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Abstract

Accurate bearing fault diagnosis is essential for ensuring the health and longevity of mechanical systems. Traditional methods
often struggle with the dynamic operating conditions of machinery, including variations in speed, load, and noise. This paper
proposes a novel deep learning-based approach for robust bearing fault diagnosis. The method utilizes a combination of
Shearlet Transform, Autoencoder, and Softmax Classifier. Vibration signals from healthy and faulty bearings are transformed
into 2D image representations, capturing intricate details of the underlying mechanical state. Shearlet Transform is then
employed to enhance these images, specifically targeting and amplifying subtle fault signatures, leading to improved diagnostic
accuracy. The enhanced images are subsequently fed to an autoencoder, where the encoder compresses the data into a lower-
dimensional feature space. These compressed features are then used to train and optimize a Softmax Classifier for effective
fault classification. The proposed methodology is evaluated under diverse speed and load conditions, mimicking real-world
operating scenarios. The achieved high classification accuracy across various operating points demonstrates the robustness

and effectiveness of the proposed approach.
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1 Introduction

Machines play a crucial role in our daily lives and are integral
to various activities. In industrial production, all machines
rely on bearings for their proper functioning, specifically
using rolling bearings to support axial and radial loads. Bear-
ing faults contribute significantly, accounting for 40%—-45%
[1, 2] of machine failures. To prevent sudden breakdowns, a
condition-based machine health monitoring system is essen-
tial, particularly for the early detection of faults in rotating
elements. The system utilizes either vibration or acoustic sig-
nals generated by the operation of rolling elements. Extensive
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research has been conducted in fault diagnosis and real-time
machine health prognostics, initially focusing on statistical
characteristics of vibration signals in the time and frequency
domains [3]. However, challenges with nonlinear and non-
stationary signals led researchers to employ advanced tech-
niques such as the Ensemble Empirical Mode Decomposition
(EEMD). Li Hua et al. [3, 4] presented a solution to the prob-
lems of optimal IMF band selection and enhanced denoising
by introducing an improved EEMD method that incorpo-
rates improved adaptive resonance technology (IART). Zair
et al. [5] presented a new method for multi-fault diagnosis
in rolling bearings, combining fuzzy entropy of empirical
mode decomposition, principal component analysis, and a
self-organizing map neural network. Wavelets [6—10], known
for their adaptability to signal shapes, have become a vital
tool for analyzing nonlinear and nonstationary signals, pro-
viding multiresolution decomposition and noise suppression
capabilities. Many researchers [10—15] have been exploring
ways to analyze vibration signals for fault detection and clas-
sification by converting them from 1 to 2D representations.
This allows them to utilize image processing and machine
learning techniques for analysis. Vibration signals are con-
verted to grayscale images, spectral images, or other 2D
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formats. Features are then extracted and used for classifi-
cation with techniques like SVM, K-nearest neighbors, and
artificial neural networks. Nowadays, intelligent fault detec-
tion using deep learning approaches is widely accepted in
machinery health monitoring systems [16—18]. Sharma et al.
[16] introduced an automated seizures classification tech-
nique using nonlinear higher-order statistics and a deep
neural network with a sparse autoencoder. Sun et al. [17] pre-
sented a deep neural network approach for induction motor
fault diagnosis using a sparse autoencoder for feature learn-
ing and fault classification. Zair et al. [18] presented a novel
unsupervised deep learning methodology for fault diagnosis
that surpasses the limitations of traditional feature extraction
methods. Their approach, combines an autoencoder, t-SNE,
and a multi-kernel convolutional neural network, achieves
higher accuracy in diagnosing bearing defects compared to
conventional techniques. An optimized softmax classifier
was proposed by Gao et al. [ 19] for accurate classification of
ultrasonic signals. The results demonstrate high classification
accuracy and strong robustness. This paper proposes a data-
driven approach to fault classification, determining whether
faults occur in the inner race, outer race, or on the ball of
the rolling bearing element. This classification is achieved
through the utilization of shearlet transform, autoencoder,
and a softmax classifier.

The following sections of the paper are structured in the
following manner: Sect. 2 presents an introduction to the
theoretical background. Section 3 outlines the methodology
proposed for the study. Section 4 delves into the discussion of
the experimental results, and Sect. 5 provides the concluding
remarks of the paper.

2 Theoretical background
2.1 Autoencoder

The fundamental idea behind an autoencoder is to encode
input data into a lower-dimensional representation and then
decode it back to its original form.

The encoder takes the input data and maps it to a
lower-dimensional latent space representation. This map-
ping is achieved through a series of hidden layers with
decreasing dimensions, ultimately compressing the input
into a condensed representation. The decoder then takes this
compressed representation and attempts to reconstruct the
original input data with some loss. Figures 1 and 2 illustrate
the block diagram and architecture of an autoencoder.

During training, the goal is to minimize the reconstruction
error, which is typically measured using a loss function such
as mean squared error (MSE) or binary cross-entropy.

The loss function quantifies the difference between the
original input and the reconstructed output [16—18].
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Fig.2 Architecture of autoencoder

The input X € RP is defined in D dimension vector space.
Encoder [18] maps the input to latent space represented by

h= (WX +b) (1)

where,h € RY and d dimensional Vector space, d <D,

¢ is the activation function of encoder. The weight matrix
W € R9*P and b is the bias value.

The decoder maps the latent space h back to input space
X at the cost of loss.

X =0(W -h+b') )

here, 6 is the activation function of decoder.

The choice of activation functions for both the encoder and
decoder is deliberate, aiming to prevent the reconstructed sig-
nal from being an exact copy of the original input. Instead,
the aim is to generate a reconstructed signal that serves as an
approximation, effectively addressing the overfitting prob-
lem common in Artificial Neural Networks (ANNSs).

The formulation of the cost error function incorporates the
loss function and regularization, as depicted in Eq. (3) [16,
17].

1 -
¢e) =S IX— X|* +Q(h, X) 3
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In this context, the first term %HX — )?H2 represents the
loss function, while the second term €2(h, X) serves as regu-
larization, aiming to deter memorization or overfitting. This
regularization can be expressed as follows [16]

p
Q(h, X) =1 [[Vy - hi? @)

i=1

The weight decay parameter, denoted by \, is applied
alongside the difference operator Vx which operates on the
random variable X associated with the i™" node.

2.2 Softmax classifier

The softmax classifier, considered a linear classifier, gener-
ates output as a probability distribution across all potential
classes. It utilizes the cross-entropy function to adjust the
layer weights, where cross-entropy serves as a loss function
quantifying the deviation between predicted and actual out-
puts. In the context of probability distributions, the formal
definition of cross-entropy [19] between two distributions is
expressed by Eq. (5).

L(X, X) ==Y xP1ogr?) )
i=1

Here, X, X denote the original input signal and its
approximate output signal respectively. ‘n’ represents the
total number of sample points in both the original and
reconstructed output signals. Equation (6) provides the prob-
abilistic output from the softmax classifier for K classes of
input data and weights.

exp (W£ . X)

P(Y = K|X) = — Pk &)
( 0 YN exp(W - X)

(6)

here, symbol (-) is the dot product and N is the total number of
classes. The softmax classifier, implemented in the final stage
of the system, categorizes the input signal by leveraging the
dimensionally reduced code generated by the autoencoder.

2.3 Shearlet transform

The shearlet transform extends the concept of wavelet trans-
forms by incorporating directional sensitivity, making it
particularly useful for tasks such as edge detection, image
denoising, and texture analysis.

Shearlet transform employs shearing operations to capture
directional information effectively. These operations involve
stretching and compressing data along different directions,
allowing the transform to adapt to the local structure of the
data. By applying shearing transformations at various scales

Fig.3 Frequency tiling in shearlet system

and positions, the shearlet transform can provide a multiscale
representation of the input signal or image.

Shearlets are formed through a combination of parabolic
scaling, shearing, and translation applied to a small set of
generating functions. At finer scales, they primarily occupy
narrow and directionally oriented ridges, conforming to the
parabolic scaling principle, where the squared length approx-
imately equals the width.

The continuous shearlet system is generated [20-22] by a
function ¥ € £? (Rz)

SHcoNT (W) = Wasr = a4 W(Sg Au(. — 1)) 7

where Sg, A, are shear and dilation matrix, responsible for
forming shearlet system. The parameters a, s and t are the
dilation, shear and translation factors and (a, s, t) € (]R X
R x R?).

Mathematically, dilation matrix and shear matrix can be
defined by

al’2 o 1s
Aa:[ 0 a"1/2 &S5 = 01 ®)

The discrete shearlet system is derived through the dis-
cretization of parameter set of a continuous shearlet system
[24-25] and is characterized by

SH(W) = Wk = 240 (S Ay (.—0)) 9)

where, (j, k, ¢) € (£ x £ x £?) are the scale parameter,
shearing parameter and cone parameter respectively.

A three scale shearlet system is presented in Fig. 3. The
unique fan-like pattern of the system provides it with direc-
tional sensitivity, making it capable of capturing directional
details efficiently. It can be observed that the number of shear-
ing factors within the shearlet system increases with increase
in frequency support. This means that as the frequency sup-
port expands, the system becomes more capable of capturing
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Fig.4 Shearlet coefficients of Barbara with shearlet parameter (j,k,c)
as (0,0,0)

higher frequency details. However, as the frequency support
increases, the support in the spatial domain decreases. This
trade-off between frequency and spatial support is a charac-
teristic of the shearlet system.

In the shearlet transform, the images at different scales
are represented by shearlet coefficients. These coefficients
capture the multi-directional and multiscale information of
the input image. The directional information associated with
an image such as Barbara can be visualized using shearlet
transform. Figure 4 shows the average information of the
image using shearlet parameters (j,k,c) as (0,0,0) while Fig. 5
shows the shearlet transform of this image at two scales with
four shearlet filters at different orientations at each scale.

Shearlets are a multiscale framework that allows for the
efficient encoding of anisotropic features in multivariate
problem classes. Shearlet toolbox [23] has been downloaded
from https://shearlab.math.lmu.de/software.
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Fig.5 Shearlet coefficients of
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Fig.6 Proposed methodology

3 Proposed methodology

The proposed methodology is depicted in Fig. 6. The 1D
vibration data obtained from a machinery fault simulator can
be transformed into a 2D grayscale image by slicing the 1D
vibration signal. Each slice of the 1D vibration data contains
a certain number of sample points, where the number of sam-
ples per shaft rotation is determined by the sampling rate (fs)
and the shaft rotation speed (fr). The formula to calculate the
number of samples per shaft rotation is n = fs/ fr. If the length
of the 1D signal is represented by 1, then the total number of
slices is given by m = I/n.

This means that the 1D vibration signal is converted into
a 2D vibration data matrix, denoted as D(m,n). In the second
step, the 2D matrix D(m,n) is further transformed into a gray-
level image, represented as I(m,n).

The 2D vibration images undergo a shearlet transform
to remove noise and enhance the textures present in the

Coefficients-C3 Coefficients-C4
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(a). Scale j=1
Coefficients-C2
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Fig. 7 Experimental Setup of machinery fault Simulator (MFS)

vibration images. These enhanced vibration images are then
inputted into an autoencoder.

In the autoencoder, the encoder section compresses the
images, treating them as features to train the neural network.
The purpose of this compression is to extract important infor-
mation from the images.

Following this, a softmax classifier, which is a type of
deep neural network, acts as the classifier in the fault diagno-
sis task. It analyzes the condensed features extracted by the
autoencoder and distinguishes between healthy and faulty
bearing signals based on learned patterns.

4 Experimental results and discussions

Vibration data was generated using a machinery fault simu-
lator to simulate both healthy and various faulty conditions.
These vibrations were captured using a highly sensitive tri-
axial accelerometer, specifically the model 356A16. The
sensitivity of this device is 10.2 mV/(m/s?). To record the
vibration signals, a 4-channel DAQ (Data Acquisition) sys-
tem was used, and the signals were stored in a personal
computer. The experimental setup, depicted in Fig. 7, illus-
trates how the machinery fault simulator was configured to
capture the vibration signals from different bearings, i.e.
faulty and non-faulty.

The specifications of the various parts of the MFS are
furnished in Table 1.

The vibration data was sampled at a rate of 25.6 kHz, and
the shaft speed was set at 600 rpm and 1200 rpm. Three load
conditions were considered: no load, medium load, and heavy
load. The experimental setup involved capturing vibration
signals from various bearings under different load condi-
tions and rotating speeds. The vibration signals as depicted
in Fig. 8, initially represented in 1D, undergo conversion into
2D gray level images sized at [256,256].

Following this, a shearlet transform is applied to these raw
images. Subsequently, noise within the images is mitigated,
resulting in enhanced texture. The textures become visible
and distinct. This transformation acts as a filter, effectively
removing the noise and enhancing the underlying details.
Figure 9 illustrates both the original and denoised vibration

Table 1 Specifications of experimental setup

S.No Items Specification
Motor 3-phase, 1 hp
2 Shaft 19 mm diameter
AC drive with motor with variable rotational
controller speed, maximum
2865 rpm
Gear box Bevel gear
Bearings Inner diameter (d =
20 mm) and outer
diameter (D = 42 mm)
6 Data acquisition System 4 Channel
(DAQ)
Accelerometer Triaxial with sensitivity
10.2 mV/(m/s?)
2]
=
=]
=
g
<

Fig.8 1D vibration signal for Healthy and faulty bearings at no load

images of healthy bearings and those with various faults,
including inner race (IR), outer race (OR), and ball faults.
Four images with dimensions of [256, 256] are inputted
into an autoencoder, resulting in a matrix sized at [1024,
256]. This matrix is then passed through the autoencoder,
that includes a single hidden layer comprising of 25 nodes.
Through encoder, the input matrix is transformed into a cor-
responding code of dimensions [1024, 25], as illustrated in
Fig. 10.

Figure 11 displays a confusion matrix demonstrating a
classification accuracy of 75.5% under the condition of
600 rpm and heavy load when using raw vibration images.

However, employing denoised vibration images leads to a
substantial enhancement in classifier performance, resulting
in an impressive overall accuracy rate of 99.4% as illustrated
in Fig. 12.

In the analysis, it was observed that all healthy and OR
Fault samples were detected accurately. For IR Fault and
Ball Fault, out of the 256 samples, 252 samples of IR Fault
and 254 samples of Ball Fault were diagnosed successfully.
The diagnostic accuracy rates were 100% for healthy and OR
Fault, while for IR Fault and Ball Fault, the rates were 98.4%
and 99.2% respectively.
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Fig. 10 2D raw and denoised vibration images for healthy and faulty
bearings (IR fault, OR Fault and Ball fault)
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Fig. 11 Confusion matrix for raw vibration images at 600 rpm and heavy
load

Similarly, in Fig. 13, under the condition of 1200 rpm and
heavy load, it was observed that 256 out of 256 samples were
successfully recognized for both IR Faults and OR Faults.
Furthermore, out of 256 healthy bearings samples, 230 were
diagnosed successfully, while 26 samples were misclassified
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Fig. 12 Confusion matrix for denoised vibration images at 600 rpm and
heavy load

as ball faults. In the case of ball faults, 237 out of 256 samples
were accurately recognized, but 19 samples were misclassi-
fied as healthy bearings.

Thus the classification accuracies for healthy and ball
faults were determined to be 89.8% and 92.6% respectively.
Furthermore, a perfect accuracy of 100% was achieved for
IR faults and OR faults.The classifier exhibits an overall
91.3% classification accuracy for raw images at 1200 rpm
under heavy load conditions, which can be elevated to 95.6%
through denoising of images.

This enhancement suggests that the denoising process
effectively enhances the quality of the input data, result-
ing in more accurate and reliable classification outcomes.
The drastic improvement in classifier performance highlights



Signal, Image and Video Processing

Confusion Matrix
230 0 0 19
0.0% |0.0% |1.9%
0 256 0 0
25.0% |0.0% [0.0%
0 0 256 0
0.0% 25.0% |0.0%
26 0 0 237 P0.1%
0.0% |0.0% 23.1% [9.9%

100% [100% 92.6% P5.6%
0.0% |0.0% |7.4% [4.4%

P2.4%

Health
eathy 7.6%

100%
0.0%

IR Fault

100%
0.0%

OR Fault

Ball Fault

Output Class

Target Class

Fig. 13 Confusion matrix for denoised vibration images at 1200 rpm
and heavy load

the importance of preprocessing using the shearlet transform
in optimizing the performance of machine learning models
applied to vibration data analysis.

Table 2 and Table 3 showcase the performance of the clas-
sifier at two different rotating speeds 600 rpm and 1200 rpm
and three load conditions. The classifier exhibits relatively
low accuracies, ranging from 55.5% to 76.2%, when utilizing
raw vibration images at 600 rpm across various load condi-
tions. Likewise, at 1200 rpm, its performance varies between
58.4% and 91.3% for raw vibration images.

However, when denoised vibration images are employed,
there is a significant improvement in performance. Specifi-
cally, accuracy reaches 100% for both no load and medium
load conditions at both 600 rpm and 1200 rpm. Conversely,
under heavy load conditions, the accuracies notably remain
high, achieving 95.6% and 99.4% for denoised vibration
images at 600 rpm and 1200 rpm, respectively.

5 Conclusion

This manuscript presents a novel methodology for effec-
tive fault diagnosis of bearings in mechanical systems. The
proposed approach combines the use of shearlet transform,
autoencoder, and softmax classifier to handle the dynamic
nature of the machinery and to enhance the diagnostic accu-
racy.

By transforming vibrational signals into 2D images and
enhancing the image textutre using the shearlet transform, the
intricate details of the underlying mechanical conditions are
captured. The enhanced images undergo compression using
an autoencoder to extract important information and create
a condensed feature space. These features are then fed to a
softmax classifier, which acts as the fault diagnosis classifier.

Experimental results demonstrate the robustness and effi-
cacy of the proposed methodology. When utilizing raw vibra-
tion images, the classifier achieves relatively low accuracies.
However, when denoised vibration images are employed,

Table 2 Fault classification
accuracies of raw and denoised

Classification accuracy (%)

vibration images of bearings at

600 rpm No load Medium load Heavy load
Fault type Raw Denoised Raw Denoised Raw Denoised
Healthy 1 100 75.2 100 71.9 85.9
IR fault 19.7 100 62.8 100 59.8 100
OR fault 99.6 100 84.3 100 89.8 100
Ball fault 100 100 82.7 100 80.5 83.2
Overall accuracy 55.1 100 76.2 100 75.5 92.3
Table 3 Fault classification
accuracies of raw and denoised Classification accuracy (%)
\lllztz)rgt;grr;lmages of bearings at No load Medium load Heavy load
Fault type Raw Denoised Raw Denoised Raw Denoised
Healthy 40.2 100 63.5 100 82 89.8
IR fault 89.1 100 81.6 100 100 100
OR fault 99.6 100 78.2 100 100 100
Ball fault 5 100 100 100 83.6 924
Overall accuracy 58.4 100 80.8 100 91.3 95.6
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there is a significant improvement in performance. Accuracy
reaches 100% for both no load and medium load conditions
at both 600 rpm and 1200 rpm, while under heavy load con-
ditions, the accuracies remain high, achieving 95.6% and
99.4% respectively.

The proposed methodology proves effective in handling
varying speed and load conditions, making it suitable for real-
world operating scenarios. The high classification accuracy
achieved across diverse operating conditions demonstrates
the potential for practical implementation and maintenance
of mechanical systems.
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