
SOCA (2007) 1:19–33
DOI 10.1007/s11761-007-0006-z

ORIGINAL PAPER

Dynamic replication and synchronization of web services
for high availability in mobile ad-hoc networks

Schahram Dustdar · Lukasz Juszczyk

Received: 20 October 2006 / Revised: 22 December 2006 / Accepted: 10 January 2007 / Published online: 13 March 2007
© Springer-Verlag London Limited 2007

Abstract Web services are gaining high popularity
and importance on mobile devices. Connected to ad-hoc
networks, they provide the possibility to establish spon-
taneously even complex service-based workflows and
architectures. However, usually these architectures are
only as stable and reliable as the underlying network
infrastructure. Since topologies of mobile ad-hoc net-
works behave unpredictably, dependability within them
can be only achieved with a dynamic replication mech-
anism. In this paper we present a highly flexible solu-
tion for replication and synchronization of stateful Web
services and discuss the behavior of the implemented
prototype in large-scale simulations.

Keywords Web Services · Replication ·
Synchronization · Fault-Tolerance · Peer-to-Peer ·
Mobile Ad-Hoc Networks

1 Introduction

Web services, as standardized and extensible software
systems for machine-to-machine interaction, open up
many new possibilities to perform automated workflows
based on loosely coupled services. This flexibility and
the high interoperability, due to the use of open stan-
dards, had a great impact on the rising popularity of Web

S. Dustdar (B) · L. Juszczyk
Distributed Systems Group, Vita Lab,
Institute of Information Systems,
Vienna University of Technology,
Argentinierstrasse 8/184-1, 1040 Vienna, Austria
e-mail: dustdarl@infosys.tuwien.ac.at

L. Juszczyk
e-mail: ljuszczyk@infosys.tuwien.ac.at

services on mobile devices [1–7], especially in collabo-
rative working environments [8–11]. The area of appli-
cation ranges from services enabling access to personal
data such as cryptographic keys, payment methods, iden-
tifications, etc. to services providing desired functional-
ity for a whole group of clients, such as registries, data
transcoders, proxy services, etc. While the first group
of services is often strictly bound to the user’s device,
services of the second group need to be constantly avail-
able. In ad-hoc networks, fulfilling this basic require-
ment is hampered, since the behavior of each node is
unpredictable, which results in a highly dynamic topol-
ogy. Nodes are able to relocate in the network, can dis-
appear due to shutdowns or unstable connections, just to
mention some common characteristics. To apply reliable
Service Oriented Architectures (SOAs) in such environ-
ments, it is necessary to replicate individual Web services
and to ensure their synchrony, including those of state-
ful Web services. Such a solution has to be able to deal
with transient nodes and changing network structures, to
place replicas dynamically, and to allow their convenient
invocation for the clients.

In [12] we presented a system for dynamic discov-
ery and replication of Web services in ad-hoc networks,
for utilizing the publish–find–bind paradigm of SOAs
even in typically unreliable network environments. The
contribution of the current paper is concerned with the
evolution of the replication mechanism and the results
of a case study, simulating the system’s behavior in large-
scale ad-hoc environments, in order to find optimal
trade-offs for an effective replication.

The structure of this paper is as follows. Section 2
starts with discussing the concept and the architecture of
the proposed solution. Section 3 presents the case study
and the results of the simulations. Section 4 contains a

20 SOCA (2007) 1:19–33

short overview of related work and Sect. 5 finally con-
cludes and contains ideas for future work.

2 Dynamic replication of web services in ad-hoc
networks

Replication has been used for a long time to achieve
dependability. High-Availability Clusters, Redundant
Arrays of Independent Disks (RAIDs), replicated data-
bases, and the root servers of the Domain Name System
(DNS) are probably the best known examples for using
redundancy in order to ensure fault tolerance. Further-
more, solutions for the replication of Web services have
already been developed, e.g., [13,14]. These solutions
frequently have the drawbacks that they use replicas at
static and predefined locations, are based on centralized
request dispatchers or controllers, or use other tech-
niques which are suited solely to managed infrastructure
networks, in which they operate.

However, taking the requirements and restrictions of
mobile ad-hoc networks into consideration, a completely
new approach has to be applied. Ad-hoc networks are
established spontaneously via wireless network links
and without the need of any preexisting physical infra-
structure. All communication is routed via nodes within
the wireless range, which are, in turn, responsible for
forwarding the packets until they reach the final des-
tination node. Therefore, the availability of individual
nodes as well as the coherence of the whole network
is vulnerable to the movements of all participants in
the network. This poses a challenge to any replication
mechanism. Firstly, the replicas have to be placed in
a dynamic manner, which avoids predefined and static
locations, hence, the replicator is able to react dynami-
cally to changes in the network. Secondly, the detection
of changes in the availability of individual nodes and
their services is important. Since disconnections might
happen due to crashes or because the node moved too
far away from the wireless range, one cannot rely on the
nodes to report their unavailability via event notifica-
tions. Therefore, it is necessary to perform active moni-
toring in intervals. The third important requirement lies
in the peer-to-peer characteristics of mobile ad-hoc net-
works, which strictly require a completely decentralized
solution. Furthermore, mobile devices have the disad-
vantage of consuming battery power. To reduce its con-
sumption, it is necessary to keep the produced network
traffic as low as possible.

These limitations disqualify the currently available
solutions for replication and call for a new approach
which (a) is flexible enough to handle the highly dynamic
network structures, (b) is completely decentralized,

since ad-hoc network are not suited to static and
centralized resources, (c) monitors the availability of
Web services, (d) takes performance properties into con-
sideration while placing replicas, and (e) produces as
little network traffic as needed.

In [12] we introduced a system consisting of a com-
bination of dynamic Web service discovery based on
distributed UDDI [15] registries, and of a Web service
replicator mechanism for ad-hoc networks, which was
work in early progress at that time. Since then, the
replicator evolved towards being more scalable, flexible,
and bandwidth-saving, and, therefore, better suited for
mobile ad-hoc networks. The following sections discuss
the concept of our approach, with Sect. 3 presenting
the results of an intense testing in a simulated ad-hoc
network with up to 140 nodes.

2.1 Concept and architecture

Replication of stateful Web services can be achieved
in (a) an active manner, also known as state machine
[16], (b) in a semi-active one, or (c) in a passive man-
ner, also called primary copy [17]. The state machine is
based on the idea of sending invocations to all replicas
and waiting for all responses. Combined with methods
for suppressing nested invocations [18] and for ensuring
that all replicas receive their requests in the same order,
this technique guarantees automatically synchrony of
states. However, it assumes that all operations produce
deterministic output and state transitions, excluding, for
instance, functions which use random data. This limita-
tion can be overcome by declaring explicitly all inde-
terministic functions and by directing their invocations
to only one service, which is in turn responsible for for-
warding possible changes of the internal state to all other
replicas. This approach is called semi-active and is a
composition of the ideas of the state machine and the
primary copy approach. In primary copy all invocations
are sent to only one destination. This primary service
updates automatically all backups and stays the master
of all replicas until a failure occurs, in which case a new
one has to be selected.

Comparing these techniques considering the dynamic
destination environment, it becomes obvious that the
active and semi-active approaches are unsuitable. By
virtue of the possibility of ad-hoc networks to split and
merge, this would require a expensive synchronization
before the invocations, in order to have all replicas per-
forming their calculations based on the same internal
state. Furthermore, it is essential to keep network traffic
as low as possible, which disqualifies an approach where
SOAP-based invocations are sent to all replicas. There-
fore, we chose primary copy for our replicator system,

SOCA (2007) 1:19–33 21

Fig. 1 Modularized architecture of the replicator system

with one service instance handling all requests and syn-
chronizing all backup instances via the Simple Replicator
Protocol (SRP) which saves bandwidth.

To clearly structure the complex task of replication
and to make it maintainable and flexible, the web ser-
vice replicator was designed as a collection of individual
modules (see Fig. 1), cooperating via the lightweight
Internal Database which stores all relevant data. These
modules have a small memory footprint and are part
of every instance of the Web service replicator, which
means that all nodes are theoretically able to execute all
particular tasks, such as monitoring or managing repli-
cas. The result is a true peer-to-peer community of nodes
where elections decide about distributing the necessary
tasks, preferably on the most powerful nodes, while the
remaining ones stay idle.

– Replication is handled by the modules Replicator
Web Service, Monitor, and Replica Placement Mech-
anism.

– Synchronization is done separately within the Syn-
chronizer module and extensions to the replicable
and stateful Web services.

– All web services, viz. the Replicator Web Service and
the individual replicas, are deployed at a combina-
tion of the Jetty Servlet Container [19] and Apache
Axis [20].

– The Simple Replicator Protocol Server is handling
all communication which is done via the lightweight
SRP protocol.

Furthermore, instead of using hardcoded techniques for
finding nodes in the network, a plug-in interface is

provided for allowing the system to operate within all
kinds of TCP-based computer networks, not only mobile
ones. For instance, one might want to provide reliable
web services in a wide area network (WAN), belong-
ing to some community, which is distributed over the
world and where hosts are known to be shut down at
times. Each node joining a network must know at least
one of the already connected nodes or must wait until
it gets discovered itself (active vs. passive connecting).
After that, the system puts automatically the rest of the
integration to the peer-to-peer network into effect.

2.2 Concept of replication

All calculations of the replication mechanism are based
on a global view. This means that nodes are informed
about all other nodes in the network which have the
replicator system installed, their properties, and their
hosted services. Although, compared to gossip-based
approaches, this hampers scalability, a global view is
unavoidable to keep the replicas of a particular service
in a synchronized state.

The simplified replication mechanism works as fol-
lows: the Monitor checks periodically for changes in
the network and sends after each cycle a notification
to the other modules about having finished its task.
The newly monitored state is then analyzed by the Rep-
lica Placement Mechanism which evaluates whether the
controlled replicas are in an inconsistent state which
needs to be corrected. This procedure consists of first
electing leaders for the replicas of each web service,
and eventually controlling the ones for which the local
host was elected as the leader. The following sections

22 SOCA (2007) 1:19–33

Fig. 2 Deployment states of web service replicas

provide a more in-depth insight into the functionality of
the individual modules.

2.2.1 Internal database

The database is kept entirely in memory and acts as
a medium between all modules of the system, by stor-
ing information about hosts and services, their avail-
ability, performance properties and requirements, and
information about current leaders and monitors in the
network. Every module can retrieve and update the
records in order to perform its calculations and to store
the results. To keep the database scalable, all records are
fully indexed and queries are performed via a set-based
language, which is able to process most of the necessary
queries in O(1) or O(log n).

2.2.2 Replicator web service

The Replicator Web Service is a special case of a mod-
ule, which works completely in passive mode and is
invoked only by remote hosts. Its task is to provide the
facility to hot-deploy web services and, furthermore, to
manipulate their states remotely. As Fig. 2 illustrates,
these states can be either deployed, hibernated, or not
installed at all. The idea of hibernating web services
which are no longer needed, is to disable them instead
of deleting them completely. In case when too few repli-
cas exist and new ones have to be deployed, hibernated
ones can be woken up quickly without resending the
whole archive. This way the replication mechanism can
react faster to changes in the network, reducing network
traffic at the same time.

The realization of this module as a web service allows
to communicate with a destination which is operating in
the same Java environment as the replicas. This is nec-
essary for evaluating whether all necessary resources of
a replicable web service (e.g., Jar-files, classes) already
exist or need to be installed before the deployment.

Fig. 3 Distributed monitoring

2.2.3 Monitor

The Monitor is the system’s source for getting informa-
tion about changes in the network and, therefore, has a
significant influence on the response time of the whole
replication mechanism. All hosts and services have to
be checked periodically for evaluating whether their
states have changed, whether they are still available,
and what properties they have. For better scalability,
this procedure is performed in a distributed and incre-
mental manner (see simplified scenario in Fig. 3). By
performing the algorithm in Listing 1 the most powerful
nodes are elected as monitors, which are responsible for
partitioning the nodes by their unique IDs into groups,
detecting changes within their groups, and forwarding
them to the other monitors. Furthermore, the monitors
exchange addresses of known nodes in order to merge
possible subnetworks and to guarantee the coherence of
the whole environment. This technique is referred to as
active monitoring (Listing 2). In contrast, all other nodes
in the network perform passive monitoring (Listing 3),
which means that they select one of the active monitors
and retrieve periodically the actualized state from it.

The nodes of the network usually notice changed
states within one or two monitoring cycles.

1. The monitor of the changed node’s group detects it
within one cycle and forwards it immediately to the
other monitors.

2. All other nodes, which perform passive monitoring,
retrieve it from the active monitors during the next
cycle.

All communication necessary for monitoring is done
via the Simple Replicator Protocol, which was designed
to keep exchanged messages as short as possible by
serializing all data into a compact format, in order to
save network bandwidth. Furthermore, network traffic
is reduced even more by exchanging data in an incre-
mental manner, which means that only changes which
took place after the last request are transferred.

SOCA (2007) 1:19–33 23

Listing 1 “Election of active monitors (Pseudocode)”
monitoring () {
// bootstrap: address(es) of host(s) were retrieved by host -finder ,
// but no data about their properties or services were retrieved yet
// -> retrieve complete view from random host

passive_monitoring(random host)
// main loop

loop in intervals {
sort all hosts by performance properties

// election: number of monitors depends on size of network
monitors = list of fastest hosts

// is localhost one of the fastest hosts => monitor ?
if (monitors contain localhost) {

active_monitoring(monitors)
} else {

// fetch a monitor , try to use it again in the next cycle
// retrieve the view of the network from it

if (mon from last loop not available) {
mon = random monitor
}
passive_monitoring(mon)
}

send event notification to leader elector
}

}

Listing 2 “Active monitoring (Pseudocode)”
// expects the list of all monitors of the network as argument
active_monitoring(monitors) {

pos = position of localhost within sorted monitors
num = number of monitors

// current group of hosts which must be checked
mygroup = all hosts where (host.id%num == pos)

// do the actual monitoring
start concurrent threads for all hosts in mygroup {
check host and properties
check services and requirements
}
wait until threads finish

// exchange data with other monitors
start concurrent threads for all hosts in monitors {

// send only changes since last exchange to save bandwidth
send changed state of mygroup to host

// all monitors must see the same nodes in the network
send list of new node addresses to host
}

}

2.2.4 Replica placement mechanism

After the changed state of the network was monitored,
the Replica Placement Mechanism comes into play. Its
task is mainly to follow the declared requirements of
the Web services (e.g., min/max number of replicas, sys-
tem performance) in order to have them placed at the
best suited locations, balancing the load on the nodes
this way. Moreover, it is responsible for moving replicas
away from nodes which are constantly under heavy load

or have only little time left to live, due to low batteries.
This task is split into the Leader Elector module and the
actual placement logic.

The Leader Elector has to check whether the local
host is expected to manage the replication of a particu-
lar Web service (Listing 4). This decision is done solely
by querying the database for the properties of the other
replicas in the network, analyzing their preferences and
accepting the resulting leader, which can, of course, be
the local host. The advantage of this method is that all

24 SOCA (2007) 1:19–33

Listing 3 “Passive monitoring (Pseudocode)”
// retrieves the current view of the network from monitor
passive_monitoring(monitor) {

if (monitor was used in the last loop) {
// save bandwidth

retrieve incremental data
} else {

// get the whole view of the network
retrieve all data
}

// inform monitor of newly connected nodes
send list of new node addresses to monitor

}

calculations are based on the information in the local
database, without the need of contacting other nodes,
which would slow down the overall process.

A feature of this algorithm is the ability to correct
quickly the inconsistency of multiple concurrent leaders
of the same group of replicas. Multiple leaders can occur
in situations where a group of replicas was split due to
movements of routers in the ad-hoc network, the newly
independent groups elected their leaders, and were later
merged again.

After the election, the placement logic is notified to
manage the replicas controlled by the local host. We
do allow the application of custom logics as plug-ins,
which must use the provided API for transferring ser-
vices between nodes. The API postpones all received
commands to after the next monitoring cycle, in order
to check then whether the local host is still controlling
this replica. If the control was lost in the meanwhile, e.g.,
because another node won the election, the command
will be discarded, otherwise, it will be executed. This
way possible collisions between multiple leaders can be
solved in most cases.

By default, or if an invalid plug-in is used, a prede-
fined logic is applied (Listing 5). Its main task is to con-
trol whether the desired number of replicas is deployed
and to correct this in case of an inconsistency. Further-
more, it checks whether some of the replicas have to
be moved to better suited locations by comparing the
performance properties of hosts and the requirements
of services. The case study in Sect. 3 was performed with
this default replication logic.

2.3 Concept of synchronization

Since most of the Web services, which are deployed on
mobile devices, are stateful, it is important to ensure
synchrony between all replicas. Unfortunately, this is not
always possible. Ad-hoc networks can split into multiple
subnetworks and merge again after a time. In these sub-

networks the internal states of the replicas can get totally
out-of-sync with the ones in the other nets, so that resyn-
chronization after a merging becomes impossible. Imag-
ine a Web service with a similar functionality to DHCP,
where clients request unique addresses from a limited
pool, e.g., for identification within some virtual network
structure. If replicas of this service get split, each group
only knows the addresses it has offered to the clients
before, but it does not have any information about the
other groups anymore. This can result in addresses being
assigned to more than one client, which poses a con-
flict in case the groups merge again. This limitation for
stateful and replicated services in ad-hoc networks is a
fact which has to be accepted. Therefore, Web services
which need perfect consistency of states are not appli-
cable within them. However, for the rest of the services,
we provide a facility to synchronize their states quickly.

To make use of this functionality, each stateful Web
service (see sample service in Listing 6) must extend a
class, which provides the necessary functionality to per-
form synchronization but also registers the service auto-
matically at the Synchronizer module. This registration
also implies that the Web service grants full read-write
access to its so called State Objects, which encapsulate
all data (e.g., variables, objects) relevant for the internal
state. Now the service is able to command the module
to synchronize its state with the other replicas. Usually
this is done after an invocation which changed the state.
As a consequence the Synchronizer checks which State
Objects have changed, contacts the remote Synchroniz-
ers running on the replicas, serializes the changes, and
updates the remote states. To keep this communication
fast and lightweight, it is realized again via the Simple
Replicator Protocol. Listing 7 contains a short sample of
a SRP communication.

– Lines 1–5: A list of state objects of service “syncTest”
is retrieved. It contains two objects, named “price”
and “book_title“, including their serial stamps which

SOCA (2007) 1:19–33 25

Listing 4 “Election of leader for replication (Pseudocode)”
// run after monitor has finished
loop for each deployed web service {
// list all replicas , including the local one

replicas = list of its replicas in the network
if (only one replica exists) {

// only one means only on localhost
localhost is leader
} else {

// more than one requires election
leaders = declared leaders of all replicas

// the most popular one will be accepted
sort leaders by popularity/frequency

// do more than 2 leaders share the first place ?
if (more than one most popular leader exists) {

// try to put leaders on monitors to be earlier
// informed about state changes

sort hosts by bandwidth and monitoring status
accept the fastest one

} else {
accept the most popular leader

}
}

}
send event notification to replication logic

are incremented after each synchronization, and the
hash sums for comparing equality.

– Lines 6–9: Object “book_title” is retrieved in a seri-
alized form. The first field holds the length of the
serialized string. The rest of the item consists of the
object’s name, its serial stamp, the Java class name
and the Base64-encoded value of the variable.

– Lines 10–12: A new value is assigned to object
“price”.

Possible state collisions, which might happen after two
desynchronized groups of replicas merge again, can be
resolved by either fusing the states or by simply declar-
ing one state as dominant and withdrawing the others.
Although the first variant seems to be preferable it is
only possible for a subset of stateful Web services, e.g.,
for registries which can be rejoined. For these services
we provide a possibility to plug-in a module which is
able to merge multiple states into a single consistent one.
However, for most Web services merging states is either
not possible or at least too expensive. In such situations
the Synchronizer automatically determines the domi-
nant state, which is the one that was accessed most often,
and replaces all conflicting ones. Although this method
has the drawback of revoking a state which was used for
servicing past requests, it is in many cases unavoidable
to reinstall consistency between all replicas.

As mentioned in Sect. 2.1, the concept of our solution
is based on the primary copy approach. This means that

of all replicas, one is selected as the master and all invo-
cations are directed to it. This selection is already done
in the Leader Elector module, which elects a leader node
for controlling all replicas of a particular service.

2.4 Concept of invocation

To have the replicator system running on the nodes of
a mobile ad-hoc network raises the question how this
all affects the clients which want to invoke a certain
Web service. How does a client find the proper primary
copy? What happens when the primary copy fails and
a new one is not elected until this failure is detected?
How shall a situation where, due to the merging of two
subnetworks, two primary copies exist, be handled? In
order to disburden the client developers from solving all
these difficulties we provide a simple Java tool named
WSDL-finder. The task of this utility is to find the proper
Web service instance in the network, to track the move-
ments of the replicas, and finally to return a WSDL file
pointing to the primary copy. The sequence diagram in
Fig. 4 illustrates these steps.

1. At first, an instance of the desired Web service must
be found and passed to the WSDL-finder. Discov-
ery of Web services in dynamic and transient net-
works can be achieved with methods as presented
in [12,21]. However, this is not a task of the tool and
must be done by the client.

26 SOCA (2007) 1:19–33

Listing 5 “Simple Replication Logic (Pseudocode)”
// run after leader elector has finished
loop for each controlled web service {
// which hosts are better suited to this service?

sort hosts regarding service preferences
// need more running replicas ?

if (number of replicas too low) {
if (services are somewhere hibernated) {

wake up on fastest hosts
} else {

send new replicas to fastest hosts
}
synchronize new replicas
}

// too many replicas? -> delete ...
if (number of replicas way to high) {
delete surplus replicas on slowest hosts
}

// ... and hibernate
if (number of replicas slightly to high) {
hibernate replicas on slowest hosts
}

// avoid hosts with only little time left , e.g., due to low batteries
if (replicas exists on transient hosts) {
move services to other/fastest hosts
synchronize new replicas
}

}

2. Then, the tool retrieves the correct location of the
primary copy instance and returns a WSDL file
pointing to it. This consists of:
(a) contacting the host of the discovered service

and retrieving the locations of all replicas.
Moreover, the WSDL-finder requests the loca-
tion of the primary copy from each replica and
accepts the most popular one, in order to cor-
rect temporary inconsistencies. Furthermore,
the locations of all replicas are cached and
updated during each run. This way it is possible
to follow the movements of a replicated Web
service without querying the registries contin-
uously.

(b) contacting the primary copy and retrieving the
automatically generated WSDL file from the
Apache Axis SOAP Container [20].

3. The client can now pass this WSDL file as an argu-
ment to the Apache Web Service Invocation Frame-
work [22] and invoke the proper Web service rep-
lica.

The WSDL-finder must be used before every invoca-
tion of a replicated Web service in order to be aware of
a changing location of the primary copy. Since most of
the communication is done via the fast and light-weight
Simple Replicator Protocol, the additional traffic and
delay is kept very low.

Temporary inconsistencies, such as an unavailable
primary copy or multiple concurrent ones, are handled
automatically. Since the election of a new primary copy
after a failure of the old one is usually only a matter of
a few seconds (depending on the monitoring intervals),
the utility simply waits and polls one of the cached repli-
cas periodically to retrieve the new location. In contrast
to this, multiple concurrent replicas, which may occur
after a merging of subnetworks, do not pose a problem
for invocation. In fact, it is just a continuation of the sce-
nario with split networks, where separated replicas of
the same service are invoked. Possible state conflicts are
resolved by the synchronization mechanism later any-
way, when the leaders of the separated replicas have to
be merged.

3 Case study

The replicator system is based on the idea of having
nodes, which know about the other nodes in the net-
work and their services, are able to determine whether
they are expected to perform some tasks (e.g., monitor-
ing, controlling particular replicas), and also know which
other nodes are currently performing which tasks. In
short, it is based on a global view. This knowledge about
the state of the distributed replicator system is retrieved
periodically from the monitoring nodes. These, however,

SOCA (2007) 1:19–33 27

Listing 6 “Sample Web service with a synchronized String object”
public class SampleService extends SynchronizedService {

// synchronized state object
private static FieldSetterStateObject synchronizedString;
// variable holding the actual state value
private static String stringObject=‘‘ello world’’;

public SampleService () throws Exception {
// SynchronizedService () registers at synchronizer module
super ();
}

// called during registration at synchronizer module
@Override
protected void initializeStateObjects () throws Exception {
// create the state object pointing to the string

synchronizedString=new FieldSetterStateObject(
SampleService.class.getField(‘‘stringObject ’’));

// grant read/write access to the synchronizer
registerStateObject(synchronizedString);

}

// Web service operation
public String getString () {

return stringObject;
}

// Web service operation
public void setString(String str) {

stringObject=str;
try {
// propagate updated state to all replicas
synchronizeStateObjects ();
} catch (Exception e) {

// handle or ignore failed synchronization
}

}

// ...
}

Listing 7 “Simple Replicator Protocol - Sample commands for manipulating state objects”
1 > LISTSTATE syncTest
2 < 100 OK
3 < price 2 123
4 < book_title 4 96354
5 < .
6 > GETITEMS syncTest book_title
7 < 100 OK
8 < <51| book_title |4| java.lang.String|V2ViU2VydmljZXM=>
9 < .

10 > ASSIGNITEMS syncTest <35|price |4| java.lang.Integer|OTk=>
11 < 100 OK
12 < .

are in turn elected by using the last monitored state.
Moreover, changed states (e.g., failures of nodes, new
available nodes, changed properties) may imply further
changes, such as relocations or elections of new moni-
tors and controllers, which have to be propagated again.
Therefore the replicator system works in a recursive

manner and was designed to correct possible inconsis-
tencies by swinging into a consistent state again, usually
not later than after two or three monitoring cycles.

The purpose of the case study was to analyze this
behavior, to evaluate how the system behaves in net-
works consisting of up to 140 nodes, and how fast it reacts

28 SOCA (2007) 1:19–33

Fig. 4 Invocation of
replicated Web services by
using the WSDL-finder

to changes in the network. Furthermore, the simulations
were used to determine proper configuration values,
such as monitoring intervals, which have an immense
impact on the systems performance and response time.

During this case study we concentrated only on
the replication mechanism and did not include any
simulations for testing the performance of service state
synchronization. The reason for this is that the synchro-
nization is completely controlled by the individual Web
services, which are free to decide when and how their
states have to be synchronized, and are expected to do
it wisely regarding the capabilities of the environment
they are operating in. Especially the size of their State
Objects, the number of deployed replicas, and the fre-
quency of invocation have a significant influence on the
load of the network. However, these values are neither
part of the configuration of the replicator system nor
should be restricted by it.

3.1 Simulation of transient networks

The case study was performed on two blade servers
which each have four Intel Xeon 3.2 GHz CPUs, 2 GB
of RAM, and Linux as the operating system. The Web
service replicator uses only a marginal amount of CPU
power, however, each instance comes with an own Jetty
and Apache Axis server and has to run in a separate Java
Virtual Machine (JVM). As a result, the memory usage
of each replicator instance is approximately 27–29 MB
(including 11 MB of shared memory). This consumption

can be reduced to a few MB by using a JVM for PDAs,
which has a much smaller memory footprint, and by
replacing Apache Axis with a more light-weight Web
service container or SOAP API, such as kSOAP [23].

For the evaluation we started 140 instances of the re-
plicator system in a simulated mobile ad-hoc network
with transient node availability, limited the bandwidth
of the network links (using Traffic Control [24]) to
WLAN-typical 11 MBit, and extended the replicators
with a possibility to disable them, in order to simulate
failures. The actual simulation was controlled by a utility
which disabled single nodes in a random but balanced
manner, and enabled them again after a defined period
of time. The balancing was applied in order to keep
statistical variations of the results low in spite of the
randomized testing, by paying attention to adjusting the
downtimes of the nodes. Furthermore, randomized per-
formance properties were assigned to all nodes during
the bootstrapping process.

Due to an extended and detailed logging, we were
able to trace the behavior and bandwidth usage of the
system by analyzing the log files.

3.2 Evaluation

Two of the main requirements to the replicator system
are: (a) to react as quickly as possible to changes in the
network and (b) to consume as little network traffic as
possible. However, faster response times can only be
achieved as a consequence of a more frequent moni-

SOCA (2007) 1:19–33 29

Fig. 5 Traffic of networks with various sizes of monitor groups

toring, which, in turn, produces more traffic. Therefore,
it was necessary to find the best trade-offs, in order to
satisfy the need for a quick reaction of the replica place-
ment mechanism without consuming too much band-
width. These trade-offs were determined by collecting
and analyzing the following statistics:

– Network traffic of passive/active monitoring in stat-
ic/dynamic networks with various numbers of moni-
tors

– Network traffic of passive/active monitoring in stat-
ic/dynamic networks of various sizes

– Network traffic, depending on the monitoring inter-
val

– Amount of time necessary to detect changes in the
network, depending on the monitoring interval

– Amount of time necessary to elected a new leader
after a failure, depending on the monitoring interval

– Amount of time necessary to deploy a new replica
after a failure, depending on the monitoring interval

Since mobile ad-hoc networks vary in size, bandwidth,
dynamic behavior, and the performance of the nodes, it
is impossible to find an optimal general configuration for
all environments. Furthermore, the number of deployed
Web services, the size of their replicas, and preferences
for replication have also a strong influence on the perfor-
mance. However, it makes sense to analyze the system’s
general behavior in a case study and to find trade-offs

which will perform well in most environments. This way,
we determined a default configuration for the replicator
system.

3.2.1 Network traffic and scalability

For finding a configuration which keeps network traffic
low, it was necessary to take a close look at the system’s
behavior in static and dynamic environments, in net-
works of different sizes, and, first of all, to analyze the
produced traffic depending on the size of the monitoring
groups.

As explained in Sect. 2.2.3, the monitoring works in
a distributed manner, which partitions the network into
groups, each checked by a single active monitor. These
monitors exchange the state information about their
groups among themselves. Although a higher number
of monitors reduces automatically the load, caused by
checking the group, on each one of them, it also increases
the exchanged amount of data:

amount_exchanged_data= amount_all_data∗(num_monitors−1)

num_monitors

The purpose of the first simulations (see Fig. 5) was
to evaluate a proper number of monitors, viz. a proper
size of their groups, in order to find a balance between
the individual load on each monitor and the total traffic
of the network. For this reason, we tested the replicator
in a static environment, where all nodes were already

30 SOCA (2007) 1:19–33

Fig. 6 Traffic of nodes in networks of various sizes

in a consistent state, and in a highly dynamic network,
where every 5 s 10% of the nodes were deactivated and
reactivated again after 15 s. The size of the network was
140 nodes, the monitoring interval was set to 2.5 s, and
the simulations were performed for group sizes of 12,
16, 20, 24, 28, 35, 50 and 80 nodes per monitor.

As Figs. 5(a) and (b) demonstrates, the total traf-
fic of the network grew with the number of monitors.
Especially in the static environment, where incremental
monitoring reduced the traffic significantly, the commu-
nication overhead of too many monitors became obvi-
ous. On the other hand, if too few monitors were elected,
their groups were too large, which resulted in a high
individual load on each of them (see Figs. 5(c) and (d)).
Scenarios like this call for a compromise. Following the
average traffic of the monitors, one can observe that
their load was not decreased relevantly any more if
the groups became smaller than 24 nodes. Moreover,
the total traffic in the network was growing significantly
then. Therefore we regarded a group size of 24 nodes
per monitor as a reasonable compromise for the systems
default configuration and used it during the rest of the
simulations.

As the replicator system is based on a global view, its
scalability is obviously limited, since a changed state has
to be propagated to all nodes. However, comparing this
disadvantage with the benefits a global view is providing
for synchronization, and taking also into consideration
that mobile ad-hoc networks do usually consist (at most)
of a few hundred nodes, the facts militate in favor of a
global view approach. Particularly, because of the lim-
ited scalability, it was necessary to find out how the sys-
tem performs in networks of different sizes, regarding
its produced traffic.

Our test environments consisted of 20, 40, 60, 80, 100,
120, and 140 nodes, the monitoring interval was again
2.5 s, and as a result of the first set of simulations we used
a monitoring group size of 24 nodes. Again we examined
the traffic in static networks and in dynamic ones, where
every 5 s for 10% of the network’s nodes a disconnection
was simulated.

Figure 6(a) presents the average traffic per node in
the static networks. Although everything was in a con-
sistent state and only small amounts of data had to be
propagated due to incremental monitoring, the traffic
was slightly increased with the growing size of the net-
work. This mainly took place due to the fact that a larger
number of nodes automatically implied a larger number
of monitors, which were exchanging data. In contrast,
the average traffic per node in the dynamic networks
(see Fig. 6(b)) was growing proportionally, due to the
changes which had to be propagated to all nodes. As
a consequence of these testings, it is safe to say that
in both environments, the static and the dynamic one,
the per-node traffic was growing linearly with the size
of the network, which of course resulted in a quadrati-
cally growing total traffic. However, in general, the gra-
dient of the curves is mainly impacted by the level of
dynamics in the network. The less changes occur, the
more gently inclined the curves are. This leads to the
conclusion that the global view approach is, in spite
of its scalability limitations, capable of being applied
in mobile ad-hoc networks which are on the one hand
unpredictable, however, on the other hand, are usually
much less dynamic than the test environments of our
case study.

3.2.2 Response time

The last simulations of the case study served the purpose
of determining a good trade-off between the need of a
low network traffic and the need of a quick response
time. Obviously, this poses a conflict, since both require-
ments are contradictory to each other. For this reason
we tested the replicator system in identical environ-
ments, but with different monitoring intervals (2.0–6.0 s)
in order to compare the curves of average response times
and traffic per node.

The response time was almost solely impacted by the
monitoring interval (see Fig. 7(a)) and, therefore, was

SOCA (2007) 1:19–33 31

Fig. 7 Traffic and response times depending on the monitoring interval

growing proportionally with it. As anticipated, the time
until a node detected a change in the network (e.g., fail-
ure, new leader) averaged the monitoring interval, since
it usually takes two cycles (as explained in Sect. 2.2.3)
and each cycle has an expectation of half the interval.

The election of a new leader took slightly longer, since
leaders are preferably placed on the monitoring nodes
by the election algorithm. This has the advantage that
they are informed faster about changes in the network
(one cycle instead of two), and thus are also able to
react faster. However, if a node which is a monitor and a
leader at the same time fails, all nodes which were using
it for retrieving the state (passive monitoring) have to
select a new monitor and to retrieve the state afresh,
which causes a delay.

The last part of the simulation dealt with the nec-
essary time to deploy a new replica after an old one
failed. Since the performance of this task usually also
depends on the size of the Web service archive, we kept
it small (3 kB) in order to determine the actual response
time of the system and to avoid delays caused by trans-
ferring large archives. Figure 7(a) demonstrates that on
average this task took twice the time as for detecting
a simple change, viz. one interval to detect the change
and one to react. Although the decision how to react
is done immediately, this delay is happening since the

command is postponed to the next cycle, as explained in
Sect. 2.2.4.

In a nutshell, all these simulations made clear that
the response time grows proportionally with the moni-
toring interval. In contrast, the produced network traf-
fic is not increased proportionally with a smaller inter-
val, as the results in Fig. 7(b) show. This convenient
behavior is the consequence of the incremental moni-
toring, where changes have to be propagated only once
and subsequent requests receive an empty response.
Hence, although choosing a smaller monitoring inter-
val, in order to be able to react faster to changes in
the network, does not affect the produced traffic sig-
nificantly, it does affect the CPU load. Especially for
the monitoring nodes, which have to service requests
of groups of approximately 24 nodes and which may
have only limited resources (e.g., older PDAs) and other
software running concurrently, this might be a criterion
for avoiding very short intervals. However, today it is
highly probable that a mobile ad-hoc network consists
of at least a few nodes which are more powerful (e.g.,
notebooks, newer PDAs), and which will be then pref-
erably elected as monitors. Therefore, we do not see
the necessity of using longer intervals, sacrificing quick
response times this way, and regard an interval of 2.0 s
as favorable.

32 SOCA (2007) 1:19–33

3.2.3 Results

The result of this case study is mainly that we gained
insight in to the system’s behavior in various simulated
ad-hoc networks of different parameters. Moreover, we
determined a default configuration which represents a
good trade-off for most of the mobile ad-hoc networks.
These values can be tweaked if the system is going to be
applied in untypical environments or if a more optimal
configuration, suited perfectly to the destination envi-
ronment, has to be used.

4 Related work

Birman et al. [25] present several useful extensions to
Web services for self-diagnosis and self-repairing, which,
however, are not suited to ad-hoc networks. They distin-
guish between monitoring of single components, on the
one hand, and aggregated properties of the system, on
the other. The second method is able to detect failures
noticed only by a group of clients. Moreover, they intro-
duce event notification for informing other components
about missing availability, giving them them opportunity
to roll over to backup resources.

Dekel et al. [26] present with “Easy” a system which
addresses performance-aware high availability by using
replication. Although this solution deals neither with
Web services nor with replication in dynamic networks,
it provides a quite detailed list of service aspects which
have to be taken into account while replicating.

With “WS-Replication” [13] Salas et al. propose an
infrastructure for WAN replication of Web services. It
uses group communication based on SOAP-multicast
and provides a transparent replication and fail-over.
Although this infrastructure also is able to deploy Web
services on remote sites, the concept is not suited for
mobile ad-hoc networks because of its bandwidth-
consuming SOAP-multicast and the lack of a dynamic
replica placement.

Fault tolerant SOAP (FT-SOAP) [27], developed by
Liang et al., provides a primary copy-based replication
of Web services, which uses an extension to WSDL,
pointing to a group of replicas. Since this group is static,
this approach is unusable for our problem.

Ye and Shen [14] introduce a middleware that sup-
ports reliable Web services built on active replication.
Their system is based on proxies which multicast
requests to the replicas and return the results to the
clients. Furthermore it contains a suppression of dupli-
cate messages. Again this system is not applicable in
dynamic networks, due to static resources.

Jeckle’s and Zengler’s Active UDDI [28] is an
extension to the UDDI’s invocation API in order to
enable fault-tolerant and dynamic service invocation. It
is able to detect changes in availability of services and
replaces unavailable services with alternative ones from
the registry, which provide the same functionality. How-
ever, this approach neither replicates services actively
nor does it ensure synchrony of stateful ones.

Friedman [29] developed a concept for partial caching
of Web services in ad-hoc networks. His solution places
proxy services in an optimal manner, which takes the
structure of the network as well as qualities of connec-
tions into consideration. However, proxy services still
rely on the initial instance and therefore do not provide
fault tolerance.

5 Conclusions

In this paper, we presented a solution for dynamic rep-
lication and synchronization of stateful Web services in
mobile ad-hoc networks. Following the requirements,
which ad-hoc networks pose to a replication approach,
we have developed a system which is highly flexible in
order to handle all the difficulties caused by unpredict-
able topologies. Our approach is completely decentral-
ized, places replicas in a dynamic manner by following
the requirements of the services, produces a low amount
of network traffic, and, furthermore, makes the invo-
cation of replicated Web services convenient for the
clients. This makes it a generally applicable solution
which can be used in all kinds of networks which require
fault-tolerant Web services.

Furthermore, we analyzed selected aspects of the
system and tested them in a case study, simulating large-
scale ad-hoc networks. This way we were able to evalu-
ate how the system performs in dynamic environments.
These insights allowed to determine important configu-
ration parameters.

Hence, the contribution of our paper is a solution that
combines already existing and newly developed ideas
for replication to a system which makes it possible to
apply reliable Service Oriented Architectures even in
typically unreliable network environments.

5.1 Future work

The main drawback of the currently existing replica-
tor system is that it places the replicas solely by taking
performance criteria into consideration and ignores the
structure of the network. This makes the worst case pos-
sible where all replicas are located next to each other
and a disconnection of a single router makes all of them

SOCA (2007) 1:19–33 33

unavailable. This is a problem which can be solved if
methods for prediction of ad-hoc network partitioning
[30,31] are applied and the replicas are placed wisely,
for instance, by following the ideas in [32–34]. Once
these strategies are developed and implemented, they
can be attached to the replicator system as a plug-in to
the placement mechanism.

References

1. Berger S, McFaddin S, Narayanaswami C, Raghunath MT
(2003) Web services on mobile devices—implementation and
experience. WMCSA, IEEE Computer Society, Washington,
pp 100–109

2. Gehlen G, Pham L (2005) Mobile web services for
peer-to-peer applications. CCNC, IEEE Computer Society,
Washington, pp 427–433

3. Lee W, Lee K, Lee S (2006) Intermediary based architecture
for mobile web services. In: ICACT, IEEE Computer Society,
Washington, pp 1973–1978

4. Schall D, Aiello M, Dustdar S (2006) Web services on embed-
ded devices. Int J Web Inf Systems 2(1):1–6

5. Steele R (2003) A web services-based system for ad-hoc
mobile application integration. ITCC, IEEE Computer Soci-
ety, Washington, pp 248–252

6. Jørstad I, Dustdar S, Thanh DV (2005) Service-oriented archi-
tectures and mobile services. In: Castro J, Teniente E (eds)
CAiSE workshops (2), FEUP Edições, Porto, pp 617–631

7. Dorn C, Dustdar S (2006) Achieving web service continuity
in ubiquitous mobile networks the srr-ws framework. UMICS

8. Jørstad I, Dustdar S, Thanh DV (2005) A service oriented
architecture framework for collaborative services. WETICE,
IEEE Computer Society, Washington, pp 121–125

9. Schreiner W, Dustdar S (2005) Collaborative web service
technologies. CCE

10. Dustdar S, Fenkam P (2004) Formally designing web services
for mobile team collaboration. EUROMICRO, IEEE Com-
puter Society, Washington, pp 469–476

11. Dustdar S, Gall H, Schmidt R (2004) Web services for group-
ware in distributed and mobile collaboration. PDP, IEEE
Computer, Society Washington, pp 241

12. Juszczyk L, Lazowski J, Dustdar S (2006) Web service dis-
covery, replication, and synchronization in ad-hoc networks.
ARES, IEEE Computer Society, Washington, pp 847–854

13. Salas J, Perez-Sorrosal F, Patino-Martinez M, Jimenez-Peris R
(2006) Ws-replication: a framework for highly available web
services. WWW, ACM

14. Ye X, Shen Y (2005) A middleware for replicated web ser-
vices. ICWS, IEEE Computer Society, Washington, pp 631–
638

15. OASIS (2001) Universal description, discovery and integra-
tion. http://www.oasis-open.org/committees/uddi-spec/doc/
tcspecs.htm

16. Felber P, Schiper A (2001) Optimistic active replication.
ICDCS, pp 333–341

17. Budhiraja N, Marzullo K (1992) Highly-available services
using the primary-backup approach. Workshop on the Man-
agement of Replicated Data, pp 47–50

18. Fang CL, Liang DR, Chen C, Lin P (2004) A redundant
nested invocation suppression mechanism for active replica-
tion fault-tolerant web service. EEE, IEEE Computer Soci-
ety, Washington, pp 9–16

19. MortBay (2006) Jetty, Java HTTP server and servlet con-
tainer. http://jetty.mortbay.org

20. Apache (2000) Axis SOAP implementation. http://ws.apache.
org/axis/

21. Dustdar S, Treiber M (2006) Integration of transient web ser-
vices into a virtual peer to peer web service registry. Distrib-
uted Parallel Databases 20:91–115

22. Apache (2003) Web service invocation framework. http://ws.
apache.org/wsif/

23. Enhydra (2003) kSOAP. http://ksoap.objectweb.org/
24. Hubert B (2004) Linux advanced routing & traffic control.

http://www.lartc.org/
25. Birman KP, van Renesse R, Vogels W (2004) Adding high

availability and autonomic behavior to web services. ICSE,
IEEE Computer Society, Washington, pp 17–26

26. Dekel E, Frenkel O, Goft G, Moatti Y (2003) Easy: engineer-
ing high availability qos in wservices. SRDS, IEEE Computer
Society, Washington, pp 157–166

27. Liang D, Fang CL, Chen C, Lin F (2003) Fault tolerant web
service. APSEC, IEEE Computer Society, Washington, pp
310

28. Jeckle M, Zengler B (2002) Active uddi—an extension to
uddi for dynamic and fault-tolerant service invocation. In:
Chaudhri AB, Jeckle M, Rahm E, Unland R (eds) Web,
web-Services, and database systems. Volume 2593 of Lec-
ture Notes in Computer Science., Springer, Heidelberg,
pp 91–99

29. Friedman R (2002) Caching web services in mobile ad-hoc
networks: opportunities and challenges. POMC, ACM, pp 90–
96

30. Derhab A, Badache N, Bouabdallah A (2005) A partition
prediction algorithm for service replication in mobile ad hoc
networks. WONS, IEEE Computer Society, Washington, pp
236–245

31. Milic B, Milanovic N, Malek M (2005) Prediction of partition-
ing in location-aware mobile ad hoc networks. HICSS, IEEE
Computer Society, Washington

32. Hara T (2001) Effective replica allocation in ad hoc net-
works for improving data accessibility. INFOCOM, pp 1568–
1576

33. Hara T (2005) Data replication issues in mobile ad hoc net-
works. DEXA Workshops, IEEE Computer Society, Wash-
ington, pp 753–757

34. Ishihara S, Tamori M, Mizuno T, Watanabe T (2004) Repli-
cation of data associated with locations in ad hoc networks.
Mobile data management, IEEE Computer Society, Washing-
ton, pp 172

	Dynamic replication and synchronization of web servicesfor high availability in mobile ad-hoc networks
	Abstract
	Introduction
	Dynamic replication of web services in ad-hoc networks
	Concept and architecture
	Concept of replication
	Internal database
	Replicator web service
	Monitor
	Replica placement mechanism
	Concept of synchronization
	Concept of invocation
	Case study
	Simulation of transient networks
	Evaluation
	Network traffic and scalability
	Response time
	Results
	Related work
	Conclusions
	Future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

