 Delta analysis

Concretely, we can use the CS discovery for Delta analy-
sis, i.e., compare the “real” operational process, represented
by the discovered CS, with the initially designed CS (for
example, an ad-hoc composite web service orchestration).
By comparing the initial CS with the discovered CS, we aim
to detect discrepancies between the two models. Indeed, at
run time users can deviate from the initially designed CS.
Delta Analysis (Fig. 7) between the initially designed and
the discovered CS allow to monitor these deviations.

Delta analysis uses comparison techniques to compare
between the two models. Although the comparison tech-
niques of process models do not constitute the core of our
work but rather a tool, we present, in the following, an over-
view of the existing solutions. Judging by the great number of
equivalence concepts [12] this task is far from being insignifi-
cant. Most of business process comparison approach propose
a node-mapping technique rather than behaviour-mapping
technique, i.e., the interest goes on the syntactic differences
rather than on the semantic differences.

However, from a theoretical point of view, there are at least
two approaches which also include a behavioural compari-
son. The first approach defined in [13,14] uses the “behaviour
legacy”. The second one is based on the process “changing
regions”. Based on the “behaviour legacy” concept, Van der
Aalst et al. developed the concept of the largest common
divider and the smaller common multiple of two processes
[14] as comparison tool. While the “changing regions”

123



106 SOCA (2008) 2:93–110

Fig. 8 Operators evolution

processing [15,16] is obtained by comparing the two
processe’s models and by extending the areas which were
changed directly by the parts of the processes which are also
affected by the change coming from the other process, i.e.,
the syntactically affected parts are extended with the seman-
tically affected parts to produce the “changing regions”.

4.2 Improving and correcting the control flow

Independently of the chosen comparison technique, a delta
analysis process aims to detect the discrepancies between
the discovered and the initial models. These discrepancies
express the possible process model deviations. The analysis
of these deviations is fundamental for a new re-engineering
phase. Indeed, deviations can be exploited: (option 1) to moti-
vate the process users to be closer to the initially designed
process if the discrepancies do not express a real evolution,
or (option 2) to correct and improve the process model to be
as close as possible to the “execution” reality. In fact, some of
these deviations become a current practice rather than to be a
rare exception. In the following, we propose a set of tools to
correct and improve the control flow according to option 2.

Thus, the discrepancies detected thanks to the delta ana-
lysis are used to improve, correct or remove, if necessary,
all “erroneous or useless designs”. By “erroneous or sense-
less designs”, we mean an initially designed flow which is
not necessary or that does not coincide with the reality of
execution and express evolution needs from errors made at
the initial design phase. In this case, the accuracy and the
reliability of the initially designed process are uncertain and
a re-engineering phase based on the discrepancies between
the two models is required.

The correction and improvement actions related to the
re-engineering phase depend on the discovered discrepan-
cies. These actions should respect designers’ and users’
business needs. We distinguish between two kinds of discre-
pancies related to the flows and operators nature which allow:

• to suppress erroneous flows containing useless services.
These useless services are not reported in logs and their

related rows and columns are empty in SDT. Thereaf-
ter, the discovered CS does not contain these services.
Keeping these services in the CS can not only be merely
expensive but also can be a source of errors. For instance,
by comparing the initial CS (Fig. 1) with the discovered
CS (Fig. 6), S8 does not exist any more in the discove-
red CS. This indicates that the payment by check is never
executed and can be removed from the initial CS model
because it does not represent a “used” payment choice
(or alternative). Indeed, the flow containing this service
is not necessary for an optimal CS processing and does
not coincide with the reality of execution and its mainte-
nance can cause a additional costs.

• to correct or improve the operators nature expressing rou-
ting decisions. Indeed, you can detect discrepancies bet-
ween the operator (xor, and, or) in the discovered and
initially designed CSs. These discrepancies can express
either a relaxation or a strengthener of the parameters
related to the routing decisions specifying the choice per-
formed over the set of services after the operator in split
patterns or before the operator in join patterns (see Fig. 8).
The routing decision relaxation (for instance, from and-
join to or-join) expresses that the executed services will
be wider after the operator in the split pattern and limited
before the operator in the join pattern than in the initially
designed CS model. This could be a result of relaxed deci-
sion constraints due to the needs of new users that require
to remove these constraints in a flexible and dynamic pro-
cess execution.
For instance, we discover a xor-split pattern linking S5, S6

and S7 (Fig. 6), instead of an or-split in the initially desi-
gned CS (Fig. 1). This discrepancy indicates that the users
do not combine the payment by cash and the payment by
credit card and use exclusively one of them. This restric-
tion of choice is induced by specific user’s evolution needs
expressed through the CS execution and captured by the
CS logs that we use to discover the “real” behaviour. The
transformation of the or-split pattern in the initially desi-
gned CS to the xor-split pattern yields a more efficient and
accurate CS that reflects the users’ behaviour and avoids
implementing unnecessary payment means (the combi-
nation of the payment by credit card and cash) that can
imply additional operational costs.

5 Implementation

Our approach, thought initially to discover process struc-
ture from their linear event streams, have been implemen-
ted within our prototype WorkflowMiner.7 Since the single

7 WorkflowMiner demonstration can be downloaded at http://
workflowminer.drivehq.com/workflowminer.avi.

123

http://workflowminer.drivehq.com/workflowminer.avi
http://workflowminer.drivehq.com/workflowminer.avi


SOCA (2008) 2:93–110 107

Fig. 9 WorkflowMiner applicative and technical Architecture

assumption of our approach is the availability of execution
logs containing minimalist information (processes identi-
fiers, process instances identifiers, services identifies, and
time stamp for service instance event termination), applica-
tion to web service re-engineering is only conditioned by the
collection of web service execution logs.

Figure 9 shows the general architecture of WorkflowMiner
upon four main components: (1) Event-based Log Collec-
tors/Adapters, (2) Events Analyser, (3) Pattern Analyser, and
(3) Performance Analyser. The WorkflowMiner techniques
inherit from first order logic predicate-based reasoning, mul-
tidimensional database-based business intelligence, and rich
visual reporting. The WorkflowMiner components are built
on a panel of libraries and packages which the authors have
either developed or integrated into WorkflowMiner. The Data
flow between WorkflowMiner components is described in the
Fig. 10. Starting from executions of composite web services,
(1) event streams are gathered into an XML log. In order to
be processed, (2) these log events are wrapped into a first
order logic format, compliant with Definition 1. (3) Mining
rules are applied on resulting first order log events to disco-
ver structural patterns. We use a Prolog-based presentation
for log events, and mining rules. (4) Discovered patterns are
given to a web service designer to assist him/her in the ana-
lysis of the web service to restructure or redesign them either
manually or semi-automatically.

Web service execution log collectors/adapters Once
intercepted and logged, web service interaction events (tex-
tual log lines, exchanged network messages), need to be adap-
ted to be homogeneous, and usable by WorkflowMiner. Event
adapters translate, in an Event-Transform-Load (ETL) style,
those non-structured Web service events into a Workflow-
Miner compliant XML structures, and then into first order
logic predicate form. WorkflowMiner event-based log col-
lectors/adapters are developed using java xml parser, ad-hoc

Fig. 10 WorkflowMiner Pipes and Filters Data Flow

adapters, andXProlog.8 WorkflowMiner inputs are now ready
to be processed within events, pattern, and performance ana-
lysers respecting the single assumption mentioned above.

Web service event analyser Through statistical techni-
ques developed in this paper, final statistical dependencies
are inferred iteratively over event-based log. Accordingly,
the WorkflowMiner events analyser discovers basic web ser-
vice interaction protocol is based on intercepted web ser-
vice interaction events. The WorkflowMiner events analyser
is developed using java xml parsers, and XProlog.

Web service patterns analyser First order logic predi-
cates rules are used to discover a set of the most useful
patterns which are divided into three categories: sequence
patterns, split patterns (xor-split, and-split, or-split patterns)
and join patterns (xor-join, and-join and M-out-of-N-Join
patterns). Each structural pattern is expressed using statisti-
cal properties over the FSDT. As such, the WorkflowMiner
pattern analyser discovers advanced web service interaction
protocol that refines the basic web service interaction proto-
col. This advanced web service interaction protocol can be
serialised to a linear execution language (e.g., BPEL, BPML,
etc.) replacing the ad-hoc composite web service orches-
tration. WorkflowMiner pattern analyser is developed using
XProlog, and JGraph.9

Web service performance analyser WorkflowMiner Per-
formance Analyser uses adapted event-based logs and the
discovered causal dependencies and structural patterns to
measure composite web service performance metrics (aka
key performance indicators, KPI). The theoretical, and expe-
rimental discussion of web service KPI is out of the scope of
this paper.

In addition to WorkflowMiner, our approach has been
implemented within the ProM framework [17], as a plug-in
[18]. ProM is a “plug-in” environment for process mining.
The ProM framework is flexible with respect to the input
and output formats, and is also open enough to allow for the
easy reuse of code during the implementation of new process
mining ideas. This plug-in [18] helps us to provide detai-
led comparison [19] of our approach to other implemented

8 http://www.iro.umontreal.ca/~vaucher/XProlog/.
9 http://www.jgraph.com/.

123

http://www.iro.umontreal.ca/~vaucher/XProlog/
http://www.jgraph.com/


108 SOCA (2008) 2:93–110

Table 7 Comparing process
mining tools Process mining tools EMiT Little thumb InWoLvE Process miner WorkflowMiner

[20] [21] [22] [23] [24]

Structure Graph Graph Graph Block Patterns
Local discovery No No No No Yes
Parallelism Yes Yes Yes Yes Yes
Non-free choice No No No No Yes
Basic loops Yes Yes Yes Yes Yes
Short loops Yes Yes No No No
Noise No Yes Yes No No
Time Yes No No No No

mining tools. Table 7 compares our WorkflowMiner proto-
type to workflow mining tools representing previous approaches.
Some of these approaches are also implemented in ProM.
There are others process mining tools (concerning for ins-
tance, Social network mining, workflow analysis frameworks),
but they are out of the scope of this paper. We focus on seven
aspects: structure of the target discovering language, local
discovery dealing with incomplete parts of logs (opposed
to global and complete log analysis), parallelism (a fork
path beginning with and-split and ending with and-join),
non-free choice (NFC processes mix synchronisation and
choice in one construct), loops (basics cyclic workflow tran-
sitions, or paths), short loops (mono- or bi- activity(ies)
loops), noise (situation where log is incomplete or contains
errors or non-representative exceptional instances), and time
(event time stamp information used to calculate performance
indicators such as waiting/synchronisation times, flow times,
load/utilisation rate, etc.).

WorkflowMiner can be distinguished by supporting local
discovery through a set of control flow mining rules that are
characterised by a “local” pattern discovery enabling partial
results. It recovers partial results from log fractions. Moreo-
ver, even if the non-free choice (NFC) construct is men-
tioned as an example of a pattern that is difficult to mine,
WorkflowMiner discovers M-out-of-N-Join pattern which
can be seen as a generalisation of the useful Discrimina-
tor pattern that was proven to be inherently non free-choice.
Recently [37,41] propose a complete solution that can deal
with such constructs. In previous process mining works, the
discovery of short loops and the handling of log noise are
generally done in a separate log pre-processing step. We
choose not to include it in this stage of our approach in order
to not reduce our algorithm efficiency. We currently research
within a more original method and use less heavy approach
to answer to these two points.

6 Discussion

Generally, previous formal approaches developed based on
their respective modelling formalisms, a set of techniques
to analyse the composition model and check its properties.

Bultan et al. [25] proposes a formal framework for modelling,
specifying and analysing the global behaviour of Web ser-
vices compositions. This approach models web services by
mealy machines (finite state machines with input an output).
Based on this formal framework, the authors illustrate the
unexpected nature of the interplay between local and glo-
bal composite Web services. Hamadi and Benatallah [26]
propose a Petri net-based algebra for composing Web ser-
vices. This formal model allows the verification of properties
and the detection of inconsistencies both between and within
services. Although powerful, the above formal approaches
may fail, in some cases, to ensure anoptimum CS model
even if they formally validate their composition models. This
is because properties specified in the studied composition
models may not coincide with the reality (i.e., effective CSs
executions).

To the best of our knowledge, there are practically no
approaches to web service composition’s correction based
on event-based logs. Prior art in this field is limited to esti-
mating deadline expirations and exceptions prediction. Refe-
rences [27,28] describe a tool set on top of HPs Process
Manager including a “BPI Process Mining Engine” to sup-
port business and IT users in managing process execution
quality by providing several features, such as analysis, pre-
diction, monitoring, control, and optimization. van der Aalst
et al. [29] check and quantify how much the actual beha-
viour of a service, as recorded in message logs, conforms to
the expected behaviour as specified in a process model. Our
approach differs from the above: using our pattern of mining
approach, we discover and prevent web service interactions
anomalies. We start from CS logs and analyse them in order
to re-engineer the CS model.

Obvious applications of process mining exist in model-
driven business process software engineering, both for
bottom-up approaches used in business process alignment
[30,31], and for top-down approaches used in workflow gene-
ration [32]. A number of research efforts in the area of work-
flow management have been directed for mining workflows
models. This issue is close to what we propose in terms of dis-
covery. The idea of applying process mining in the context
of process management was first introduced in [33]. This
work proposes methods for automatically deriving a formal

123



SOCA (2008) 2:93–110 109

model of a process from a log of events related to its exe-
cutions and is based on workflow graphs. Cook and Wolf
[34] investigated similar issues in the context of software
engineering processes. They extended their work initially
limited to sequential processes, to concurrent processes in
[35]. van der Aalst et al. [36] present an exhaustive survey
of preceding process mining research works. Both areas of
Process Mining and Business Process Reengineering are acti-
vely researched and considered a “hot” area in current busi-
ness process management research activities. Process Mining
covers different perspectives: the control flow perspective
relates to the “How?” question, the organizational perspec-
tive to the “Who?” question, and the case perspective to the
“What?” question. New issues in control flow perspective has
been recently addressed by [37] that propose genetic algo-
rithms to tackle log noise problem or non-trivial constructs
using a global search technique. Bergenthum et al. [38] uses
region based synthesis methods and compares their efficiency
and usefulness. While the organizational perspective,
Ref. [39] discovers information related to the social network
in a process. And in the case perspective, Ref. [40] deals with
the performance characteristics and business rules based on
the case-related information about a Process.

Our mining approach discovers more complex features
with a better specification of the “fork” operator (and-split,
or-split, xor-split patterns) and the “join” operator (and-join,
M-out-of-N-Join, and M-out-of-N-Join patterns). We pro-
vided rules to discover the seven most used patterns. But
the adopted approach allows to enrich this set of patterns by
specifying new statistical dependencies and their associated
properties or by using the existing properties in new combi-
nations. Further, our approach deals better with concurrency
through the introduction of the “concurrent window” that
proceeds dynamically with concurrence. Indeed, the size of
the “concurrent window” is not static or fixed, but variable
from one service to another according to their concurrent
behaviour without increasing the computing complexity. It is
trivial to establish that the algorithms describing our approach
are of polynomial-complexity not exceeding the quadratic
order O(n2). Indeed, the algorithms which we described do
not contain recursive calls, and contain no more than two
overlapping loops whose length is equal to the number of
Events within an Eventstream.

Our current work is about discovering complex patterns
by using more metrics (e.g., entropy, periodicity, etc.) and
by enriching the CS log. We are also interested in discove-
ring more complex transactional characteristics of coopera-
tive Composite service [42,43]. In [44], we proposed a set
of mining techniques to discover CS transactional flow in
order to improve CS recovery mechanisms. Our work in [3]
uses web services logs to enable the verification of behaviou-
ral properties in web service composition. The main focus
has not been on discovery, but on verification. This means

that given an event log and a formal property, we check
whether the observed behaviour matches the (un)expected/
(un)desirable behaviour. Recently, we have specified in [45] a
combined approach that describes a formal framework, based
on Event Calculus to check the transactional behaviour of
CS before and after execution. Our approach provides a logi-
cal foundation to ensure transactional behaviour consistency
at design time and reports recovery mechanisms deviations
after runtime.

References

1. Gombotz R, Baïna K, Dustdar S (2005) Towards web services
interaction mining architecture for e-commerce applications ana-
lysis. In: International conference on e-business and e-learning
(EBEL’05), Amman, Jordan

2. Fauvet MC, Dumas M, Benatallah B (2002) Collecting and
querying distributed traces of composite service executions.
In: On the move to meaningful Internet systems, 2002—
DOA/CoopIS/ODBASE 2002 Confederated international confe-
rences DOA, CoopIS and ODBASE 2002, Springer, Heidelberg,
pp 373–390

3. Rouached M, Gaaloul W, van der Aalst WMP, Bhiri S, Godart
C (2006) Web service mining and verification of properties: an
approach based on event calculus. In: Meersman R, Tari Z (eds)
OTM conferences (1). Lecture Notes in Computer Science, vol
4275. Springer, Heidelberg, pp 408–425

4. Punin J, Krishnamoorthy M, Zaki M (2001) Web usage mining:
Languages and algorithms. In: Studies in classification, data ana-
lysis, and knowledge organization. Springer, Heidelberg

5. Baglioni M, Ferrara U, Romei A, Ruggieri S, Turini F (2002) Use
soap-based intermediaries to build chains of web service functio-
nality

6. van der Aalst WMP, Weijters T, Maruster L (2004) Workflow
mining: discovering process models from event logs. IEEE Trans
Knowl Data Eng 16(9):1128–1142

7. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns,
elements of reusable object-oriented software. Addison-Wesley,
MA

8. vander Aalst WMP, Ter Hofstede AHM, Kiepuszewski B, Barros
AP (2003) Workflow patterns. Distrib Parallel Datab 14(1):5–51

9. Cook JE, Wolf AL (1998) Event-based detection of concurrency.
In: sixth ACM SIGSOFT international symposium on foundations
of software engineering. ACM Press, New York

10. Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent
episodes in event sequences. Data Min Knowl Discov 1(3):259–
289

11. Cook JE, Wolf AL (1999) Software process validation: quantitati-
vely measuring the correspondence of a process to a model. ACM
Trans Softw Eng Methodol (TOSEM) 8(2):147–176

12. v Glabbeek RJ, Weijland WP (1996) Branching time and abstrac-
tion in bisimulation semantics. J ACM 43(3):555–600

13. Basten T, van der Aalst WMP (2001) Inheritance of behavior.
J Log Algebr Program 47(2):47–145

14. van der Aalst WMP, Basten T (2001) Identifying commonalities
and differences in object life cycles using behavioral inheritance.
In: ICATPN ’01 Proceedings of the 22nd international conference
on application and theory of petri nets. Springer, London, pp 32–52

15. van der Aalst WMP (2001) Exterminating the dynamic change
bug: a concrete approach to support workflow change. Info Syst
Front 3(3):297–317

123



110 SOCA (2008) 2:93–110

16. Ellis CA, Keddara K, Rozenberg G (1995) Dynamic change within
workflow systems. In: COOCS, pp 10–21

17. van der Aalst WMP, van Dongen BF, Günther CW, Mans RS,
de Medeiros AKA, Rozinat A, Rubin V, Song M, Verbeek HMWE,
Weijters AJMM (2007) Prom 4.0: Comprehensive support for eal
process analysis. In: Kleijn J, Yakovlev A (eds) ICATPN. Lec-
ture Notes in Computer Science, vol 4546. Springer, Heidelberg,
pp 484–494

18. Gaaloul W, Godart C (2006) A workflow mining tool based on logs
statistical analysis. In: Zhang K, Spanoudakis G, Visaggio G (eds)
SEKE, pp 595–600

19. Baïna K, Gaaloul W, Khattabi RE, Mouhou A (2006) Workflow-
miner: a new workflow patterns and performance analysis tool.
In: 18th international conference on advanced information sys-
tems engineering (CAiSE’06) forum, Luxembourg, Grand-Duchy
of Luxembourg

20. van der Aalst WMP, van Dongen BF (2002) Discovering workflow
performance models from timed logs. In: First international confe-
rence on engineering and deployment of cooperative information
systems. Springer, Heidelberg, pp 45–63

21. Weijters AJMM, van der Aalst WMP (2002) Workflow mining: dis-
covering workflow models from event-based data. In: ECAI work-
shop on knowledge discovery and spatial Data, pp 78–84

22. Herbst J, Karagiannis D (2004) Workflow mining with inwolve.
Comput Ind 53(3):245–264

23. Schimm G (2002) Process miner—a tool for mining process
schemes from event-based Data. In: European conference on logics
in AI. Springer, Heidelberg, pp 525–528

24. Gaaloul W, Baïna K, Godart C (2005) Towards mining structural
workflow patterns. In: Andersen KV, Debenham JK, Wagner R
(eds) DEXA. LNCS, vol 3588. Springer, Heidelberg, pp 24–33

25. Bultan T, Fu X, Hull R, Su J (2003) Conversation specification:
a new approach to design and analysis of e-service composition.
In: Proceedings of the twelfth international conference on World
Wide Web. ACM Press, NewYork, pp 403–410

26. Hamadi R, Benatallah B (2003) A petri net-based model for web
service composition. In: Proceedings of the Fourteenth Australa-
sian database conference on database technologies 2003. Austra-
lian Computer Society, Inc., pp 191–200

27. Sayal M, Casati F, Shan M, Dayal U (2002) Business process cock-
pit. In: Proceedings of 28th international conference on very large
data Bases (VLDB’02), pp 880–883

28. Grigori D, Casati F, Castellanos M, Dayal U, Sayal M, Shan
MC (2004) Business process intelligence. Comput Ind 53(3):
321–343

29. van der Aalst W, Dumas M, Ouyang C, Rozinat A, Verbeek H
(2007) Conformance checking of service behavior. ACM Trans
Internet Technol (TOIT). Special issue on Middleware for Service-
Oriented Computing

30. van der Aalst WMP (2004) Business alignment: Using process
mining as a tool for delta analysis. In: CAiSE Workshops, vol 2,
pp 138–145

31. Benatallah B, Casati F, Toumani F (2004) Analysis and manage-
ment of web service protocols. In: ER, pp 524–541

32. Baïna K, Benatallah B, Casati F, Toumani F (2004) Model-driven
web service development. In: CAiSE, pp 290–306

33. Agrawal R, Gunopulos D, Leymann F (1998) Mining process
models from workflow logs. Lect Notes Comput Sci 1377:
469–498

34. Cook JE, Wolf AL (1998) Discovering models of software pro-
cesses from event-based data. ACM Trans Softw Eng Methodol
(TOSEM) 7(3):215–249

35. Cook JE, Wolf AL (1998) Event-based detection of concurrency.
In: Proceedings of the 6th ACM SIGSOFT international sym-
posium on foundations of software engineering, ACM Press,
NewYork, pp 35–45

36. van der Aalst WMP, Dongen BF , van Herbst J, Maruster L,
Schimm G, Weijters AJMM (2003) Workflow mining: a survey of
issues and approaches. Data Knowl Eng 47(2):237–267

37. de Medeiros AKA, Weijters AJMM, van der Aalst WMP (2007)
Genetic process mining: an experimental evaluation. Data Min
Knowl Discov 14(2):245–304

38. Bergenthum R, Desel J, Lorenz R, Mauser S (2007) Process mining
based on regions of languages. In: Alonso G, Dadam P, Rose-
mann M (eds) BPM. Lecture Notes in Computer Science, vol 4714.
Springer, Heidelberg, pp 375–383

39. van der Aalst WMP, Reijers HA, Song M (2005) Discovering
social networks from event logs. Comput Support Coop Work
14(6):549–593

40. van der Aalst WMP, de Beer HT, van Dongen BF (2005) Process
mining and verification of properties: An approach based on tempo-
ral logic. In: Meersman R, Tari Z, Hacid MS, Mylopoulos J, Pernici
B, Babaoglu Ö, Jacobsen HA, Loyall JP, Kifer M, Spaccapietra S
(eds) OTM conferences (1). Lecture Notes in Computer Science,
vol 3760. Springer, Heidelberg, pp 130–147

41. Wen L, van der Aalst WMP, Wang J, Sun J (2007) Mining process
models with non-free-choice constructs. Data Min Knowl Discov
15(2):145–180

42. Gaaloul W, Bhiri S, Godart C (2004) Discovering workflow tran-
sactional behaviour event-based log. In: 12th International confe-
rence on cooperative information systems (CoopIS’04). LNCS,
Larnaca, Cyprus. Springer, Heidelberg

43. Gaaloul W, Godart C (2005) Mining workflow recovery from event
based logs. In: Bus process manage 3649:169–185

44. Bhiri S, Gaaloul W, Godart C (2006) Discovering and improving
recovery mechanisms of compositeweb services. In: ICWS. IEEE
Computer Society, NewYork, pp 99–110

45. Gaaloul W, Hauswirth M, Rouached M, Godart C (2007) Verifying
composite service recovery mechanisms: a transactional approach
based on event calculus. In: 15th International conference on
cooperative information systems CoopIS07

123


	Log-based mining techniques applied to Web service composition reengineering
	Abstract
	1 Introduction
	2 Composite service log
	2.1 Collecting Web service logs
	2.2 Composite Service log structure
	2.3 Sufficient and minimal number of CS instances

	3 Mining structural control flow patterns
	3.1 Discovering activation dependencies
	3.2 Control flow statistical properties
	3.3 Patterns discovering rules
	3.4 Coherent composition of the discovered patterns

	4 Composite service validation and re-engineering
	4.1 Delta analysis
	4.2 Improving and correcting the control flow

	5 Implementation
	6 Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


