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Abstract
RainDNet is an advanced image deraining model that refines the “Multi-Stage Progressive Image Restoration Network”
(MPRNet) for superior computational efficiency and perceptual fidelity. RainDNet’s innovative architecture employs depth-
wise separable convolutions instead of MPRNet’s traditional ones, reducing model complexity and improving computational
efficiency while preserving the feature extraction ability. RainDNet’s performance is enhanced by a multi-objective loss func-
tion combining perceptual loss for visual quality and Structural Similarity Index Measure (SSIM) loss for structural integrity.
Experimental evaluations demonstrate RainDNet’s superior performance over MPRNet in terms of Peak Signal-to-Noise
Ratio (PSNR), SSIM, and BRISQUE (Blind Referenceless Image Spatial Quality Evaluator) scores across multiple bench-
mark datasets, underscoring its aptitude for maintaining image fidelity while restoring structural and textural details. Our
findings invite further explorations into more efficient architectures for image restoration tasks, contributing significantly to
the field of computer vision. Ultimately, RainDNet lays the foundation for future, resource-efficient image restoration models
capable of superior performance under diverse real-world scenarios.

Keywords Image restoration · Rain removal · Deep learning · Multi-stage progressive restoration · Depthwise separable
convolutions · Perceptual loss

1 Introduction

Restoring images, a process that transforms a degraded pic-
ture back to its high-quality state continues to be a substantial
obstacle within the realm of computer vision. This degra-
dation could be in the form of noise, haze, blur, or even
elements like rain streaks, among other factors. This task
poses a high degree of difficulty as the solution space is prac-
tically infinite, with countless plausible restorations for any
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given degraded image. Traditional restoration techniques [1–
7] have relied on explicitly defined image priors, handcrafted
based on empirical observations. Such an approach, however,
is inherently limited due to the difficulty of designing these
priors and their lack of generalizability across different sce-
narios.

With the advancement of machine learning technologies,
recent cutting-edge techniques have turned towards the use of
convolutional neural networks (CNNs) [8–16]. CNNs offer
the ability to implicitly learn more adaptable and general
image priors by analyzing the statistical characteristics of
natural images across extensive datasets.

The superior yield achieved by CNN-based approaches
is mostly due to the meticulous design and integration of
numerous network elements and functional segments estab-
lished for image reinstatement [8, 11, 15, 17–23].

Inspired by the success of the MPRNet architecture [27],
we introduce a derivative model, named RainDNet, which
further advances the image restoration task, specifically for
de-raining. The MPRNet [27] model incorporated an inno-
vative multi-stage design [30–33], contrasting with the tradi-
tional single-stage architectures prevalent in low-level vision
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Fig. 1 Image deraining on the
Rain100H [18], Rain100L [18],
Test100 [24], Test1200 [25] and
Test2800 [26] datasets. Despite
having a lot fewer parameters
than the underlying model, our
optimised Multi-stage technique
outperforms the original
cutting-edge MPRNet [27–29]
in terms of PSNR and SSIM,
suggesting greater picture
restoration quality from a human
visual perception standpoint

tasks [30, 34–36]. Our RainDNet model preserves this pow-
erful multi-stage design and introduces further refinements.

To reduce the computational complexity and memory
footprint of the network, RainDNet employs depthwise
separable convolutions [37–42], a variant of standard convo-
lutions that decouples the learning of spatial and depth-wise
features. This change significantly reduces the number of
parameters in the model without sacrificing performance.
Furthermore, RainDNet enhances the original loss function
ofMPRNet [27] by integrating perceptual and SSIM losses in
addition to the standard L1 and edge losses. These additions
promote the preservation of perceptual quality and structural
similarity in the restored images, thus further improving the
visual quality of the derained outputs.

In this paper, we conduct an extensive evaluation of the
proposed RainDNet model. Our comparative (Fig. 1) study
shows that RainDNet canmostly achieve better PSNR values
than the originalMPRNet [27] while significantly surpassing
it in terms of SSIM values, thus offering an improved trade-
off between accuracy and perceptual quality. Our findings
present RainDNet as a new promising approach for deraining
tasks, opening up avenues for future improvements in the
field of image restoration.

The key contributions presented in this study include:

• We introduce a unique framework, RainDNet, for the
restoration of images. This design draws inspiration from
the multi-stage structure of MPRNet [27] and incorpo-
rates depthwise separable convolutions [37–42] to lessen
the computational demand.

• We introduce a modified loss function that incorporates
perceptual and SSIM losses in addition to L1 and Edge
losses, enhancing the quality of restored images.

• We demonstrate the effectiveness of our model by
conducting comprehensive experiments, comparing our
model with the cutting-edge MPRNet [27] on multiple
datasets. Our results mostly exhibit better PSNR per-
formance, significantly better SSIM results, and better
BRISQUE results, thus confirming the efficacy of our
approach.

2 Related works

Throughout the last few decades, image-capturing technol-
ogy has seen a significant transformation. We are transi-
tioning from traditional high-end DSLR cameras towards
more compact and user-friendly smartphone cameras. Early
restoration approaches were anchored in mathematical and
empirical methods like total variation [6, 43], sparse coding
[44–46], self-similarity [47, 48], and gradient prior [49, 50].
These methods relied heavily on handcrafted features and
were not always generalizable to diverse image degradation
scenarios.

Convolutional neural networks (CNNs) in image restoration
With the advent of deep learning, the focus shifted towards
CNNs. CNN-based restoration methods have outperformed
traditional methods [10, 11, 13, 15, 51, 52], providing a
more robust and generalizable approach to image restora-
tion. Among CNN-based methods, single-stage approaches
currently dominate the field. They often repurpose architec-
tural components developed for high-level vision tasks.

The advent of depthwise separable convolutions Another
significant evolution in the field of deep learning is the
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introduction of depthwise separable convolutions [37–42],
an efficient variant of standard convolutions. This efficient
approach has been adopted in a variety of domains, showing
great promise in enhancing the performance and efficiency
of deep learning models.

Multi-stage approaches In contrast to the prevalent single-
stage methods, multi-stage approaches [51, 53–58] aim to
tackle the image restoration problem in a more structured
manner. Thesemethods progressively restore the clean image
by incorporating a lightweight subnetwork at each stage.
However, one common practice in these methods that could
lead to suboptimal results is the use of identical subnetworks
for each stage.

The use of attentionmechanisms Amore recent innovation
in deep learning that has found its way into the domain of
image restoration is the attention mechanism [51, 54, 55].
These modules record extensive mutual dependencies along
spatial [59] and channel [60] dimensions, allowing for better
context-aware processing of features [61].

Introduction of RainDNet In the current work, we intro-
duce a novel variant of the well-established Multi-Stage
Progressive Restoration Network (MPRNet [27]) for image
deraining. In our proposed model, RainDNet, we replace
some of the standard convolutions with depthwise separa-
ble convolutions [37–42], yielding a significant reduction
in the model’s parameter count. Furthermore, we introduce
perceptual and structural similarity (SSIM) losses in addi-
tion to the conventional L1 and edge losses, contributing to
the model’s enhanced performance in capturing perceptually
important image details. The revamped model, RainDNet,
exhibits superior Peak Signal-to-Noise Ratio (PSNR) val-
ues and Structural Similarity Index Measure (SSIM) values
when compared with the existing MPRNet [27] model.
This indicates that our proposed solution while being more
computationally efficient, does not compromise the image
restoration performance.

3 Gradual multi-stage enhancement

The framework we propose for the restoration of images,
depicted in Fig. 2, plays out in three steps to gradually pol-
ish the images. As in the predecessor’s architecture, the first
pair of phases leverage encoder–decoder sub-networks to
acquire wide contextual information via extensive receptive
fields. Acknowledging that image restoration is an intrinsi-
cally position-sensitive operation, the final stage of ourmodel
operates on the original input image resolution without any
downsampling. This design choice allows the preservation
of fine textures and spatial details in the output image, which

is critical for the minor boost to PSNR scores and the large
improvement in SSIM scores observed in our model.

Weweave a supervised attention component between each
pair of subsequent stages rather than just stringing together
several stages. This component redefines the feature maps
from the prior phase prior to feeding them into the next step,
which is supervised by ground-truth images. This process
optimises the information transfer between phases, which
contributes to the improved performance of our model.

In addition to thesemodifications,wepresent a cross-stage
feature fusion technique. This approach enables intermediate
multi-scale context-sensitive traits from prior subnetworks
to consolidate intermediate traits from succeeding subnet-
works. This intricate interplay among stages and the efficient
use of learned features across the network not only slightly
improves the PSNR performance than the original model but
elevates the SSIM scores significantly, positioning ourmodel
as a competent and improved variant of the original MPRNet
[27] architecture.

Despite RainDNet having multiple stages, each stage can
access the input image directly. As per recent restoration
methods [51], we apply a multi-patch hierarchy on the input
image and divide it into non-overlapping patches: four for
stage 1, two for stage 2, and the original image for the final
stage as illustrated in Fig. 2.

At any stage S, we propose the Combined Loss function
to handle the task of rain streak removal from images, which
is defined as:

Ltotal = λL1 · LL1 + λperc · L perc

+λedge · Ledge + λssim · Lssim (1)

where, Ltotal is the total loss, LL1 is the L1 loss, L perc is
the perceptual loss, Ledge is the edge loss, and Lssim is the
SSIM loss. The coefficients λL1, λperc, λedge, and λssim are
used to balance these loss components. Each component of
the Combined Loss is described as follows:

• LL1: The L1 [62] Loss calculates the absolute difference
between the target and output images pixel-wise. It is
defined as:

LL1(o, t) = λL1

N

N∑

i=1

|oi − ti | (2)

where o and t are the output and target images respec-
tively, and N is the total number of pixels. This loss
encourages the model to focus on all discrepancies, big
or small, in the restored and target images.

• L perc: The perceptual loss [63] uses a pre-trainedVGG16
model to extract featuremaps from the restored and target

123



7134 Signal, Image and Video Processing (2024) 18:7131–7143

Fig. 2 RainDNet, our proposed
architecture for image deraining,
employs depthwise separable
convolutions [37–42] in certain
stages to optimize parameter
utilization. The stages and their
operations remain consistent
with the original MPRNet [27]
design, preserving the
progressive restoration
capability

Fig. 3 Illustration of the depthwise separable convolution [37–42]
Operation. This diagram demonstrates the two-step process of depth-
wise convolution followed by pointwise convolution, showcasing its
efficiency in capturing spatial and cross-channel information with sig-

nificantly fewer parameters compared to standard convolutions. This
key alteration in our RainDNet architecture allows for similar restora-
tion performance with a leaner model footprint

images. The L1 loss is then applied to these feature maps,
defined as:

L perc(o, t) = λperc

W × H × C

∑

w,h,c

|Fw,h,c
o − Fw,h,c

t | (3)

where Fo and Ft are the feature maps of output and target
images extracted by the VGG16 model,W , H , andC are
the width, height, and number of channels of the feature
maps. This loss ensures the model produces a restored
image that is not only pixel-wise accurate but also shares
similar high-level features (i.e., texture and content) with
the target image.

• Ledge: The Edge Loss [64] first applies the Sobel filter
to the restored and target images to highlight the edges

in the images. The L1 loss is then applied to these edge
maps. The edge loss is defined as:

Ledge(o, t) = λedge

N

N∑

i=1

|Eoi − Eti | (4)

where Eo and Et are the edge maps of output and tar-
get images created using the Sobel operator. This loss
encourages the model to pay attention to the edges in the
image, which is crucial in maintaining the structure and
details of the scene.

• Lssim : The Structural Similarity Index Measure (SSIM)
loss [65] is used to ensure that the restored image shares
structural similarity with the target image. For each color
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Fig. 4 a The encoder–decoder subnetwork, where specific convolution
layers are replaced with depthwise separable convolutions [37–42] for
a more efficient model. b A comprehensive depiction of the modified
Original Resolution Block (ORB) in our ORSNet subnetwork is pro-
vided. Each ORB consists of several depthwise separable convolutions,

in addition to channel attention blocks. The acronym GAP represents
Global Average Pooling [66]. c Cross Stage Feature Fusion (CSFF)
between the first and second phases is demonstrated. d Demonstration
of CSFF across the second and final phases, highlighting the flow and
fusion of features in our RainDNet architecture

channel, the SSIM index is defined as:

SSI Mc(o, t) = (2μo,cμt,c + c1)(2σo,c,t,c + c2)

(μ2
o,c + μ2

t,c + c1)(σ 2
o,c + σ 2

t,c + c2)

(5)

and the SSIM loss is defined as:

Lssim(o, t) = λssim

C

C∑

c=1

(1 − SSI Mc(o, t)) (6)

where μo,c and μt,c are the average of o and t for the
color channel c, σ 2

o,c and σ 2
t,c are the variance of o and t

for the color channel c, σo,c,t,c is the covariance of o and
t for the color channel c, and c1 and c2 are two variables
to stabilize the division with weak denominator.

Depth-wise separable convolution block Depth-wise sep-
arable convolution blocks [37–42], visualized in Fig. 3, are
incorporated for feature extraction and a few other tasks,
replacing the standard convolution blocks in the proposed
model. This was adapted from the principle of factorizing
the standard convolution operation into a depth-wise con-
volution and a point-wise convolution, which significantly
reduces the computational burden without compromising the
network’s ability to capture complex patterns in the data.
Depth-wise separable convolutions exploit the spatial and
cross-channel correlations separately, enabling the model
to maintain a satisfactory level of representation learning
with fewer parameters and computational complexity. They
offer the benefits of computational efficiency and parameter
reduction, which makes the model lighter, faster, and more

Fig. 5 Modified supervised attention module: this illustration depicts
our refined version of the Supervised Attention Module, which empha-
sizes feature refinement at each stage of the RainDNet architecture

suitable for tasks where computational resources are a con-
straint. Furthermore, the reduced complexity also contributes
to alleviating overfitting issues, thus potentially improving
the model’s performance on unseen data. These advantages
make depth-wise separable convolution blocks a preferred
choice for our network architecture in the image restoration
task.

3.1 Processing of complementary features

Modern single-stage CNN models for the restoration of
imagesmostly employ either of the two architectural designs:
(1) A framework for encoder–decoders or (2) a singular-
scale feature conduit. Encoder–decoder structures [22, 23,
67] begin by converting the input to low-res illustrations and
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Table 1 Overview of the image deraining dataset

Tasks Deraining

Datasets Rain14000[26] Rain1800[18] Rain800[24] Rain100H[18] Rain100L[18] Rain1200[25] Rain12[71]

Train samples 11,200 1800 700 0 0 0 12

Test samples 2800 0 100 100 100 1200 0

Testset rename Test2800 – Test100 Rain100H Rain100L Test1200 –

subsequently employ a reverse mapping process to restore
the initial resolution.

Conversely, strategies that operate on a singular-scale
feature pipeline are proficient at producing images with pre-
cise spatial details [13, 15, 68, 69]. Although these models
maintain spatial precision, their outputs often lack semantic
richness due to their restricted receptive field. These obser-
vations underscore the innate constraints of conventional
architectural designs, which can generate either spatially pre-
cise or contextually trustworthy outputs, but often grapple to
attain both.

Aiming to capitalize on the benefits of both design strate-
gies, we propose a multi-tier framework. In our model, the
initial stages utilize encoder–decoder networks, with the last
stage operating directly on the original input resolution.
Furthermore, we integrate depthwise separable convolutions
[37–42] into our framework. This integration considerably
lowers the model’s complexity, while preserving its compet-
itive performance levels.

Subnetwork with encoder–decoder configuration As
depicted inFig. 4a, our encoder–decoder subnetwork, derived
from the standard U-Net [28], includes several adjustments
to accommodate our specific requirements. We mostly use
channel attention blocks (CABs) [29] for collecting multi-
scale traits. The feature maps at the U-Net’s skip connections
are then processed by the CAB (refer to Fig. 4b). Ultimately,
instead of utilising Transposed convolution [70] to increase
the spatial scale of each feature within the decoder, we
employ bilinear up-sampling complemented by a layer of
convolution.

In our proposed architecture, we make significant mod-
ifications by employing depthwise separable convolutions
[37–42]. This modification allows for more efficient extrac-
tion of features at each scale while decreasing the model’s
complexity. As a result, a balance between performance and
computing efficiency has improved, allowing for a more
lightweight model with superior performance.

Subnetwork of original resolution We implement a change
in the final tier of the architecture to maintain the granular
information from the source image in the resultant image.
This tweak incorporates a subnetwork that executes in line

with the original picture dimensions (refer to Fig. 2). Termed
as the original-resolution subnetwork (ORSNet), thismodule
circumvents any downsampling processes and generates fea-
tures with high resolution, rich in spatial nuances. ORSNet is
made up of several original-resolution blocks (ORBs), which
in turn incorporate CABs. The structural outline of an ORB
can be seen in Fig. 4b.

This novel inclusion of the ORSNet in the final stage
ensures that the fine spatial details of the image are pre-
served, contributing to amore detailed output. TheORB,with
its multiple CABs and absence of downsampling, focuses
on enhancing the structural similarity of the output image,
thereby significantly contributing to the improved SSIM
score achieved by our model.

3.2 Supervised attentionmodule

Cutting-edge multi-phase frameworks for restoration of
images [51, 58] employ a straightforward strategy wherein
each stage produces an image prediction which is subse-
quently forwarded to the next stage. We present a significant
variation in this routine by incorporating a supervised atten-
tion module (SAM) between each pair of consecutive stages,
contributing towards a substantial improvement in perfor-
mance.

A structural diagram of the SAMcan be seen in Fig. 5, and
it lends dual advantages. First, it incorporates ground-truth
supervisory cues that aid in the consecutive restoration of
images at every tier. Furthermore,we generate attentionmaps
by exploiting locally supervised predictions. These maps are
critical in reducing the effect of less useful details at this
level, allowing only the most significant features to continue
to the subsequent phase.

Notably, this strategy of selectively preserving the most
impactful features from one stage to the next directly influ-
ences the overall structural similarity of the final result.

SAM functions on the preceding stage’s incoming traits,
Fin ∈ R

H×W×C , and produces a residual image, RS ∈
R

H×W×C , using a basic 1 × 1 convolution. The spatial
dimension is denoted by H × W while the channel count
is denoted by C. This residual picture is combined with
the impaired input image I to produce the reinstated image,
XS ∈ R

H×W×C .
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Following that, the predicted picture XS , is provided with
explicit supervision using the ground-truth image. Subse-
quently, Subsequently, attention masks M ∈ R

H×W×C are
constructed from the image XS by employing a 1 × 1 con-
volution and sigmoid activation. The masks are put to use
to recalibrate the transformed local traits Fin (derived after
1 × 1 convolution), leading to the production of attention-
guided features that are subsequently incorporated in the
identity mapping path. Ultimately, the output from SAM, an
attention-enhanced feature presentation Fout , is forwarded to
the subsequent stage for additional refinement.

4 Experiments and analysis

We put our proposed technique to the test for a single image
restoration task, namely image deraining, across five differ-
ent datasets.

4.1 Datasets and evaluation protocol

Following the latest research for image deraining, we train
our architecture using 13,712 clean rain-image pairs sourced
from a diverse set of datasets [18, 24–26, 71], as outlined in
Table 1. With this universally developed model, we proceed
to evaluations on several testing sets, such as Rain100H [18],
Rain100L [18], Test100 [24], Test2800 [26], and Test1200
[25].

We carry out numerical evaluations using the PSNR,
SSIM, [72] and BRISQUE [73] metrics. The formula for
calculating the Peak Signal-to-Noise Ratio (PSNR) between
two images (original and reconstructed) is defined as:

PSN R = 20 · log10
(
MAXI√
MSE

)
(7)

where MAXI is the maximum possible pixel value of the
image. For an 8-bit grayscale image, the maximum possible
pixel value is 255. MSE represents the Mean Squared Error,
which measures the average squared differences between the
original and the reconstructed images.

The Structural Similarity Index Measure (SSIM) index is
amethod for comparing similarities between two images (say
x and y). The SSIM index is calculated as:

SSI M(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
(8)

where μx is the average of x, μy is the average of y, σ 2
x is the

variance of x, σ 2
y is the variance of y, σxy is the covariance

of x and y, and c1 and c2 are two variables to stabilize the
division with weak denominator.
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Table 3 BRISQUE score results from image deraining evaluations

Models Test2800 [26] Test1200 [25] Rain100H[18] Rain100L[18] Test100 [24]

DerainNet [74] 31.32 35.43 44.71 26.04 37.83

SEMI [75] 28.81 32.33 41.90 23.49 35.62

DIDMDN [25] 25.98 30.06 24.92 22.05 31.55

UMRL [76] 23.01 26.61 22.24 16.67 27.97

RESCAN [54] 23.32 27.98 22.23 14.54 23.74

PreNet [56] 23.73 26.68 22.32 15.42 22.21

MSPFN [31] 21.67 23.31 17.78 15.04 19.70

MPRNet [27] 16.61 17.22 17.83 10.21 16.28

RainDNet(ours) 16.23 15.41 17.33 8.81 14.43

The top-performing and runner-up scores have been emphasised and underlined, correspondingly. A lower BRISQUE score implies better image
quality

Table 4 Comparison of trainable parameters

Model Trainable parameter in millions

DerainNet [74] 1.51

SEMI [75] 0.12

DIDMDN [25] 0.54

UMRL [76] 2.2

RESCAN [54] 0.25

PreNet [56] 0.16

MSPFN [31] 13

MPRNet [27] 20.02

RainDNet(Ours) 5.66

BRISQUE (Blind Referenceless Image Spatial Quality
Evaluator) [73] is a no reference image quality score. This
uses a pre-trained SVM model to calculate the final score.
The pre-trained model takes 5 attributes (MSCN (Mean Sub-
tracted Contrast Normalization) Image and its four shifted
versions), which are obtained from the given image. The
lesser value of this implies better image quality.

To calculate the MSCN Coefficients, the image intensity
I(i,j) at pixel (i, j) is transformed to the luminance Î (i, j)

Î (i, j) = I (i, j) − μ(i, j)

(σ (i, j) + C)
(9)

Where i ∈ 1, 2, · · · M, j ∈ 1, 2, · · · N (M and N are height
and width respectively). Functionsμ(i, j)andσ(i, j) are the
local mean field and local variance field, respectively.

We display the relative decrease in error for each approach
compared to the top performer by converting PSNR to
RMSE (RMSE ∝ √

10−PSN R/10) and SSIM to DSSIM
(DSSI M = (1 - SSI M)/2).

4.2 Implementation

Our proposed RainDNet model, built to enable end-to-end
training, does away with the need for pretraining steps. A
distinguishing feature of our model is the application of
depthwise separable convolutions [37–42] which efficiently
manage computational resources while preserving the ability
to learn from a large number of parameters. This approach
is especially well-suited for our task and is implemented at
various scales of our encoder–decoder network.

To facilitate the extractionof salient features at every scale,
we incorporate twoChannelAttentionBlocks (CABs), utiliz-
ing 2×2max-poolingwith a stride of 2 for the downsampling
process. The final stage of our model features an Original
Resolution Subnetwork (ORSNet), composed of three Orig-
inal Resolution Blocks (ORBs), each embedded with eight
CABs.

In order to customize the network to cater to the specifics
of the deraining task, we tweak the network’s width by
defining the channel count to 40. The training procedure is
implemented on patches of size 256×256, using a batch size
of 2 per GPU,with twoNVIDIARTX3090GPUs, leading to
a total of four batches per epoch. This training process lasts
for 15k iterations.

In terms of optimization, we deploy the AdamW [77]
optimizer with a learning rate set to 3 × 10−4. Noteworthy
is the fact that the AdamW optimizer applies weight decay
directly to the weights, bypassing gradient modifications - an
approach derived from early neural network methodologies
wherein weight decay was achieved through direct weight
shrinkage.

4.3 Image deraining results

In accordance with previous studies, specifically reference
[31], we utilized the Y channel (from the YCbCr color
space) to compute the quality metrics for the image derain-
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Fig. 6 Results of image
deraining using the RainDNet
model. Marking a significant
leap in performance, our
RainDNet model expertly
removes rain streaks and yields
images that are not only realistic
and devoid of artifacts, but also
visually far more similar to the
ground truth compared to prior
models, particularly its
precursor, the MPRNet [27]

Rainy image
(18.67 dB)

PSNR
Reference

Rainy
(18.67 dB)

DerainNet [74]
(20.23 dB)

DIDMDN [25]
(23.36 dB)

SEMI [75]
(23.66 dB)

UMRL [76]
(25.52 dB)

RESCAN [54]
(26.88 dB)

PreNet [56]
(27.16 dB)

MSPFN
[31]

(29.86 dB)

MPRNet
[27]

(32.15 dB)

RainD-
Net(Ours)
(33.74 dB)

PSNR
Reference

Rainy
(11.04 dB)

DIDMDN [25]
(14.70 dB)

SEMI [75]
(13.01 dB)

UMRL [76]
(27.15 dB)

RESCAN [54]
(26.55 dB)

MSPFN [31]
(28.67 dB)

MPRNet [27]
(30.62 dB)

RainDNet(Ours)
(36.02 dB)

PSNR
Reference

Rainy
(22.51 dB)

DIDMDN [25]
(21.94 dB)

SEMI [75]
(23.35 dB)

UMRL [76]
(25.21 dB)

RESCAN [54]
(25.84 dB)

MSPFN [31]
(25.02 dB)

MPRNet [27]
(38.08 dB)

RainDNet(Ours)
(39.02 dB)

ing task. As presented in Table 2, our approach significantly
surpasses the current cutting-edge model by mostly yield-
ing superior PSNR and SSIM results across all five datasets.
The BRISQUE score of the proposed model and the state-
of-the-art models is shown in Table 3. The proposed model
outperforms other models in terms of the BRISQUE score
over all five datasets. In comparison to the most recent top-
performing algorithm, MPRNet [27], our method achieved
an average performance enhancement of 0.68dB across all
datasets. Moreover, our model is more efficient, having 3.5x
fewer parameters thanMPRNet [27], as evident fromTable 4,

which shows the number of trainable parameters of different
models. Fig. 6 provides visual comparisons on challenging
images. Our RainDNet demonstrates effectiveness in erad-
icating rain streaks of different orientations and intensities
and generates images that are visually pleasing and closely
align with the ground truth. In contrast, other techniques
compromise structural content (first row), generate artifacts
(second row), and are unsuccessful in completely removing
rain streaks (third row).
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Table 5 Examinationof the individual elements of the proposedRainD-
Net through an ablation study

#Stage Components PSNR

1 U-Nets(baseline) 29.48

1 ORSNet (baseline) 29.30

1 U-Nets(baseline) with Depth. Sep. Conv 29.45

1 ORSNet (baseline) with Depth. Sep. Conv 29.39

2 U-Nets+U-Nets 29.81

2 ORSNet+ORSNet 29.96

2 U-Nets+ORSNet 30.13

2 U-Nets+ORSNet+Depth. Sep. Conv 30.21

3 U-Nets+ORSNet 30.06

3 U-Nets+ORSNet+CSFF+Depth. Sep. Conv 30.37

3 U-Nets+ORSNet+SAM+Depth. Sep. Conv 30.62

3 U-Nets+ORSNet+SAM+CSFF+Depth. Sep. Conv 30.86

The best result is shown in bold

4.4 Ablation studies

In this segment, we execute a variety of experiments to com-
prehend the impact of each element of our RainDNet model.
Our examination utilizes the Rain100H [18] dataset, with
the deraining models trained on image patches of dimension
256 × 256. The findings are presented in Table 5.

Number of stages As we escalate the number of stages
within our RainDNet, we observe an enhancement in its effi-
cacy, thereby reinforcing the efficiency of our multi-stage
framework.

Selection of subnetworks In our model, different types of
subnetworks can be utilized in each stage. Hence, we exper-
imented with several alternatives. Our observations reveal
that deploying the encoder–decoder subnetwork in the initial
stages and the ORSNet in the final stage yields superior out-
comes as compared to employing a uniform design across all
stages.

SAM, CSFF, and depthwise separable convolutions We also
wanted to understand the impact of the Supervised Atten-
tion Module (SAM), the Cross Stage Feature Fusion (CSFF)
mechanism, and depthwise separable convolutions [37–42]
on the performance of our model. When we removed the
SAM from our model, there was a significant drop in the
PSNR. The same thing happened when we removed the
CSFF. Removing both components led to an even bigger
drop in performance. The introduction of depthwise sepa-
rable convolutions, however, resulted in a significant boost
to the model’s performance, confirming its importance in our
architecture.

5 Conclusion

In this research, we present RainDNet, an enhanced multi-
stage framework for image restoration. Extending the core
principles of MPRNet, our model systematically enhances
impaired inputs by embedding supervised attention within
every stage.We define key tenets to shape our design, empha-
sizing the amalgamation of feature processing across several
stages, coupled with a flexible exchange of information
between stages.

RainDNet brings in stages that are rich in contextual infor-
mation and spatial precision, working in unison to encode
a wide array of features. We have implemented depthwise
separable convolutions, thereby improving computational
efficiency while preserving the model’s effectiveness. To
facilitate fruitful cooperation between interconnected stages,
we have designed a unique feature integration process across
stages, along with a supervised attention module that navi-
gates the exchange of outputs from preceding stages to the
ones that follow.

Our advancements yield considerable performance
improvements in termsofPSNR,SSIMscores andBRISQUE
scores even when compared against the strong baseline of
MPRNet. Demonstrated across various benchmark datasets,
RainDNet not only exhibits superior restoration capabilities
but also showcases a desirable trade-off between model size
and efficiency. This advantage makes RainDNet especially
fitting for devices with limited resources, without compro-
mising the quality of the restored images.

As we move forward, we envision a promising scope for
the continued development and optimization of the RainD-
Net model. By virtue of its sophisticated design and superior
performance, RainDNet has the potential to pioneer new
directions in image restoration and even in broader fields
of computer vision.

One potential area of future exploration is the appli-
cation of RainDNet in Advanced Driver-Assistance Sys-
tems (ADAS). Given its proficiency in enhancing degraded
images, RainDNet could play a pivotal role in improving the
accuracy and reliability of such systems, especially under
adverse weather conditions. Its ability to accurately elimi-
nate rain and haze from images could significantly improve
the visual perception capabilities of ADAS, thus enhancing
the safety and efficiency of automated driving.

Furthermore, we anticipate potential modifications in the
RainDNet model that could accommodate other types of
image degradation, like snow, dust, or fog. Future research
might also investigate the application of RainDNet’s depth-
wise separable convolution strategy to other architectures,
potentially sparking advancements in computational effi-
ciency across a range of computer vision tasks.

Finally, we recognize the value of continued refinements
to our supervised attention module and feature fusion tech-
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niques. These enhancements could further boost the model’s
performance and establish RainDNet as a robust standard in
the domain of image restoration. In conclusion, the future
seems bright for RainDNet, with numerous avenues for
exploration and expansion.
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