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Abstract
In cases with highly non-stationary noise, single-channel speech enhancement is quite challenging, mainly when the noise
includes interfering speech. In this situation, deep learning’s success has contributed to speech enhancement to boost intel-
ligibility and perceptual quality. Existing speech enhancement (SE) works in time–frequency domains only aim to improve
the magnitude spectrum via neural network learnings; the latest research highlights the significance of phase in perceptual
speech quality. Motivated by multi-task machines and deep learning this paper, proposes an effective and novel approach to
the task of speech enhancement using an encoder-decoder architecture based on Deep Complex Convolutional Neural Net-
works. The proposed model takes input from the spectrograms of the noisy speech signals, consisting of real and imaginary
components for complex spectral mapping, and it simultaneously enhances the magnitude and phase responses of speech.
Considering unseen non-stationary noise categories, which interfere with speech, the proposed model enhances speech qual-
ity by approximately, 0.44 MOS points compared to state-of-the-art single-stage techniques. Moreover, it outperforms all
reference techniques constantly and improves intelligibility under low-SNR settings. In contrast, against the baselines, we
find an incredible enhancement of over 3 dB in SNR, and 0.2 in STOI. In addition, our method outperforms baseline SE
techniques in low-SNR conditions in terms of STOI.

Keywords Background noise · Speech signals · Speech enhancement · Noise suppression · Deep learning · Deep complex
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Abbreviations

DCCNN Deep complex convolutional neural network
Mag-Phase Magnitude-phase
Real-Imag Real-imaginary
SE Speech enhancement
CED Convolutional encoder-decoder network
cMSA Complex masked spectrum approximation
CNN Convolutional neural network
CRM Complex ratio mask
CSA Complex spectrum approximation
DFT Discrete Fourier transform
DNN Deep neural network
IRM Ideal ratio mask
LSTM Long short-term memory
MA Mask approximation
MMSE-LSA Minimum mean-square error log-spectral

amplitude
MOS-LQO Mean opinion score for listening quality

objective
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MSA Masked spectrum approximation
PESQ Perceptual evaluation of speech quality
RNN Recurrent neural network
ReLU Rectified linear unit
SG-jMAP Super-Gaussian joint maximum a posteriori
SNR Signal-to-noise ratio
SNRI Signal-to-noise ratio improvement
STFT Short-time Fourier transform
STOI Short-time objective intelligibility
T-F Time–frequency

1 Introduction

In everyday circumstances, noise inevitably distorts speech
waveforms that are recorded by equipment, which has a
significant impact on real-world applications like telecom-
munication and hearing aid devices. Speech enhancement
(SE) approaches based on deep learning are being developed
to recover clean waveforms from degraded ones using neural
networks, thereby improving speech perceived quality and
mitigating the impact of noise.

One can broadly categorize the current state of SE
approaches into two categories: time-domain methods and
temporal-frequency (TF) domain systems. Neural networks
were used by the time-domain SE approaches [1–5] to figure
out how to map from noisy waveforms into cleaner ver-
sions and these approaches directly use audio signals to train
the neural network [6]. Unluckily, because high-resolution
waveforms were directly generated, this kind of approach
continued to exhibit inefficiencies and quality constraints.
TF-domain SE approaches performed superior performance.
A deep neural network TF-domain SE methods aim to pre-
dict clean frame-level TF-domain representations and then
reconstruct the enhanced waveforms [7–11]. In [12], a TF-
domain based model called TFADCSU-Net was presented
and it improves information flow inside the model and pre-
vents a notable increase in computing complexity as the
number of network layers rises.

Generally, phase is not included in commonly utilized rep-
resentations since the challenge is tremendous to enhance
phase spectra directly, given its wrapping and nonstructural
properties. However, recent research has shown how phase
information is crucial to the speech perception quality of SE
approaches, particularly when signal-to-noise (SNR) is low
[13]. In previous studies, the researchers merely improved
themagnitude spectra and used the noisy phase and enhanced
magnitude spectra to reconstruct the waveforms utilizing an
inverse short-time Fourier transform (ISTFT) [7–10]. In [14]
TFA-S-TCN model proposed which primarily concentrate
on improving the magnitude spectrum and making use of

the noise mixture’s phase for reconstructing the signal. In
absence of phase spectrum enhancement inevitably has led
to degradation of enhanced speech quality. To solve above
issues, several approaches concentrated on enhancing short-
time complex spectra, that quietly restored jointly clean
magnitude and phase spectra [15, 16]. A recent study also
suggested refining the complex spectrum after enhancing its
magnitude [17, 18]. This can help to mitigate the unbounded
estimation issue [19, 20] that was present in the methods that
solely improved the complex spectra.

Still, there was an imperfect phase estimation due to the
compensating effect [21] between the phase and magnitude.
In order to achieve this goal, a large number of DNN-
based phase-in algorithms are proposed going forward and
may be broadly classified into two groups: complex-domain-
based [21–23]and time-domain-based [24, 25]. For complex
domains, the implicit relative relationship between the real
and imaginary (RI) elements contains phase information. For
instance, in [26], authors suggested using fully-connected
(FC) layers stacked one on top of the other for estimating
complex ratiomask (CRM), it is then given individually to RI
portions of the spectrum in order to recover phase and mag-
nitude concurrently. Nevertheless, the goal dynamic range
is typically compressed using the nonlinear function, which
somewhat impairs network training.

In supervised speech enhancing, deep neural networks
(DNNs) showed remarkable efficacy [27] and use of DNNs
for SE has shown tremendous improvement over the classi-
cal methods [28]. Although effective in noise-independent
SE, deep neural network (DNN) methods are not very good
at generalizing speaker features [29]. Even though vanilla
DNN is a strong model, its efficacy in mismatched scenarios,
such as speaker-independent or noise-independent circum-
stances, may be limited since the interdependence between
nearby temporal frames is not explicitly taken into account
[29]. A convolutional recurrent network (CRN) utilizes to
directly map RI components in Tan et al.’s more modern [15]
complicated spectrum mapping approach, which produces
empirically better results than CRM. Fu and others. Con-
volutional neural networks, or CNNs employed for speech
augmentation recently. T-F illustration of speechmixed noise
is used as input for CNN in speech improvement, which is
driven by CNN-based image processing techniques, just to
estimate target speech [30]. The performance of CNN used
by the authors in [31] for estimating clean complex spectro-
grams straight from noisy spectrograms was better than that
of the DNN-based magnitude processing technique.

Convolutional encoder-decoder (CED) is a principle that
has been received from computer vision research and forms
the foundation of several successful CNN model designs
[32, 33] and recently CED mechanism has been utilized in
Speech Enhancement techniques to enhance feature infor-
mation [34, 35]. An encoder and decoder were employed
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to preserve the original information of audio signals in the
[36] DCTDCCGRU based deep learning model. However,
this model concentrates on frequency information and might
not adequately capture time-domain properties. The tempo-
ral information in speech signals is essential for preserving
the speech’s naturalness and comprehensibility [37].

When compared to cutting-edge deep learning techniques
for complicated spectrum mapping, the fully convolutional
neural network (CNN) presented by the authors in [38] to
process complex spectrogram in noise reduction has shown
a significant improvement. Zhao et al. have also employed a
CED network in a post-processing step to improve encoded
and subsequently decoded speech, demonstrating impressive
generalization capabilities even to unknown codecs [39]. In
order to estimate the target voice, an auto-encoder convolu-
tional neural network (AECNN) is presented [40], withmean
absolute error (MAE) serving as a cost function. Two streams
are employed within the PHASEN network, which uses
phase information in improving performance of amplitude-
based SE [41]. The authors of [42] suggested a CFN-based
encoder–decoder features with numerous skip connections
enabling monaural speech improvement, in contrast to tra-
ditional CNN architectures that simply use pooling layers
to compress the feature dimension. Using strides deconvo-
lutions or upsampling layers, the feature dimension in this
model decompresses in the decoder section and compresses
in the encoder section [43]. High-resolution structural infor-
mation is preserved with skip connections integration going
through layers of equal size within the encoder towards the
decoder. This is particularly crucial for regression tasks like
noise reduction when learning to map using a noisy speech
spectrum towards a target clean speech spectrum of identical
size is necessary. To increase the receptive fields and capture
the interdependence between various frames, dilated CNN
has been employed. In contrast to RNN-based techniques,
gated residual networks (GRN) [44] have demonstrated supe-
rior performance when employed in conjunction with dilated
CNN for speech enhancement. However there are still draw-
backs to the previously listed strategies. For example, in
a standard convolutional encoder-decoder network, using a
high kernel size might boost the model’s receptive fields, but
at the expense of increased computational cost [40]. There
was still potential for improvement in the speech quality
because these techniques could not explicitly and precisely
anticipate the clean phase spectra. Hence, for TFdomain SE
techniques, it is imperative to do explicit prediction and opti-
mization on the phase spectra.

InceptionNet and MHCED use multiple kernels of vary-
ing sizes to increase model capacity; however, using high
kernel sizes [45] is likely to reduce parameter efficiency
and restrict the model’s applicability in resource-constrained
applications. Each group takes half of the input sequence
in the two group convolutions that the AlexNet employs

in parallel at each layer [46]. But just a portion of the
input sequence is used for each convolution group, which
can restrict each kernel to only extracting a portion of
the information throughout the entire input sequence to
downgrade the effectiveness of the model possibly. Group
convolution channels within ShuffleNet are suggested to be
rearranged using the channel shuffle [47], so that the chan-
nels relate to one another. Furthermore, ShuffleNet generates
a single feature by sequentially applying ordinary convo-
lution and depth-wise convolution. By keeping separate
feature maps of conventional and depth-wise convolutions,
this one characteristic can be improved much further. The
AECNNarchitecture only uses the skip connections through-
out the encoder as well as the decoder to feed data stored
in encoder layers to the appropriate decoder layers [40].
Though it may help improve enhancement performance, the
encoder/decoder’s internal information flow reuse has not
been investigated.

1.1 Contribution

We suggest a novel frameworkwith a Complex spectral map-
ping called Deep Complex convolutional neural network
(DCCNN), based on an encoder and decoder with parallel
magnitude and phase or real-imaginary spectra denoising,
to get around the performance limitations of previous SE
techniques in difficult circumstances. In the proposed deep
learningmodel encoder helps in encoding input noisymagni-
tude and phase spectrums to compressed TFdomain features
for the upcoming decoding process while the corresponding
decoder masks magnitude as well decodes phase and gives
an output of enhanced mag-phase spectrum, respectively in
the last iSTFT used on the enhanced mag-phase spectrum
to reconstruct clean signal waveforms. The phase decoder
incorporates the parallel phase estimation architecture to
predict the clean phase spectra directly. In accordance with
findings from experiments, our proposed DCCNN achieves
explicit predictions and optimizations of the phase and mag-
nitude spectrums, which reduces the compensating impact
between themand surpasses state-of-the-art SEmethods. The
proposed deep learning model is unique to have achieved the
direct enhancement of phase spectra.

1.2 Problem description

Time-domain noisy audio signal x(t) in real-time environ-
ments is a combination of additive noise n(t) and clean speech
signal s(t), where t represents a discrete-time element. This
noisy audio signal is calculated mathematically in Eq. (1).

x(t) � s(t) + n(t) (1)
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This signal undergoes a transformation into the frequency
domain using STFT that is utilized over consecutive frames.
STFT of the noisy mixed signal is measured as:

X(k, l) �
{∞}∑

{n�−∞}
x(n)w(n − lH)e−j2λkn/N (2)

In Eq. (2) window function is represented by w(n), hop
size is H, N is FFT size, while k and l represent frequency
bin and frame index, correspondingly. This gives a complex
spectrogram:

X(k, l) � Xr((k, l)) + j Xi((k, l)) (3)

In Eq. (3) Xr((k, l)) is real whereas Xi((k, l)) is imagi-
nary component of the complex spectrogram, respectively.

1.3 Deep learning-based denoising process

A proposed neural network model is designed for estimat-
ing a clean complex spectrogram, Ŝ(k, l), from this noisy
spectrogram by effectively learning to reconstruct both the
magnitude and phase components. The deep learning model
is trained by utilizing a loss function of Mean Squared Error
(MSE), specially formulated to handle the complex nature of
the spectrogram. MSE loss is calculated as:

MSE � 1

KL

∑K

{k�1}
∑L

{l�1}
×

((
Sr(k, l) − Ŝr(k, l)

)2
+

(
Si(k, l) − Ŝi(k, l)

)2 )

(4)

where by L symbolizes the entire frames present while K
entire quantity of frequency bins. This loss function ensures
that the model will make accurate predictions for both real
Sr and imaginary Si portions, enabling a more accurate clean
speech signal reconstruction. The proposed technique has
the ability for maintaining well the natural dynamics and the
timbre of the speech, resulting in an output that is less noisy
and retains much of the original characteristics of the speech
by addressing both components. After training, the estimated
clean spectrogram Ŝ(k, l) is processed by the inverse oper-
ation of the STFT, iSTFT, for getting a time-domain audio
signal and iSTFT is illustrated by:

ŝ(t) �
∞∑

{l�−∞}
Ŝ(k, l)w(t − lH)ej2λkt/N (5)

In this way producing the denoised speech signal ŝ(t).
This comprehensive method not limited to only enhancing
denoised speech quality and intelligibility but also demon-
strates significant enhancements in Signal-to-Noise Ratio

(SNR), as confirmed through empirical research. Integration
of simultaneous magnitude, as well as phase reconstructions
in complex spectrogram processing, exemplifies a robust
approach to managing real-world noisy speech signals.

2 Proposedmethodology

Theproposedmodel,DCCNN, is trainedby supervised learn-
ing using features from the Fourier spectrum and its purpose
is to give an estimation of clean audio signals from the noisy
audio signals. The model inputs 13-time frame sequences at
a time, all of which consist of real-imaginary spectrograms
derived from audio signals. This dual-component approach
has the phase information weighted for better quality of the
reconstructed audio signal. The proposed model learns a
mapping from a real-imaginary noisy signal feature X(k, l)
to an estimated clean real-imaginary signal feature Ŝ(k, l),
as given in below Fig. 1.

In proposed methodology processing of data is prepared
starting with clean audio signal (target) and noisy audio
signal (source) x(t) as shown in Fig. 2 and below steps
is followed in the methodology of deep learning Speech
Enhancement model:

1. Given N raw waveform signals for clean and noisy
speech, overlapped framing is applied.

2. Apply thewindowing analysisw(n) to the framed signals.
3. Convert the framed and windowed signals into the

required representation, with help of Short-Time Fourier
Transform (STFT) and real-imaginary spectrogram X(k,
l) is obtained.

4. Create an annotated data set with noisy and clean speech
pairs features (noisy_speech_real-img_spectrogramsi,
clean_speech_real-img_spectrogramsi) with 1 ≤ i ≤
N.

The training process for DCCNN follows below steps:

5. Train the DCCNNmodel in a way such that it minimizes
an objective function while estimating clean features,
from noisy features. Ŝ(k, l)X(k, l)

For denoising:

6. As shown in the figure a new noisy feature X(k, l) is
applied to the proposed trained DCCNN giving an esti-
mated clean feature Ŝ(k, l).

7. iSTFT is used to estimate clean feature Ŝ, and time
domain frames of the denoised signal obtained.

8. Then, synthesis windowing w(n) is applied to the time-
domain denoised frames of ŝ(t) to reduce the spectral
leakage.
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Fig. 1 DCCNN takingNoisy (mixed) spectrograms as input for supervised training and directlymaps it out to a clean one during speech enhancement

9. Finally, the overlap-add method is used to obtain the
final time-domain denoised signal s(t) from the estimated
clean frames. This step ensures a smooth reconstructed
audio signal.

The steps in the suggested methodology are summarized
in Fig. 2 where the input to the proposed DCCNN model is
exploited in the form of time–frequency (spectrogram) of a
noisy speech.

3 System overview

3.1 Network architecture

Recommended Deep Complex Convolutional Neural Net-
work (DCCNN) is developed as a convolutional encoder-
decoder architecture for processing of real-imaginary as well
as magnitude-phase spectrograms of audio signals in SE.
The components including different layers of DCCNN deep
learning model are illustrated in Fig. 3. The complex struc-
ture provides a full representation of sound, which makes it
better to differentiate between the two components speech
and noise components of it. The proposed DCCNN takes the
real-imag or mag-phase spectrum of a noisy mixture as input
consists of 13 frames, and produces an estimate of the tar-
geted speech’s magnitude-phase spectrum or real-imaginary
spectrum. Estimated target speech is reconstructed with the
help of estimated real-imaginary or magnitude-phase of tar-
get speech. At the heart of the encoder, convolutional layers
are stacked, with each having a LeakyReLU activation and
batch normalization, starting from 16 filters and finally rising
to 128.The encoder serves for obtainingmajor characteristics
from the given input data, spatial dimension are preserved of
the input sequence by using the strides and depth is expanded
as the network goes deeper.

In proposedDCCNNstructure decoder layers are reflected
as part of the encoder where transposed convolution lay-
ers are applied that reconstruct the audio signal to form an
enhanced output from the encoded features. Skip connections
are further applied from layer to layer across the network to
ensure that the flow and preservation of important features
are maintained for high-quality reconstructed speech. More
precisely, a skip connection is utilized for linking CCU’s out-
put to the matching symmetric CDU. These skip connections
allow the correspondence between different convolutional
units and deconvolutional units in the encoder and decoder,
respectively, which becomes very important in holding the
integrity of spatial and feature information.

3.2 Cluster convolutional units

The proposed DCCNN employs CCU which is encoder side
of the proposed monaural speech enhancement model. In its
design for a deep complex convolutional unit, it encodes input
spectrograms efficiently for processing. The mathematical
model applied for every convolutional layer associated with
the encoder’s 2D convolution is provided as follows:

(6)

C (k, l, n) �
K∑

i�1

L∑

j�1

M∑

m�1

F
(
i, j, m, n

)

· X (
k + i − 1, l + j − 1, m

)

where C(k, l, n) is the output feature map at position (k,
l) for the n-th output channel. This equation summarizes
the idea of convolution as a way of simply transforming the
input feature matrix X across its spatial dimensions while
modifying the channel depth from M to N thus encoding
rich and complex patterns from the noisy speech inputs.
Following the convolution, the output feature map is then
passed through a LeakyReLU activation function [48] for
introducing non-linearity. Each unit integrates a LeakyReLU
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Fig. 2 Demonstrating the procedures for DCCNN SE model training for fitting a noisy prediction function

activation function given by:

y � max(0.01x, x) (7)

This ensures that there is still small gradient flow even
when the neuron is at rest, thus improving network’s capabil-
ity to learn nuanced characteristics during training. Another
is activation function batch normalization, which is used
for stabilization to quicken the learning by normalizing the
output over each convolutional layer. For the encoder of
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Fig. 3 Illustration of Proposed DCCNN architecture including all layers with dimensions. The labels of components are given at bottom of Fig. 3

the proposed DCCNN, this becomes a robust skeleton with
which, in a complicated and efficient manner, it is possi-
ble to code audio signals; this is fundamental both for further
decoding and for a subsequent improved speechoutputwhen-
ever background noise is present. Dropout layers are applied
inside the proposed DCCNN architecture after certain con-
volutional layers in the encoder to randomly deactivate a
fraction of units during training, reducing overfitting and
encouraging robust feature learning. Unlike standard CNNs
in proposed DCCNN’s encoder either real and imaginary
spectrums or magnitude and phase spectrums process to esti-
mate clean data in the architecture.

3.3 Cluster deconvolutional units

The decoder segment of suggested DCCNN incorporating
single channel speech enhancement is an assembly of cluster
deconvolutional units carefully structured for reconstruct-
ing denoised audio signals from encoded characteristics.
Presented operation is done using transposed convolutional
layers (Conv2DTranspose), mathematically doing the oper-
ation:
C′ (k, l, n)

�
∑K

i�1

∑L

j�1

∑M

m�1
F′ (i, j, m, n

)
X′ (k − i + 1, l − j + 1, m

)

(8)

where X′ is input to layer, F′ denotes the filter matrix used
for deconvolution, and C′ is the output feature map. This
process spatially undoes the down-sampling that happened
during the encoding—for the motive to upscale again, to the
original dimensions of the spatial feature maps. Followed
by each transposed convolution, it applies Leaky ReLU [48]
using the DCNN:

y′ � max
(
0.01x′, x′) (9)

This function reintroduces non-linearity into the up-
sampled outputs and ensures the maintenance of small
gradients when units are inactive, aiding in the deep net-
work’s learning process. Batch normalization is then applied
to normalize the outputs of each deconvolutional unit:

x̂′ � x′ − µ
′
B√{

σ 2
B′ + ε

} (10)

Here, µB′ and σ 2
B′ represent the batch-wise mean and

variance, respectively, ensuring that the learning process
remains stable by maintaining consistent activation distri-
butions. These cluster deconvolutional units (CDU) play a
crucial role in restoring the detailed and nuanced audio fea-
tures, ensuring the output audio signals are clear and closely
resemble the original pre-noise conditions. Using batch nor-
malization and Leaky ReLU in the decoder would stabilize
the training, and the network will learn more advanced fea-
tures when reconstructing the enhanced audio signal. Unlike
standardCNNs theDecoder orCDU in the proposedDCCNN
process either real-imaginary or mag-phase spectrums of
noisy mixture audio signals to learn about speech enhance-
ment.

3.4 Skip connections within encoder and decoder

A convolutional encoder-decoder processes the series of
inputs through a number of layers. Certain details might get
wasted because variation within dimensions of signal char-
acteristic representations [40, 49]. In an effort to enhance
reusing features, skip connections connecting encoder and
decoder are implemented for overcoming this problem and
skip connections in the architecture of proposed Deep Com-
plex CNN played a vital role for Complex Spectrograms as
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a conduit for the denoising of the features of both real and
imaginary spectrograms. On the contrary, this model diverts
from conventional design ones and does not apply dense
layers; rather, it makes use of convolutional layers, which
are densely and unambiguous connected through skip con-
nections. The connection hooks the direct pass in important
paths from the encoder to the decoderwithout breaking them,
resulting in this way for the passing of important informa-
tion for the speech enhancement. In spectrogram denoising,
the decoder has access to the information at the spectrum
level from fine to high level, which has been extracted by the
encoder using skip connections. Such a holistic perspective
shall help the decoder to build denoised complex spectro-
grams of enhanced quality by using the power of both the
richness of real and imaginary parts in a more effective
manner. Such a strategically designed deployment of skip
connections should optimally handle the flow of informa-
tion; therefore, the proficiency of the model can be improved
to disentangle complex relationships present in the spectro-
gram data for optimum denoising.

4 Selection and processing of data

4.1 Databases and preprocessing

During training and assessment ofDCCNNclean speech data
use is collected from TIMIT [50] and CSTR VCTK Corpus
[51] and noise speech data from DEMAND [52] databases
and all audios down sampled to 8 kHz. CSTRVCTKCorpus
consists of 110 English speakers with 400 sentences. To start
our framework for desired noise reduction against baseline
methods initially cafeter, traffic, metro, bus noise files from
DEMAND database and café noise type from the QUT [53]
noise database whereas babble and restaurant noises from
AURORA-2 [54] database mix with training, development
and testing utterances. For each clean and noisy speeches we
combine the two databases into a single, sizable set that has
an overall amount of 45,150 audios of equal number of males
and females speakers. We create unique test, development,
and training setups utilizing 70%, 15%, and 15% of entire
data, respectively. A total of 4 × 7 � 28 training conditions
are produced for each batch of data by combining all files
with a selected portion from each of the 7 noise samples and
apply SNRs of 0, 5, 10, as well as 15 dB. In total of 45,150
speeches per clean and noisy set (30,102 × 6 ÷ 60 ÷ 60
� 50.17) 50.17 h noisy audio mixtures use for training pro-
posed DCCNN framework, and approximately 7,524 audios
of 12.54 h noisy speech mixtures for each development and
test set to evaluate our model. For development and test data
SNRs of − 5 and 15 dB unseen noise mix with clean data to
analyze model Speech Enhancement performance.

4.2 Training and network parameters

The CNN-based Deep Complex network, which is an
encoder-decoder model, is trained using standard backprop-
agation [55], employing a Mean Squared Error (MSE) loss
function as defined in Sect. 1.4. During model training the
Adam optimizer [56] with a 0.001 learning rate initially, 1
batch size, and other parameters like window length of 512,
window shift of 256 for STFT providing frequency content
and temporal smoothness, respectively, number of DFT set
to 512 controlling frequency resolution, and a context win-
dow width of 13 frames are set to provide temporal context.
The proposedmodel performance is tested with different val-
ues for optimizer, batch size, window length, window shift,
DFT set and context window width. It is noted that high
learning rate can cause divergence, smaller batch size avoid
randomness and memory efficient for proposed model. The
width of the context window for complex spectrograms in
current network significantly affects the ability to capture
the temporal dependencies in both clean speech and noise.
A wider context window width allows the model to better
differentiate and separate noise from the clean signal and
improving the denoising process. During training proposed
DDCCNN, learning rate adjusts using learning rate scheduler
that decreases it by a factor of 0.9 after the 5th epoch to avoid
underfitting and overfitting of model. If there is no decrease
in loss after two epochs, training network resumes following
epoch featuring most favorable development set loss. If the
learning rate falls below 0.00001, the training is terminated.
To get favorable speech enhancement performance proposed
Deep Complex Convolutional Neural Network (DCCNN)
model is testedwith different number of layers andkernel size
which have big impact on model’s noise reduction capacity.
It is noted large number of layers causes high computational
resources and less number of layer has issue of underfit-
ting of the proposed network during training. So finally the
proposed network is designed with 4 encoder blocks and 4
decoder blocks (L � 4), each using a kernel size of 2 × 2.
Number of convolutional filters starts at 16 in the first layer
and doubles with each subsequent layer, up to a maximum of
128 filters. This structure of layers in encoder and decoder as
well as other parameters mentioned above maintain stabil-
ity between computational resources and model complexity
and this settings give favorable speech enhancement results
in terms of SNRI, PESQ and STOI.

4.3 Instrumental evaluationmetrics

We decide using solely instrumental measurements on noisy
speech x(t), clean speech reference s(t), and the enhanced
speech ŝ(t). As a measure of the system’s ability to suppress
noise, signal-to-noise ratio improvement (SNRI) offered dur-
ing network testing assesses in accordancewith ITU-TG.160
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[57]. SNRI choice for performance evaluation indicator is
due to the fact as it reads how much noise has been reduced
by proposed Deep Complex Convolutional Neural Network
(DCCNN) network. In addition, we apply perceptual eval-
uation of speech quality (PESQ) [58] for obtaining mean
opinion score for listening quality objective (MOS-LQO). In
proposed network PESQ as a performance evaluation indi-
cator tells approximate values to human listening objective
metrics MOS for enhancement in speech quality in real time.
Short-time objective intelligibility (STOI) metric [59] is uti-
lized for evaluating the boosted speech’s intelligibility. STOI
metric, which has values in the range [0, 1], is especially
intended for assessing noise suppression techniques there-
with high values closely correlated with high intelligibility.
By evaluation of proposed DCCNN with STOI scores indi-
cates that after noise reduction the enhanced speech can be
hearable or not for humans which is critical for every com-
munication system.

5 Results and analysis

Several representative SE methods MMSE-LSA and SG-
jMAP [60], LSTM-IRM [29], LSTMMSA, LSTMcMSA,
CEDcSA-du, LSTMcMSA + DNNcSA, LSTMcMSA +
CEDcSA-du and LSTM-cMSA + CEDcSAtr [61] and
LSTM-cMSA + CLED-cSA-du [62] were selected to com-
pare with proposed DCCNN. Which are discussed below
based on Seen noise types and Unseen Noise types.

5.1 Seen noise types results

The results achieved from processing data of development
class employing noise types that were observed through-
out training are displayed in Table 1. The proposed deep
learning-based approachDCCNNperforms significantly bet-
ter than the existing deep learningmethods and the traditional
MMSE-LSA and SG-jMAP [60] in context of PESQ, STOI,
aswell as SNRI, not only on averagemeasurements but under
any single SNR situation too.Most remarkably, the raw noisy
speech owns an average achieved across STOI values of 0.75,
and conventional procedures cannot increase intelligibility in
context of objective metric STOI. Suggested deep learning-
based approach, on the other hand, improves on that value
by as much as 0.16 points (0.91) on average across SNR
conditions.

Further, for the extremely difficult − 5 dB condition,
PESQ throughout raw noisy speech is only marginally
improved by MMSE-LSA and SG-jMAP, while PESQ
is greatly enhanced by the proposed deep learning-based
method DCCNN, despite not seeing a comparable low SNR
during training. By contrasting the LSTM-IRM along with
LSTM-MSA single-stage baselines, we find that DCCNN

consistently outperforms them in context of PESQ, alongside
average enhancements about 0.65 MOS points respectively.
This supports the idea that optimization is more beneficial in
the speech spectral domains than masking domains. In com-
parison toLSTM-MSA (17.89 dB) at an average across entire
SNR circumstances, proposed DCCNN exhibits superior
noise cancellation capabilities than multiple stages filtering
networks.

Nonetheless, DCCNN outperforms all standard
approaches in terms of PESQ values in low-SNR situa-
tions of − 5 and 0 dB. This could occur since by employing
the real along with imaginary elements of clean speech
spectrum ŝ(t) as target, DCCNN implicitly estimates the
clean magnitude and phase of noisy mixture complex
spectrum. Particularly during low-SNR situations, DCCNN
nevertheless offers farmore noise reduction in terms of SNRI
than any other single-stage and multiple-stage technique.
We decide to use the suggested DCCNN because of this
finding as well as the fact that it offers most favored average
Speech Enhancement (SE) ability on the development class.
It obtains an average PESQ improvement of 0.41 points
(3.04), average SNRI of 0.12 points (25.46), and average
STOI of 0.03 points (0.91) across the development set
over all SNR conditions in comparison to best baseline
method LSTMcMSA + CEDcSA-tr. It is understandable
that this discovery to mean that, even with similar extra
noise suppression, the DCCNN network is more effective
at reconstructing lost or damaged speech segments, leading
to improved total speech quality in terms of PESQ. The
DCCNN approach considerably enhances STOI throughout
all SNR levels with regards to intelligibility. In case of lower
SNR level of − 5 dB, where upgrading intelligibility is
particularly essential it delivers gain of up to 0.13 points
(0.82) in STOI scores against best baseline approach.

When comparing the outcomes from the test class and the
development class, the examination for each set produces
similar judgments regarding system rank aswell as efficiency
patterns across each of the factors as indicated in Table 2.
Each model, even those using traditional methods which
are not using development class during parameter adjust-
ment, perform somewhat worse overall on the test class.
This indicates, test class is marginally higher challenging
in processing for various speech enhancement techniques,
and deep learning techniques perform better when applied
during processing test class samples. In comparison to the
development class, the average results of the suggested tech-
nique DCCNN slightly little poorer in context of PESQ
and STOI; nevertheless, in terms of SNRI, they are even
marginally better than those of the high complexity refer-
encing, LSTMcMSA + CLEDcSA − du.

123



Signal, Image and Video Processing

Table 1 Development class seen
noise comparison of proposed
with baseline methods

SNR Methods PESQ STOI SNRI

- 5 Unprocessed 1.35 0.53 0

MMSE-LSA 1.39 0.5 3.51

SG-JMAP 1.38 0.49 4.13

LSTM-IRM 1.61 0.65 11.76

LSTM-MSA 1.65 0.66 12.61

LSTM-cMSA 1.6 0.64 15.83

CEDcSA-du 1.52 0.65 11.75

LSTM-cMSA + DNN-cSA 1.61 0.68 17.07

LSTM-cMSA + CED-cSA-du 1.63 0.69 17.12

LSTM-cMSA + CED-cSA-tr 1.63 0.69 17.27

Proposed-DCCNN 2.87 0.82 19.02 dB

0 Unprocessed 1.52 0.65 0

MMSE-LSA 1.64 0.63 4.37

SG-JMAP 1.63 0.63 5.19

LSTM-IRM 1.99 0.79 17.14

LSTM-MSA 2.08 0.8 19.21

LSTM-cMSA 2.03 0.8 24.59

CED-cSA-du 1.92 0.81 19.15

LSTM-cMSA + DNN-cSA 2.06 0.83 26.55

LSTM-cMSA + CED-cSA-du 2.12 0.85 26.1

LSTM-cMSA + CED-cSA-tr 2.12 0.84 26.5

Proposed-DCCNN 2.95 0.88 27.11 dB

5 Unprocessed 1.77 0.76 0

MMSE-LSA 1.97 0.75 5.1

SG-JMAP 1.98 0.75 6.14

LSTM-IRM 2.42 0.87 18.39

LSTM-MSA 2.53 0.88 20.2

LSTM-cMSA 2.55 0.89 26.13

CED-cSA-du 2.43 0.9 21.98

LSTM-cMSA + DNN-cSA 2.61 0.91 28.6

LSTM-cMSA + CED-cSA-du 2.7 0.92 27.79

LSTM-cMSA + CED-cSA-tr 2.7 0.92 28.47

Proposed-DCCNN 3.01 0.94 28.61

10 Unprocessed 2.11 0.86 0

MMSE-LSA 2.36 0.84 5.54

SG-JMAP 2.41 0.85 6.88

LSTM-IRM 2.84 0.92 17.92

LSTM-MSA 2.93 0.93 19.22

LSTM-cMSA 3.01 0.93 25.51

CED-cSA-du 2.97 0.95 24.09

LSTM-cMSA + DNN-cSA 3.08 0.95 28.29

LSTM-cMSA + CED-cSA-du 3.17 0.96 27.17

LSTM-cMSA + CED-cSA-tr 3.19 0.96 28.16

Proposed-DCCNN 3.27 0.96 28.48

15 Unprocessed 2.53 0.93 0
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Table 1 (continued)
SNR Methods PESQ STOI SNRI

MMSE-LSA 2.76 0.92 5.53

SG-JMAP 2.87 0.91 7.22

LSTM-IRM 3.24 0.92 16.64

LSTM-MSA 3.32 0.96 18.2

LSTM-cMSA 3.39 0.96 23.47

CED-cSA-du 3.42 0.96 25.58

LSTM-cMSA + DNN-cSA 3.43 0.97 26.39

LSTM-cMSA + CED-cSA-du 3.51 0.97 25.03

LSTM-cMSA + CED-cSA-tr 3.54 0.97 26.31

Proposed-DCCNN 3.65 0.96 28.91

Mean Unprocessed 1.86 0.75 0

MMSE-LSA 2.02 0.73 4.81

SG-JMAP 2.05 0.73 5.91

LSTM-IRM 2.42 0.84 16.37

LSTM-MSA 2.5 0.85 17.89

LSTM-cMSA 2.52 0.85 23.11

CED-cSA-du 2.45 0.85 20.51

LSTM-cMSA + DNN-cSA 2.56 0.87 25.38

LSTM-cMSA + CED-cSA-du 2.62 0.88 24.64

LSTM-cMSA + CED-cSA-tr 2.63 0.88 25.34

Proposed-DCCNN 3.04 0.91 25.46

5.2 Unseen noise types results

Table 3, displays results after analyzing the unseen noise test
class in regard to baseline techniques, in which results aver-
age across the several forms of noise (traffic, cafeter, metro,
bus, café, babble and restaurant noise). Observations of simi-
lar patterns and model ranks to the assessment for seen noise
varieties are made once more, indicating that the techniques
based on deep learning are generally well-suited to these
very non-stationary unseen noise patterns. Particularly, when
averaged across all SNR levels, the recommended DCCNN
network outperform the current speech enhancement tech-
niques and gives PESQ 0.08 MOS points (2.70), STOI 0.01
(0.90) and SNRI 0.93 points (23.40 dB) for PESQ, STOI,
and SNRI, respectively. The proposed Deep Complex CNN
(DCCCN) network is able to improve by 0.21 MOS points
(2.26) for lower SNR conditions, such as -5, while the base-
lines method does not improve speech quality in the context
of PESQ. Using the encoder and decoder of our proposed
DCCNN system increases each of the quality indicators for
all four analyzed noise types.

5.3 Model evaluation on environmental noises

In Table 4, the results were obtained for evaluating pro-
posed deep learning model in contents of PESQ, STOI and

SNRI for low SNR levels considering unseen environmental
noises. With current encoder and decoder parameters com-
plexity the proposed Deep Complex Convolutional Neural
Network model highly suppress the traffic noise and gives
high improvements in SNRI, PESQandSTOI up to 25.76 dB,
3.74MOS, 0.94 compared to other noise types. For bus noise
it is slightly worst performance due to the high interference
of noise in speech signal in bus.

5.4 Analyzing DCCNNmodel

Improved speech spectrograms achieved from the proposed
deep complex network were investigated using a case study
of test class utterance in traffic noise at varied dB SNR cir-
cumstances in order to investigate more the root causes of
the quality gains that have been noticed using the suggested
deep complex network. The spectrograms for clean speech
signal s(t) along with its corresponding noisy speech signal
x(t), and denoised speech signal ŝ(t) are present in Fig. 4.

When examining the outputs, the spectrogram enrich-
ment demonstrates how much greater noise reduction is
made possible when using Deep Complex Convolutional
Neural Networks (DCCNN) with current model complexity.
Owing to intricate spectrogram processing, which improved
the parallel noisy signal’s phase and magnitude and assisted
in reconstructing improved audio signals. Additionally, by
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Table 2 Test class seen noise
comparison of proposed with
baseline methods

SNR Methods PESQ STOI SNRI

- 5 Unprocessed 1.35 0.53 0

MMSE-LSA 1.38 0.49 3.34

SG-JMAP 1.37 0.49 3.92

LSTM-IRM 1.6 0.64 11.68

LSTM-MSA 1.64 0.65 12.51

LSTM-cMSA 1.58 0.64 15.56

CED-cSA-du 1.52 0.64 11.45

LSTM-cMSA + DNN-cSA 1.59 0.67 16.75

LSTM-cMSA + CED-cSA-du 1.61 0.69 16.85

LSTM-cMSA + CED-cSA-tr 1.61 0.69 16.99

Proposed -DCCNN 2.88 0.84 17.94 dB

0 Unprocessed 1.52 0.65 0

MMSE-LSA 1.63 0.62 4.18

SG-JMAP 1.62 0.62 4.96

LSTM-IRM 1.98 0.78 17.02

LSTM-MSA 2.07 0.8 19.16

LSTM-cMSA 2.02 0.79 24.44

CED-cSA-du 1.92 0.8 18.74

LSTM-cMSA + DNN-cSA 2.05 0.83 26.38

LSTM-cMSA + CED-cSA-du 2.11 0.84 25.92

LSTM-cMSA + CED-cSA-tr 2.11 0.84 26.32

Proposed-DCCNN 2.97 0.91 27.31 dB

5 Unprocessed 1.77 0.76 0

MMSE-LSA 1.96 0.74 4.9

SG-JMAP 1.97 0.75 5.91

LSTM-IRM 2.41 0.87 18.24

LSTM-MSA 2.52 0.88 20.11

LSTM-cMSA 2.54 0.88 26.04

CED-cSA-du 2.42 0.9 21.65

LSTM-cMSA + DNN-cSA 2.6 0.91 28.5

LSTM-cMSA + CED-cSA-du 2.68 0.92 27.65

LSTM-cMSA + CED-cSA-tr 2.69 0.92 28.34

Proposed-DCCNN 3.19 0.94 29.12 dB

10 Unprocessed 2.11 0.86 0

MMSE-LSA 2.35 0.84 5.35

SG-JMAP 2.39 0.85 6.66

LSTM-IRM 2.83 0.92 17.83

LSTM-MSA 2.93 0.93 19.15

LSTM-cMSA 3 0.93 25.52

CED-cSA-du 2.96 0.94 23.91

LSTM-cMSA + DNN-cSA 3.07 0.94 28.31

LSTM-cMSA + CED-cSA-du 3.17 0.95 27.15

LSTM-cMSA + CED-cSA-tr 3.18 0.95 28.14

Proposed -DCCNN 3.29 0.96 28.62 dB

15 Unprocessed 2.53 0.93 0
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Table 2 (continued)
SNR Methods PESQ STOI SNRI

MMSE-LSA 2.75 0.9 5.38

SG-JMAP 2.85 0.91 7.04

LSTM-IRM 3.24 0.96 16.63

LSTM-MSA 3.32 0.96 18.17

LSTM-cMSA 3.39 0.96 23.5

CED-cSA-du 3.41 0.97 25.57

LSTM-cMSA + DNN-cSA 3.43 0.96 26.42

LSTM-cMSA + CED-cSA-du 3.51 0.97 25.03

LSTM-cMSA + CED-cSA-tr 3.54 0.97 26.3

Proposed-DCCNN 3.63 0.97 29.02 dB

Mean Unprocessed 1.86 0.75 0

MMSE-LSA 2.01 0.72 4.63

SG-JMAP 2.04 0.72 5.7

LSTM-IRM 2.41 0.83 16.28

LSTM-MSA 2.5 0.84 17.82

LSTM-cMSA 2.51 0.84 23.01

CED-cSA-du 2.44 0.85 20.26

LSTM-cMSA + DNN-cSA 2.55 0.86 25.27

LSTM-cMSA + CED-cSA-du 2.62 0.87 24.52

LSTM-cMSA + CED-cSA-tr 2.62 0.87 25.22

LSTM-cMSA + CLED-cSA-du 2.66 0.88 25.13

Proposed -DCCNN 3.12 0.92 25.73

means of its skip connection, the suggested encoder and
decoder architecture directly utilize high-resolution speech
data intrinsic to the noise characteristics, which can also
help with amore thorough reconstruction. This demonstrates
that our recently suggested approachmay accomplish similar
speech restoring and noise reduction characteristics with far
lower model parameters and computing resource consump-
tion.

6 Conclusion

In this paper, we introduced a Deep Complex Convolutional
Neural Network (DCCNN) which is a Speech Enhance-
ment (SE) architecture using an encoder-decoder structure,
with network arrangement specifically selected for the tasks
of reducing noise and realistic sound speech restoration.
DCCNN supervised model employing a complex network
for complex-valued spectra mapping. The proposed model
takes complex-valued input from the spectrograms of the
noisy speech signals, consisting of real and imaginary com-
ponents incorporating complex spectral mapping, which
simultaneously perform enhancement of magnitude and
phase dynamics of speech signals. The encoder encodes
noisy magnitude and phase spectra, and the corresponding

magnitude mask decoder and phase decoder decode out the
enhanced magnitude and phase spectrums, respectively. The
direct improvement of phase spectra to enhance PESQ and
STOI of speech signals was the primary innovation of the
DCCNN. In contrast against the baselines, we find an incred-
ible enhancement of over 3 dB in SNR, 0.2 in STOI, and 0.5
in PESQ. In addition, our method outperforms baseline SE
techniques in low-SNR conditions in terms of STOI. More-
over, it consistently surpasses all reference approaches and
improves intelligibility in low-SNR environments. In future
this proposed deep learningmodel can be evaluated by differ-
ent datasets and can integrate alongside other deep learning
models to gain better MOS points in terms of PESQ and
SNRI.

Plan for future enhancements of the proposed DCCNN is
to addmore robust loss functions and use of depth-wise sepa-
rable as well as vanilla convolutions with adaptive weights to
trainmodel on complex spectrogramswith fewer parameters,
introducing spatial information (up-down) and contextual
dynamic changes.
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Table 3 Test class unseen noise
comparison of proposed with
baseline methods

SNR Methods PESQ STOI SNRI

- 5 Unprocessed 1.4 0.55 0

MMSE-LSA 1.39 0.51 3.01

SG-JMAP 1.38 0.51 4.13

LSTM-IRM 1.6 0.63 9.42

LSTM-MSA 1.62 0.65 11.05

LSTM-cMSA 1.57 0.64 13.65

CED-cSA-du 1.55 0.67 11.59

LSTM-cMSA + DNN-cSA 1.57 0.67 14.85

LSTM-cMSA + CED-cSA-du 1.59 0.69 14.98

LSTM-cMSA + CED-cSA-tr 1.59 0.69 15.15

Proposed -DCCNN 2.10 0.79 16.13 dB

0 Unprocessed 1.59 0.68 0

MMSE-LSA 1.65 0.65 3.74

SG-JMAP 1.64 0.65 4.47

LSTM-IRM 1.95 0.78 13.44

LSTM-MSA 2.01 0.8 14.96

LSTM-cMSA 1.98 0.8 19.12

CED-cSA-du 1.89 0.82 16.33

LSTM-cMSA + DNN-cSA 1.99 0.83 20.94

LSTM-cMSA + CED-cSA-du 2.04 0.85 20.94

LSTM-cMSA + CED-cSA-tr 2.05 0.85 21.27

Proposed -DCCNN 2.26 0.88 23.51 dB

5 Unprocessed 1.86 0.8 0

MMSE-LSA 1.98 0.77 4.41

MMSE-LSA 1.98 0.77 4.41

SG-JMAP 1.98 0.78 5.35

LSTM-IRM 2.39 0.88 15.7

LSTM-MSA 2.48 0.89 17.35

LSTM-cMSA 2.49 0.89 22.07

CED-cSA-du 2.39 0.91 19.73

LSTM-cMSA + DNN-cSA 2.53 0.91 24.45

LSTM-cMSA + CED-cSA-du 2.61 0.92 24.11

LSTM-cMSA + CED-cSA-tr 2.63 0.93 24.71

Proposed -DCCNN 2.70 0.94 26.41 dB

10 Unprocessed 2.22 0.89 0

MMSE-LSA 2.37 0.86 4.85

SG-JMAP 2.4 0.87 6.06

LSTM-IRM 2.84 0.93 16.58

LSTM-MSA 2.93 0.94 18.2

LSTM-cMSA 2.97 0.94 23.19

CED-cSA-du 2.96 0.95 23.4

LSTM-cMSA + DNN-cSA 3.03 0.95 25.88

LSTM-cMSA + CED-cSA-du 3.12 0.96 25.11

LSTM-cMSA + CED-cSA-tr 3.15 0.96 26.06

Proposed -DCCNN 3.18 0.96 27.21 dB
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Table 3 (continued)
SNR Methods PESQ STOI SNRI

15 Unprocessed 2.65 0.95 0

MMSE-LSA 2.77 0.92 4.88

SG-JMAP 2.86 0.93 6.36

LSTM-IRM 3.27 0.97 15.76

LSTM-MSA 3.35 0.97 17.92

LSTM-cMSA 3.39 0.97 22.66

CED-cSA-du 3.44 0.97 25.69

LSTM-cMSA + DNN-cSA 3.41 0.97 25.42

LSTM-cMSA + CED-cSA-du 3.5 0.97 24.24

LSTM-cMSA + CED-cSA-tr 3.54 0.98 25.55

Proposed -DCCNN 3.58 0.98 27.01 dB

Mean Unprocessed 1.94 0.77 0

MMSE-LSA 2.03 0.74 4.18

SG-JMAP 2.05 0.75 5.27

LSTM-IRM 2.41 0.84 14.19

LSTM-MSA 2.48 0.85 18.12

LSTM-cMSA 2.48 0.85 20.14

CED-cSA-du 2.44 0.86 19.35

LSTM-cMSA + DNN-cSA 2.51 0.87 22.3

LSTM-cMSA + CED-cSA-du 2.57 0.88 21.88

LSTM-cMSA + CED-cSA-tr 2.59 0.88 22.54

LSTM-cMSA + CLED-cSA-du 2.62 0.89 22.47

Proposed-DCCNN 2.70 0.90 dB

Table 4 Results and Analysis for speech signals with different noise types

Noise Types PESQ STOI SNRI

SNR − 6 −3 0 2 − 6 − 3 0 2 − 6 − 3 0 2

Unprocessed 1.13 1.27 1.59 1.88 0.58 0.62 0.78 0.85 0 0 0 0

Traffic 3.27 3.33 3.35 3.74 0.92 0.92 0.93 0.94 16.52 19.56 25.57 25.76

Cafeter 3.07 3.03 3.20 3.38 0.88 0.90 0.92 0.92 15.00 18.22 24.17 24.51

Metro 2.73 3.17 3.25 3.47 0.89 0.90 0.91 0.91 15.90 17.81 24.14 24.42

Bus 3.10 3.12 3.15 3.12 0.73 0.79 0.86 0.90 15.68 17.78 24.21 23.36
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Clean Signal (a)

Noisy Signal -5 dB (b) Denoised Signal (c)

Noisy Signal 0 dB (d) Denoised Signal (e)

Noisy Signal 5 dB (f) Denoised Signal (g)

Noisy Signal 10 dB (h) Denoised Signal (i)

Noisy Signal 15 dB (j) Denoised Signal (k)

Fig. 4 Spectrogram analysis for unseen Traffic noise at different dB SNR levels
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