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Abstract
Medical image segmentation (MIS) is a key technique in computer-aided diagnosis. With the development of deep learning,
especially convolutional neural networks, the performance ofMIS has been significantly improved, however, somemainstream
convolution-basedmethods still suffer from inaccurate target boundaries and imprecise segmentation results. At the same time,
transformer-based methods have gradually achieved better segmentation results. To overcome the challenges of traditional
methods, an accurate MIS model (CascadeMedSeg) is proposed in this paper, which combines a pyramid vision transformer
(PVT) and multi-scale fusion. This network model follows a standard encoder-decoder segmentation architecture, where PVT
is used as an encoder. PVT, designed as a pure Transformer backbone for pixel-level dense prediction tasks, can consistently
generate a global receptive field and, as an encoder, flexibly learn multi-scale features of medical images. Two additional
modules, namely Enhanced Attention Fusion (EAF) and Edge-Enhanced Segmentation (EES) are introduced. The EAF
module fuses up-sampled and skip-connected features using an attention mechanism that enhances the perception of channel
and positional information. The EES module enhances the boundary features of the network through the aggregation of
multi-level features of the encoder and a dynamic boundary detection operator used to obtain a boundary mask and embed
it into the decoder. Extensive experiments on five datasets show that CascadeMedSeg exhibits improved performance over
several state-of-the-art methods. The MIoU values for the Kvasir-SEG, CVC-ClinicDB, ISIC 2018, and BUSI datasets are
88.16, 89.79, 86.32, and 66.69%, respectively.

Keywords Medical image segmentation · Pyramid vision transformer · Attention mechanism · Multi-scale features

1 Introduction

As an indispensable part of modern medicine, medical
images allow physicians to visualize physiological struc-
tures and pathological changes, and play a crucial role
in the early detection, accurate diagnosis and treatment
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of diseases [1, 2]. Segmentation is one of the key tech-
nologies in the field of medical image processing [3–
5], and its purpose is to separate specific areas in the
image from the background. This process enables more
detailed patient disease analysis and provides a reliable
basis for clinical diagnosis and pathology research [6–
8].

MethodsbasedonConvolutionalNeuralNetworks (CNNs)
are widely used for medical image segmentation (MIS) tasks
[9–12]. Due to the outstanding performance of UNet and
its variations [13] in MIS, CNN networks with a U-shaped
encoder-decoder structure have become prevalent [14–16].
Many researchers have also incorporated attention mech-
anisms into CNNs [17, 18] to enhance segmentation by
emphasizing relevant channels and suppressing of irrelevant
ones. While CNN-based models have demonstrated satis-
factory performance in MIS, and because of convolutional
layers possess translation equivariance but can not scale with
a large receptive field [19, 20]. Consequently, they have lim-
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itations in capturing distant dependencies between pixels
[21].

Recently, many researchers have adopted Transformer
structures for visual information processing tasks in order
to capture remote dependencies and have achieved perfor-
mance comparable to that of CNNs [22–24]. The Vision
Tranformer (ViT) [25] was a groundbreaking approach that
divided the image into small patches and utilized trans-
formers to form a classification network. However, the ViT
requires more complex processing and greater computa-
tional resources than CNNs. The Swin Transformer (SwinT)
[22] and the Pyramid Vision Transformer (PVT) [23, 26]
required reduced spatial attention, which resulted in a sub-
stantial decrease in the computational load incurred while
still achieving excellent capture of remote dependencies.
However, the self-attention mechanism used in transform-
ers limits their ability to learn local contextual relationships
between pixels [27]. During the decoding stage of MIS, the
ability of the network to recover detailed features is partic-
ularly important [28, 29]. Transformer excels at capturing
remote dependencies, whereas, CNN excels at maintaining
local details [30]. Researchers have investigated combin-
ing both networks to maximize their strengths in MIS
tasks.

Based on the above analysis, this paper proposes a highly
accurate MIS model called CascadeMedSeg, which com-
bines PVT and multi-scale fusion techniques to realize
effective MIS. First, a PVT is used as an encoder to extract
multi-level features hierarchically. Then, anEnhancedAtten-
tion Fusion (EAF)module is designed to fuse skip-connected
encoder features with decoder up-sampled features and
enhance the network’s perception of channel and location
information. Finally, anEdge-EnhancedSegmentation (EES)
module targets enhanced edge modeling, aggregates multi-
level features, and extracts boundary information using a
learnable boundary detection operator embedded into the
decoder to enhance boundary features.

The main contributions of this paper are summarized as
follows.

(1) In the proposed MIS model, CascadeMedSeg, a PVT
and multi-scale fusion are employed to enhance the net-
work’s performance compared to traditional approaches
based on UNet. The network utilizes a PVT during the
encoding phase to extract robust and rich multi-scale
features.

(2) An EAF module is designed to improve the perception
of location information when cross-channel interactions
are applied during feature fusion.

(3) We design an EESmodule, that realizes boundary detec-
tion and enhancement by combining the multi-level
features produced by the encoder and using a trainable

boundary operator to calculate the gradient information
in the image.

(4) Extensive experiments demonstrate that the proposed
CascadeMedSegoutperformsother state-of-the-artmod-
els.

2 Related work

2.1 Medical image segmentation

Deep learning models have been widely used in MIS, which
is an important task in computer-aided diagnostic methods
[31]. Among these methods, CNN-based deep learning tech-
niques have demonstrated outstanding performance in MIS.
Specifically, UNet++ [14] uses a series of dense skip con-
nections to extract features at different scales, thus reducing
the semantic gap between the encoder and decoder. Although
this method improves feature extraction, its complex struc-
ture leads to high computational costs and lengthy training
times.

UNet3+ [16] directly combines high- and low-level
semantics, enhancing segmentation performance; however,
it also has a high computational complexity and hardware
requirements. ResUNet [15] constituted a novel approach
to U-Net by integrating residual concatenation from ResNet
[32] to address the issue of gradient vanishing. The Attention
U-Net [13] incorporated attention gating units into the orig-
inal UNet to enhance the latter’s sensitivity to pixels in the
foreground target region during segmentation; however, this
increases computational complexity and may slow down the
training. The DoubleU-Net [9] featured two encoders and
decoders and employed atrous spatial pyramid pooling to
capture contextual information. DCSAU-Net [33] utilized
primary feature conservation to capture essential features
from the input image, and a compact split-attention block
to output feature maps with different combinations of recep-
tive field sizes; however, its segmentation accuracy does not
perform well on some datasets. However, since convolu-
tion is essentially a local operation, CNN-based approaches
for MIS methods may result in incomplete segmentation
masks.

Transformer-based methods have recently demonstrated
significant success in MIS. For instance, Chen et al. [34]
introduced TransUNet, which integrated the intricate spa-
tial information from CNN features with the comprehensive
context captured by a transformer. Another approach, Swin-
UNet [35] developed by Cao et al., utilized the Swin
transformer as an encoder to extract contextual features,
which were subsequently up-sampled using a symmetric
Swin transformer decoder; however, it uses transformers
in both the encoder and decoder, which does not lead
to performance improvement [10]. UCTransNet [36] uti-
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lizes multi-scale channel cross-fusion with a transformer
and channel-wise cross-attention modules(CTrans module),
replacing the original skip connections. In SSFormer [27], a
PVT was used as an encoder, while focus on local features
was achieved through a progressive locality decoder, which
improved the neural network’s capacity to process detailed
information. In CTO [37], the encoder network employs a
well-knownCNNbackbone structure to capture local seman-
tic information and a lightweight ViT auxiliary network to
integrate long-range dependencies, however, their number of
parameters is enormous.

2.2 Vision transformer

The Transformer is a deep neural network that uses a
self-attention mechanism and was originally designed for
Natural Language Processing (NLP). Inspired by the Trans-
former’s powerful representation function, researchers pro-
posed extending the Transformer to computer vision tasks to
capture remote dependencies, resulting in higher accuracy.
The ViT [25] can classify images directly using a purely
self-concerned Transformer. Compared to other network
types, the Transformer-based model performs equally well,
if not better, on various vision benchmarks. Subsequently,
various Transformer-based models have been proposed to
improve Transformer performance in computer vision tasks.
The Swin Transformer (SwinT) [22] with sliding window
reduces calculation effort while capturing remote dependen-
cies accurately. The Detection Transformer (Detr) [38] is an
ensemble-based target detector that employs transformers on
top of a convolutional backbone. The Data-efficient Image
Transformer (DeiT) [39] is a visual transformer for image
classification tasks that was trained using a Transformer-
specific teacher-student approach. The PVT [23, 26] reduces
spatial attention and makes it an effective pillar of intensive
forecasting tasks by employing a pyramid structure. It can
handle various downstream tasks, such as classification and
detection. In this paper, we attempt to use PVT v2 [26] as
the fundamental unit of an U-structure encoder to balance
accuracy and efficiency in MIS. Furthermore, experimen-
tal results from multiple datasets show that our method is
effective. Finally, our method applies to a broader range of
scenarios, including but not limited to endoscopy, ultrasound,
dermoscopy, and Magnetic Resonance Imaging (MRI).

3 Methods

3.1 Network architecture

The proposed basic framework of CascadeMedSeg utilizes
an encoder-decoder architecture, as presented in Fig. 1. Cas-
cadeMedSeg mainly comprises a PVT encoder, an EAF

module, and an EES module. Specifically, using a PVT v2-
b2 to extract features, we can model global relationships to
extract more contextual information.

The EAF module enhances the network’s perception of
channel and location information by combining up-sampled
and jump-connected features. The EES module aggregates
multi-scale features from the encoder, extracts contour and
boundary masks from the image, and embeds them into the
decoder to enhance the boundary features.

3.2 Transformer encoder

Transformers have great potential to solve the problem of
complex scale variations in medical image segmentation
and perform multi-scale feature processing [40]. By captur-
ing remote dependencies and global contextual information,
the robustness and generalization ability of the model are
enhanced. Our approach uses a PVT v2 as an encoder
to obtain hierarchical features through four stages. It is
worth noting that PVT v2 is an improved version of the
original PVT, which requires less calculation and provides
more powerful feature extraction. The encoder comprises
four stages. Each stage includes overlapping patch embed-
ding and a transformer encoder. The number of output
channels for each stage is Ci ∈ {64, 128, 320, 512}, and
the number of layers in the transformer encoder for each
stage is Li ∈ {3, 3, 6, 3}. Given an input image of size
I ∈ R

3×H×W . In the stage1, it is first divided into HW
42

patches with the size of 3 × 3 × 4 through overlapping patch
embedding. Then, it passes through a transformer encoder
with L1 layers and the output is reshaped into a feature
map F1 with the size of H

4 × W
4 × C1. Similarly, using the

feature map from the previous stage as input, the follow-
ing feature maps are generated: F2, F3, and F4, with sizes
of H

8 × W
8 × C2, H

16 × W
16 × C3, and H

32 × W
32 × C4, respec-

tively.

3.3 Enhanced attention fusionmodule

The low-level features extracted by the encoder encompass
detailed information, but lack semantic content. High-level
features have more semantic information but do not reflect
details clearly. In MIS tasks, reducing the semantic gap
between encoder and decoder features and realizing effective
fusion are important means to improve segmentation perfor-
mance.

Common techniques used to reduce the semantic gaps
between encoder and decoder features, such as feature fusion
through element addition or channel concatenation, tend to
impair predictions around target boundaries [41]. In this
paper, we propose the EAFmodule for dynamic learning and
enhancing the multi-scale feature representation of medical
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Fig. 1 CascadeMedSeg basic
framework

Fig. 2 Enhanced Attention
Fusion module

images. As shown in Fig. 2, two branching paths exist after
the initial fusion of encoder and decoder features. The chan-
nel attention branch learns the correlations between different
channels and dynamically enhances the feature dimensions
that are essential to the current task. Meanwhile, the multi-
head hybrid convolutional branch captures a range of spatial
features at multiple scales, thus enhancing the ability of the
network to extract local information.

Specifically, features from the encoder and decoder are
added pixel by pixel. Adaptive average pooling for the chan-
nel attention branch is utilized to gather global information
about the features. Then, the attention weights are applied
to the input feature mapping to emphasize or suppress the
feature responses of different channels [42]. The process can
be expressed mathematically as:

CA = Ft_i ⊗ σ
(
Conv1Dk×k

(
GAP

(
Ft_i

)))
(1)

Where GAP means the Global Average Pooling layer;
Conv1Dk×k denotes a one-dimensional convolution with
convolution kernel size k; σ means the Sigmoid activa-
tion function, ⊗ denotes element-by-element multiplica-

tion (Hadamard product); k =
⌊ |log2(C)+β|

γ

⌋
, β=1, γ=2,

�...�denotes downward rounding; Ft_i denotes the result of
pixel-by-pixel summation of encoder and decoder features.

To capture spatial features at different scales,multiple con-
volutions with different kernel sizes are applied to different
parts of the input featuremap. This enhances the spatial infor-
mation of the input features while effectively filtering out the
background information. The fusion of features obtained at
different granularity levels and interacting with the infor-
mation improves the information representation [43]. The
process can be expressed as:

MHMC = Conv1×1 (cat (DW3×3(x1), DW5×5(x2), ...,

DW(2n+1)×(2n+1)(xn)
))

(2)

Where x1, x2,..., xn designates the splitting of input fea-
ture Ft_i into multiple heads in the channel dimension; n
denotes the number of channels of Ft_i ; DW(2n+1)×(2n+1)

denotes a depth-separable convolution with a kernel size
2n + 1; cat denotes a splice along the channel dimension;
and Conv1×1denotes a 1 × 1 convolutional layer.

Finally, the outputs of the two branches are fused, which
combines the dynamics of the adjusted features with the
residual branches of the original features, thus realizing
smoother feature fusion.
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3.4 Edge-enhanced segmentationmodule

The boundaries of a lesion region provide important clues to
the location of objects, so they can be utilized to significantly
improve the performance of semantic segmentation algo-
rithms. However, the boundaries of lesion regions are usually
complex and diverse [44]. Inspired by [37], we employ the
EES module to forecast boundary masks for medical images
and improve network features related to boundaries.

Due to the complexity of boundary information inmedical
images, single-scale features cannot be used, as they do not
contain sufficient information for this representation. Using
features from any scale directly to generate a boundary mask
cannot meet the requirements for precision and accuracy.

As shown in Fig. 3, the EESmodule aims to improve edge
modeling by initially combining the features generated by
the encoders at the four scales. This enhances the model’s
ability to represent multi-scale information, thus generating
an informative and multi-granular representation of fea-
tures. Then, these representations are used for subsequent
boundary detection, so predictions are based on a compre-
hensive understanding of both overall semantics and local
details, enhancing the effectiveness of boundary detection.
The boundary detection module uses a trainable boundary
operator to calculate the gradient features of the image and
obtain precise boundary information.

Specifically, the feature maps at different resolutions Fi
are uniformly up-sampled to H

4 ×W
4 ×C1 to ensure consistent

featuremap size. Splicing in the channel dimension and using
convolution for feature fusion allows for a better combination
of the fine boundary information contained in the low-level
features and the semantic information present in the high-
level features. The detailed boundary information is added to
the deeper features to provide well-informed and rich feature
representations for subsequent boundary prediction.

After obtaining the hybrid feature MF, two dynamic
boundary operators are utilized to capture the corresponding
edge information in the horizontal and vertical directions,
respectively, and the response to the boundary in the feature
map is enhanced by calculating the gradient amplitude.

Gx = MF ∗ Wx (3)

Gy = MF ∗ Wy (4)

G =
√
Gx

2 + Gy
2 (5)

whereWx andWy are depth-separable convolutional kernels
of 3 × 3 size, and “∗” denotes the convolution operation.

The final extracted boundary information is pooled to
match different layer feature sizes and then multiplied
element-by-element with the features fused by the EAFmod-

ule to directly enhance the boundary features of the network.

edgei = Max Poolm(edge4) (6)

where Max Poolm denotes the max pooling layer; m ∈
{2, 4, 8}; i ∈ {2, 3, 4}.

3.5 Loss function

To supervise the CascadeMedSeg network’s training, binary
cross-entropy (Bce) [34] and Dice loss [34] are adopted.

Bce loss is commonly used in binary classification prob-
lems and is defined as:

LBce= − 1

N

N∑

i=1

(yi log(pi ) + (1 − yi ) log(1 − pi )) (7)

Where yi and pi denote the fundamental truth value and
predicted probability label of the i-th pixel, respectively; N
denotes the product of the height and width of the image.

The Dice loss is defined as follows:

LDice = 1 −
2

N∑

i=1
pi yi + ε

N∑

i=1
(pi + yi ) + ε

(8)

Where yi and pi , and N are as defined in Eq. (7), and the ε

represents a smoothing function, adding a small constan ε (set
to 10−4 in this paper) to both the numerator and denominator
prevents the denominator from being zero, even in extreme
cases where the prediction and ground truth do not overlap
at all or are both zero. Therefore, this prevents division by
zero errors and ensures numerical stability.

Finally, the complete loss function [34] can be expressed
as:

LTotal = LBce + LDice (9)

Where LTotal is the total loss, LBce and LDice denote Bce
loss and Dice loss between the segmentation result and seg-
mentation label.

4 Experiments

In this section, the proposed CascadeMedSeg network is
evaluated using five datasets, namely Kvasir-SEG [45],
CVC-ClinicDB [46], ISIC 2018 [47, 48], BUSI [49], and
ACDC [50, 51]. We also perform a series of experiments
using these datasets. Finally, the efficiency of the pro-
posed method is compared with that of other state-of-the-art
(SOTA) methods.
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Fig. 3 Edge-Enhanced
Segmentation module

4.1 Experimental data

The proposed CascadeMedSeg was implemented using the
PyTorch DL framework. All experiments were conducted
using PyTorch 1.90 and CUDA 11.1.1, and the hardware
environment included an i7-10700F CPU and a NVIDIA
3090 GPU. In this paper, the pre-trained PVT v2-b2 was
used as the backbone network.

Kvasir-SEG dataset: This is an endoscopic dataset for
pixel-level segmentation of colon polyps, consisting of 1000
images of gastrointestinal polyps and their corresponding
segmentation masks. The number of training, validation, and
test sets in the experiment is 800, 100, and 100, respectively.

CVC-ClinicDB dataset: This data consists of 612 still
images extracted from colonoscopy videos from 29 differ-
ent sequences. Each frame image is accompanied by ground
truth that identifies the region covered by polyps in the image.
The dataset is split into 490 training samples, 61 validation
samples, and 61 testing samples.

ISIC 2018 dataset: This is a publicly available dataset of
skin lesion images containing 2594 dermoscopic images of
different types, sizes, and colors of skin lesions from 2056
unique patients with segmentation masks. The number of
training, validation and test sets are 2074, 260, and 260,
respectively.

BUSI dataset: The BUSI is a classification and segmenta-
tion dataset containing breast ultrasound images. The dataset
consists of 780 images which are classified into three cat-
egories: normal, benign, and malignant. The benign and
malignant breast ultrasound images also contain detailed seg-
mentation annotations corresponding to chest tumors. The
number of training, validation, and test sets are 624, 78, and
78, respectively.

ACDC dataset: The ACDC consists of 100 cardiac MRI
images collected from different patients. Each scan contains
three organs: namely the right ventricle (RV), the left ven-
tricle (LV), and the myocardium (Myo). The dataset is split
into 70 training samples, 10 validation samples, and 20 test-
ing samples.

All experiments were performed on the same train-
ing, validation and testing datasets. For the Kvasir-SEG,
CVC-ClinicDB, ISIC 2018, and BUSI datasets, the image

resolution was set to 352×352, while for the ACDC dataset,
the resolution was set to 224×224. We use the Adam opti-
mizer and the ReduceLROnPlateau scheduler with a learning
rate of 1 × 10−4. The model is trained for 150 epochs. The
batch size for the ACDC dataset is set to 24, while the batch
size for other datasets is set to 16. The other SOTA models
were trained on the same datasets using their default param-
eters.

4.2 Quantitative evaluation

A total of four metrics were used to evaluate the proposed
model, where mDice, mIoU, Recall, and Precision were used
as evaluation metrics on the Kvasir-SEG, CVC-ClinicDB,
ISIC 2018, and BUSI datasets, and only mDice scores were
considered for the ACDC dataset [34, 35].

The equations for calculating the specific metrics are as
follows.

Dice = 2T P

2T P + FP + FN
(10)

mDice = 1

n

n∑

i=1

Dicei (11)

I oU = T P

T P + FP + FN
(12)

mIoU = 1

n

n∑

i=1

I oUi (13)

Recall = T P

T P + FN
(14)

where n denotes the total number of samples; True Posi-
tive (TP), False Negative (FN), False Positive (FP), and True
Negative (TN) follow their usual definitions.

4.3 Results

4.3.1 Experimental results on Kvasir-SEG and CVC-ClinicDB
datasets

Through training, validation and testing, we verified the
performance of the proposed method on the Kvasir-SEG
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and CVC-ClinicDB datasets. As shown in Tables 1 and 2,
CascadeMedSeg yielded the best values for the chosen met-
rics. The methods selected for comparison were U-Net [13],
UNet++ [14], Attention U-Net [17], DoubleU-Net [9], Tran-
sUNet [34], DCSAU-Net [33], and CTO [37]. Tables 1 and 2
show the quantitative comparison results for the Kvasir-SEG
and CVC-ClinicDB datasets.

ForKvasir-SEG,CascadeMedSegachieved thebest results
and significantly improved polyp segmentation performance
compared to the other algorithms. Compared with Tran-
sUNet, theCascadeMedSegmethod improved themDice and
mIoU scores on theKvasir-SEGdataset by 0.95%and1.46%,
respectively.

Some indicative visual results are presented in Fig. 4.
The proposed CascadeMedSeg method generated predic-
tion masks that were closer to the ground truth labels. With
better segmentation results in some cases, CascadeMedSeg
can segment target boundaries more accurately, regardless
of whether a small, large, or multiple targets are being seg-
mented.

Apart from the normal experiments conducted using the
Kvasir-SEG andCVC-ClinicDB datasets, we also performed
cross-validation tests to verify the generalization ability of
the models, i.e. training on the Kvasir-SEG dataset and
testing on the CVC-ClinicDB dataset and vice versa. The
results of the generalization test are given in Tables 3 and
4. Table 3 shows the results of training on the Kvasir-SEG
dataset and testing on the CVC-ClinicDB dataset, where
CascadeMedSeg outperformed the other models, achiev-
ing an mDice value of 93.19%, mIoU of 87.57%, and
accuracy 93.42%. Table 4 shows that trained on the CVC-
ClinicDB dataset and tested on the Kvasir-SEG dataset,
CascadeMedSeg achieved mDice of 88.67%, mIoU 82.56%,
and a precision of 96.01%, again outperforming the other
models. These results demonstrate the stronger generaliza-
tion ability of the CascadeMedSeg. Due to its larger size,
training on the Kvasir-SEG dataset resulted in a more robust
model than training on the CVC-ClinicDB dataset.

4.3.2 Experimental results on the ISIC 2018 dataset

Table 5 shows the quantitative results of the ISIC-2018
dataset for the lesion boundary segmentation task. According
to Table 5, CascadeMedSeg has an increase of 1.81% over
DCSAU-Net in mIoU, and 3.03% over UNet++ in mDice.
Among other metrics, our model achieved a highly compet-
itive recall rate of 93.36% and an Precision of 92.20%.

To provide a more intuitive demonstration of the superior-
ity of CascadeMedSeg, we also visualized the segmentation
results of the proposed and other SOTAmethods, as depicted
in Fig. 5. It is evident that the proposed method can identify
the location of the lesion more accurately, and its output is
closer to the Ground Truth.

To more intuitively show the characteristics of different
levels of features, we perform thermal visualization mapping
on these feature maps in the ISIC 2018 dataset. To visualize
the intermediate features in Fig. 6, the average of all channels
in the feature map is calculated, and a heatmap is generated.

4.3.3 Experimental results on the BUSI dataset

We used the Breast Ultrasound Image dataset to compare
the performance of CascadeMedSeg with that of the other
SOTA networks. The results of the comparison between the
models are shown in Table 6, and show that the mDice score
of CascadeMedSeg was 75.19%, which was 4.06% higher
than that of TransUNet; its mIoU score was 66.69%, i.e.
0.72% higher than that of DoubleU-Net. Overall, the pro-
posed model exhibited the highest scores in most evaluation
metrics, including Recall.

To provide a more intuitive demonstration of the supe-
riority of the proposed method, the segmentation results of
CascadeMedSeg and other SOTA methods are presented in
Fig. 7. The results of CascadeMedSeg are shown in col-
umn 10, demonstratingmore accurate tumor predictionswith
fewer incorrectly identified regions.

4.3.4 Experimental results on the ACDC dataset

The experimental results of CascadeMedSeg and other mod-
eling methods on the ACDC dataset are shown in Table 7.
It can be seen that CascadeMedSeg achieved an mDice of
91.49%, with the mDice organ subindices of RV, Myo and
LVs of 89.96%, 88.82% and 95.70%, respectively. All values
are obviously improved compared to the classical network
models and the latest methods currently proposed for ACDC.

4.4 Ablation study

To evaluate the influence of each CascadeMedSegmodule on
its overall performance, we performed ablation experiments
on the ACDC dataset. Specifically, we measured the impact
of individually designed modules on the model performance
by adding them to the baseline network in sequence. In this
case, the pre-trained PVT v2-b2 model was used as the base-
line model (PVT Encoder), on which the following three
models were based: (1) CascadeMedSeg w/o EAF; (2) Cas-
cadeMedSeg w/o EES; and (3) CascadeMedSeg(Ours). The
results of the ablation experiments are shown in Table 8.

As shown in Table 8, our implementation is compared
with various structures. We attempted to verify their effec-
tiveness by removing EAF or EES. Both EAF and EES are
required for the model, and removing either one leads to a
decrease in performance. ThemDice of CascadeMedSegw/o
EAF improved by 0.86% compared to PVT Encoder, while
the mDice of CascadeMedSeg w/o EES improved by 0.84%.
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Table 1 Results on the
Kvasir-SEG dataset

Method Kvasir-SEG

mDice(%) mIou(%) Precision(%) Recall(%)

UNet [13] 85.57 77.53 91.19 90.14

UNet++ [14] 87.10 79.52 87.74 90.70

Attention U-Net [17] 86.53 78.81 86.71 91.05

DoubleU-Net [9] 91.27 85.92 91.43 93.94

TransUNet [34] 91.94 86.70 91.93 94.34

DCSAU-Net [33] 88.17 85.40 77.70 88.49

CTO [37] 87.25 80.37 88.75 89.59

CascadeMedSegs 92.89 88.16 93.81 93.95

Bold font represents the best results compared with the current method

Table 2 Results on the
CVC-ClinicDB

Method CVC-ClinicDB

mDice(%) mIou(%) Precision(%) Recall(%)

UNet [13] 89.47 82.65 88.65 91.59

UNet++ [14] 90.13 83.68 91.19 90.14

Attention U-Net [17] 90.27 83.86 89.31 92.47

DoubleU-Net [9] 92.92 88.28 91.60 94.65

TransUNet [34] 93.00 88.40 93.66 92.66

DCSAU-Net [33] 88.88 77.70 89.32 89.76

CTO [37] 90.11 83.44 88.84 92.60

CascadeMedSeg 94.48 89.79 94.76 94.46

Bold font represents the best results compared with the current method

Table 3 Results of training on
Kvasir-SEG and testing on
CVC-ClinicDB

Method mDice(%) mIou(%) Precision(%) Recall(%)

UNet [13] 84.13 76.30 86.76 86.49

UNet++ [14] 84.27 76.40 86.58 87.05

Attention U-Net [17] 84.16 76.23 86.42 86.90

DoubleU-Net [9] 89.80 83.33 89.02 91.79

TransUNet [34] 90.53 84.28 89.96 92.48

DCSAU-Net [33] 83.17 73.81 83.60 87.02

CTO [37] 85.82 77.98 87.81 86.98

CascadeMedSeg 93.19 87.57 93.42 93.69

Bold font represents the best results compared with the current method

Table 4 Results of training on
CVC-ClinicDB and testing on
Kvasir-SEG

Method mDice(%) mIou(%) Precision(%) Recall(%)

UNet [13] 57.70 45.70 55.27 82.22

UNet++ [14] 62.01 49.53 64.35 75.59

Attention U-Net [17] 62.41 50.26 61.49 81.22

DoubleU-Net [9] 85.10 77.73 89.65 85.79

TransUNet [34] 84.76 78.32 92.06 82.06

DCSAU-Net [33] 64.22 53.75 75.87 67.54

CTO [37] 69.21 59.22 74.75 75.83

CascadeMedSeg 88.67 82.56 96.01 85.50

Bold font represents the best results compared with the current method
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Fig. 4 Visualization results from the Kvasir-SEG test set and the CVC-ClinicDB test set

Table 5 Results on the ISIC
2018

Method ISIC 2018

mDice(%) mIou(%) Precision(%) Recall(%)

UNet [13] 89.08 82.19 88.66 91.96

UNet++ [14] 89.09 82.11 91.06 89.47

Attention U-Net [17] 89.87 83.29 90.26 91.83

DoubleU-Net [9] 92.03 86.28 92.58 92.56

TransUNet [34] 91.97 86.30 92.56 92.94

DCSAU-Net [33] 90.89 84.51 91.21 92.35

CTO [37] 91.61 85.69 91.43 93.42

CascadeMedSeg 92.12 86.32 92.20 93.36

Bold font represents the best results compared with the current method

Table 6 Results on the BUSI Method BUSI

mDice(%) mIou(%) Precision(%) Recall(%)

UNet [13] 59.78 49.83 63.20 67.22

UNet++ [14] 61.79 50.91 61.93 72.83

Attention U-Net [17] 62.75 53.38 68.50 65.12

DoubleU-Net [9] 74.77 65.97 77.73 76.30

TransUNet [34] 71.03 62.74 73.17 74.24

DCSAU-Net [33] 75.14 66.56 76.03 80.09

CTO [37] 70.31 61.15 72.70 74.87

CascadeMedSeg 75.19 66.69 74.32 80.34

Bold font represents the best results compared with the current method
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Fig. 5 Visualization results from the ISIC 2018 test set

Fig. 6 Visualized intermediate feature heatmap from the ISIC 2018

Fig. 7 Visualization results from the BUSI test set
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Table 7 Results on the ACDC Method ACDC

mDice(%) RV Myo LV

R50+UNet [34] 87.55 87.10 80.63 94.92

R50+AttnUNet [34] 86.75 87.58 79.20 93.47

ViT+CUP [34] 81.45 81.46 70.71 92.18

R50+ViT+CUP [34] 87.57 86.07 81.88 94.75

TransUNet [34] 89.71 86.67 87.27 95.18

Swin-UNet [35] 88.84 85.15 85.62 95.75

CascadeMedSeg 91.49 89.96 88.82 95.70

Bold font represents the best results compared with the current method

Table 8 Detailed ablation study
of the CascadeMedSeg
architecture

Method EES EAF mDice(%) HD96(mm)

PVT Encoder × × 89.86 2.84

CascadeMedSeg w/o EAF � × 90.72 1.20

CascadeMedSeg w/o EES × � 90.70 1.11

CascadeMedSeg(Ours) � � 91.49 1.18

The results demonstrate that the designed EAF and EES
modules significantly enhance the network’s performance.
Furthermore, compared to PVT Encoder, the mDice of Cas-
cadeMedSeg (Ours) increased by 1.63%. This demonstrates
that integrating the proposed EAF and EES modules into the
network improves its performance.

5 Conclusions

In this paper, a MIS method called CascadeMedSeg is pro-
posed. This framework utilizes the PVT v2 backbone as an
encoder to extractmore powerful and robust features. In addi-
tion, it incorporates the novel EAF and EES modules, with
the former efficiently integrating the encoder and decoder
features and reducing the issue of information inconsistency.
At the same time, the latter uses a dynamic boundary detec-
tion operator to extract the boundary mask and embed it in
the decoder to enhance the image boundary features. The
model is evaluated on five different MIS datasets and gen-
eralization tests are conducted. The results indicate that the
CascadeMedSeg architecture outperforms other SOTAmod-
els and demonstrates high generalization performance. In the
future, we will focus on optimizing the architecture of Cas-
cadeMedSeg to improve its performance andmake it suitable
for a wider range of MIS tasks.
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