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intelligence [3–5] have provided opportunities for the devel-
opment of intelligent agricultural machinery and smart 
orchard systems. Consequently, there has been a growing 
body of research focused on the development of apple-pick-
ing robots suitable for natural environments. Orchards pres-
ent complex settings, characterized by foliage occlusion and 
overlapping. These intricate backgrounds can interfere with 
the robot’s ability to accurately grasp the fruits. The emer-
gence of deep learning-based object detection techniques, 
which leverage large-scale datasets for modeling, offers the 
potential for precise and efficient fruit detection in complex 
backgrounds. These techniques demonstrate robust data 
representation and feature extraction capabilities, enabling 
them to tackle object recognition challenges in complex 
scenarios while meeting requirements for both accuracy and 
real-time performance. As a result, they have been widely 
applied in the agricultural domain [6] including fruit detec-
tion [7, 8] crop disease diagnosis [9] and other applications.

1  Introduction

Apples are widely popular fruits with a broad market for 
cultivation and consumption. The optimal picking period 
for ripe fruits is short, and manual harvesting is inefficient. 
Consequently, there is an urgent need to introduce intelli-
gent apple-picking robots that can revolutionize the harvest-
ing process and enhance efficiency.

In recent years, the rapid advancements in robotics tech-
nology [1], machine vision techniques [2], and artificial 
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Abstract
After apple fruit maturation, the optimal harvest period is short, and the picking robot is expected to improve harvesting 
efficiency. While it is common for apples to be overlapped and occluded by branches and leaves, which pose challenges to 
the robot’s apple harvesting. Therefore, precise and swift identification and localization of the target fruit is crucial. To this 
end, this paper proposes a lightweight apple detection method, YOLOv5s-ShuffleNetV2-DWconv-Add, or “YOLOv5s-
SDA” for short. The red and green apple datasets in natural environment were collected by a mobile phone, which were 
divided into four categories: red and green apples that can be directly grasped and cannot be directly grasped, in order 
to avoid damage to the robotic arm. Different deep learning object detection models were compared, with the YOLOv5s 
algorithm providing superior recognition performance. To improve harvest efficiency and portability of hardware devices, 
modifications are made to the YOLOv5s algorithm, replacing the Focus, C3, and Conv structures within the backbone 
with 3 × 3 Conv structures and ShuffleNetV2, removing SPP and C3 structures; substituting the C3 in the Neck portion 
with DWConv modules; and replacing two Concat layers in the PANet structure with smaller computational Add layers. 
Results demonstrate that the model achieved a mAP of 94.6% on the test set, doubled the detection speed, and compressed 
the model weight to 11.8% of its original value, while maintaining model accuracy. This new method exhibits promis-
ing performance in fruit target recognition in natural scenes, providing an effective means of visual acquisition for fruit 
picking robots.
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Deep learning object detection algorithms primarily con-
sist of two types. The first type is the two-stage object detec-
tion technique represented by Faster R-CNN [10], which 
involves region proposal generation followed by classifica-
tion and regression. The second type is the one-stage object 
detection technique that directly predicts regression results 
without generating region proposals. It includes the YOLO 
series and SSD [11], which have made significant progress 
in fruit detection in recent years. Yu et al. [12] employed a 
mask region convolutional neural network (Mask R-CNN) 
with ResNet50 as the backbone network for feature extrac-
tion. This approach achieved accurate strawberry recogni-
tion in different lighting conditions, with adhesion, overlap, 
occlusion, and other complex growth states. The average 
detection rate on a test set of 100 images reached 97.78%, 
demonstrating excellent generality and robustness. Wan et 
al. [13] improved the Faster R-CNN model to detect mul-
tiple types of fruits, such as apples, mangoes, and oranges, 
achieving higher detection accuracy and faster processing 
speed.

The YOLO model [14] emerged in 2016 and quickly 
gained widespread application in real-time object detection 
due to its advantage of high speed. Given the requirement 
for real-time performance in fruit harvesting, single-stage 
object detection algorithms have gradually been applied in 
fruit detection in recent years. Zhao et al. [15]. proposed 
an apple localization method based on the YOLOv3 deep 
convolutional neural network. This approach enables fruit 
recognition and localization under different lighting condi-
tions, accounting for occlusion, adhesion, and bagging. It 
enhances the efficiency and adaptability of apple-picking 
robots in various scenarios. Xuan et al. [16] proposed an 
enhanced YOLOv3 model, which was compared with the 
Faster RCNN model based on AlexNet, the Faster RCNN 
model based on ResNet101, and the YOLOv3 model based 
on DarkNet53. Experimental results demonstrated that 
the improved model achieved higher recognition accu-
racy. Peng et al. [17] introduced an improved SSD model, 
capable of recognizing multiple types of fruits. Chen et al. 
[18] enhanced the YOLOv4 model by incorporating the 
DenseNet module, improving the feature extraction net-
work. As a result, the modified YOLOv4 model exhibited 
superior detection performance, with an average recogni-
tion accuracy of 97.13%. Lv et al. [19] made improvements 
to the YOLOv5 model by employing the ACON-C activa-
tion function, achieving a mAP of 98.4%. Consequently, it 
could detect apples with different growth forms.

Fruits can grow in various poses in natural environ-
ments, making them vulnerable to lighting interference. To 
improve detection accuracy, deep learning object detection 
network models have continuously evolved, resulting in 
increasing model parameter and computational complexity, 

posing challenges to model deployment and portability [20, 
21]. Therefore, research on model lightweighting through 
reducing model parameters and computational complexity 
is highly important while achieving high accuracy. Wang 
et al. [22] pruned the YOLOv5s detection model using a 
channel pruning method and fine-tuning techniques. The 
compressed model was reduced to 10% of its original size, 
while maintaining detection accuracy for small apples 
and improving detection speed. Ji et al. [23] replaced the 
backbone network of YOLOX with the lightweight Shuf-
fleNetv2 network, added a Convolutional Block Attention 
Module (CBAM), and introduced an Adaptive Spatial Fea-
ture Fusion (ASFF) module. The modified model achieved 
an average detection accuracy of 96.67% and FPS of 65, 
with excellent detection speed and accuracy. Xu et al. [24] 
utilized the lightweight GhostNet as the backbone network 
and introduced the Mish activation function in the Neck 
network of YOLOv4 to reduce model parameters. Addition-
ally, a channel attention mechanism (ECA) was adopted to 
enhance the multi-scale features of the backbone network. 
As a result, the accuracy improved by 2.26%, and the model 
size reduced from 250.7 MB to 43.5 MB.

In natural orchard environments, achieving high accu-
racy and efficiency in fruit recognition is made possible by 
deep learning object detection algorithms. These algorithms 
adaptively learn fruit features in different environmental 
conditions, enabling the identification of target fruits in com-
plex scenarios. Compared to traditional learning algorithms, 
they exhibit significantly higher recognition efficiency and 
accuracy, while demonstrating strong model robustness and 
stability. However, the pursuit of high-precision fruit detec-
tion has led to the deepening of network structures, thereby 
compromising real-time performance. Considering the need 
for model portability on hardware devices, it is crucial to 
focus on model lightweighting, which involves maintaining 
accuracy while improving recognition speed and reducing 
parameters and computational complexity [25, 26]. This 
research primarily explores the application of deep learning 
object detection algorithms in apple recognition and detec-
tion under complex scenarios. By comparing different deep 
learning object detection models, the optimal fruit detection 
model is identified. Furthermore, lightweight improvements 
are made to the YOLOv5s model, resulting in enhanced 
detection speed while preserving accuracy.
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2  Materials and methods

2.1  Data collection and preprocessing

2.1.1  Data acquisition

The images in the dataset were captured in October 2021. 
Different images of green apples and red apples were col-
lected at the Beijing Academy of Forestry and Pomology, 
Chinese Academy of Agricultural Sciences. Image collec-
tion took place on sunny mornings and afternoons. The 
Honor V20 smartphone was employed as the image cap-
ture device, with a resolution of 4000 × 3000 pixels, saving 
images in JPG format. A total of 4613 images were captured 
from various angles, including front-lit fruits, backlit fruits, 
fruits partially occluded by leaves, and fruit overlapping, 
representing natural apple fruit images in their environmen-
tal context. Some sample images from the dataset are illus-
trated in Fig. 1.

2.1.2  The dataset annotations and dataset partitioning

Due to the diverse morphology of apples, significant occlu-
sions and overlapping can pose challenges during harvest-
ing, potentially resulting in damage to mechanical hands. 
Existing studies tend to categorize fruit recognition into a 
single type, without specific consideration for occlusions 
caused by leaves, branches, or overlapping fruits. This over-
sight can easily lead to potential harm to the mechanical 
hand during fruit retrieval and hinder the planning of opti-
mal fruit grasping paths [27–29]. Based on on-site obser-
vations of orchard picking environments and the picking 
status of robotic hands, apples were categorized into two 
main groups: directly grabbable and non-grabbable. To fur-
ther distinguish between red and green apples, the apples 
were divided into four categories: directly grabbable red 
apples, directly grabbable green apples, non-grabbable red 
apples, and non-grabbable green apples. The dataset clas-
sification rules are as follows: fruits that are not occluded or 
only occluded by leaves are classified as directly grabbable, 
while fruits occluded by other fruits, branches, wires, steel 

Fig. 1  The images of the dataset. 
(a) Red apples toward the 
light. (b) Backlit red apples. (c) 
Shadowed red apples. (d) Green 
apples toward the light. (e) Back-
lit green apples. (f) Shadowed 
green apples
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“rappleyes” for directly graspable red apples, “rocclud-
edno” for non-directly graspable red apples, “gappleyes” 
for directly graspable green apples, and “goccluedeno” for 
non-directly graspable green apples. The class names were 
added to the top right corner of each rectangular bounding 
box, and the annotation files were saved in the XML format. 
The dataset was divided into training, validation, and testing 
sets in a ratio of 6:2:2, as shown in Table 1.

2.2  The principles of deep learning object detection 
methods

2.2.1  YOLOv5s network architecture

Considering the high real-time and accuracy requirements 
for apple harvesting, various deep learning object detec-
tion algorithms are compared, and the single-stage object 
detection algorithm YOLOv5, which has good real-time 
performance, is selected. Moreover, several lightweight 
improvement methods are attempted to establish the 
detection model for rapid and accurate apple detection. 
The YOLOv5 model is mainly divided into four types: 
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, with 
increasing model sizes and model parameters as shown in 
Table 2.

From Table 2, it is evident that YOLOv5s has the smallest 
parameter size compared to the other three models, and also 
the fastest detection time. However, in terms of model pre-
diction accuracy, these four models exhibit high similarity, 
all exceeding 95%. Considering the real-time requirement 
of apple harvesting and the need for lightweight embedding 
in hardware devices, this study selects the YOLOv5s model 
with fewer layers and parameters for apple object recogni-
tion and detection.

The structure of the YOLOv5s model is illustrated in 
Fig. 3, which mainly consists of the input, backbone net-
work, neck, and prediction output layers [30]. Its work-
ing principle involves inputting an image and utilizing the 
Mosaic method for random expansion to achieve data aug-
mentation. The model employs adaptive anchor box com-
putation and adaptive image scaling techniques to mitigate 
distortions caused by varying image sizes. The backbone 
portion of the YOLOv5s model is primarily responsible 
for feature extraction and includes modules such as Focus, 
CBS, C3, and Spatial Pyramid Pooling (SPP). The Focus 

pipes, or any other obstacles that may damage the robotic 
hand are classified as non-grabbable. This includes situa-
tions where the edges of the fruit, as well as one or more 
parts (top, bottom, left, right), are occluded. The classifica-
tion is shown in Fig. 2.

All the apple images in the dataset were annotated 
using the LabelImg software, resulting in four categories: 

Table 1  Dataset splitting
Training set
/images

Validation set
/images

Testing set
/images

2767 923 923

Table 2  Indicator parameters of the four models of YOLOv5
Model Depth Width Number of layers Parameters mAP

@0.5
Weight files/MB GFLOPs T/ms

YOLOv5s 0.33 0.50 191 7.3 M 95.5% 14.4 16.4 20.7
YOLOv5m 0.67 0.75 263 21.4 M 95.3% 42.5 50.3 38.0
YOLOv5l 1.00 1.00 335 47.0 M 95.0% 93.8 114.0 72.0
YOLOv5x 1.33 1.25 407 87.7 M 95.5% 175.1 216.9 138.0

Fig. 2  Dataset categorization. (a) Red apples that can be grabbed 
directly. (b) Green apples that can be grabbed directly. (c) Red apples 
that cannot be grabbed directly. (d) Green apples that cannot be 
grabbed directly
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confidence scores, and predicted categories are displayed in 
the image, completing the task of object recognition.

2.2.2  The lightweight improvements of YOLOv5s

Given the consideration that the algorithm will be trans-
planted onto embedded devices, the computational com-
plexity, weight file size, and detection speed of the model 
are critical indicators. Hence, the following section focuses 
on the lightweight improvements of YOLOv5s. Common 
lightweight network models such as MobileNetV3 [31], 
GhostConv [32], and ShuffleNetV1-2 [33, 34] have been 
explored extensively. Experimental results reveal that, for 
the dataset employed in this study, the ShuffleNetV2 net-
work model exhibits superior detection performance. This 
section will delve into further discussion and research based 
on the ShuffleNetV2 network model.

The backbone of the YOLOv5s model comprises the 
Focus, C3, and CBS modules. In this study, the Focus 
structure is replaced by the CBRM structure to mitigate the 
loss of sampling information and computational overhead. 
The CBRM structure is composed of Convolution, Batch 
Normalization, and Rectified Linear Unit (ReLU) activa-
tion function, eliminating the Slice operation in Focus and 
accelerating the training speed. Furthermore, the original 
C3 and CBS modules are substituted with the ShuffleNetV2 

module is utilized to process image slicing, dividing the 
input image size of 640 × 640 × 3 into a reduced feature map 
of size 320 × 320 × 12. The module then employs Concate-
nation to combine the sliced feature maps. The goal of using 
this slicing method is to decrease network parameters and 
ensure that down-sampling information is not lost. The CBS 
module consists of convolution, Batch Normalization (BN), 
and SiLU activation function. The C3 module includes three 
standard CBS modules and several Bottleneck modules. It 
mainly comprises two branches: the first branch undergoes 
multiple Bottleneck stacking and one CBS module, while 
the second branch goes through another CBS module. 
Finally, the results of both branches are concatenated and 
processed by a CBS module. The SPP structure refers to 
applying three different convolutional kernels for maximum 
pooling (Maxpool) operations on the feature map. The out-
put results are then concatenated to better fuse features and 
increase receptive fields. The Neck network of YOLOv5s 
adopts a Feature Pyramid Network (FPN) and a bottom-up 
Path Aggregation Network (PAN) structure. This helps in 
integrating features from different scales. Ultimately, the 
feature map is used for prediction, generating bounding 
boxes and predicted categories. To achieve optimal pre-
diction results, non-maximum suppression (NMS) is used 
to remove redundant boxes. Finally, the predicted boxes, 

Fig. 3  The network architecture diagram of YOLOv5s
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an output channel twice the size of the input channel. The 
application of the ShuffleNetV2 network model effectively 
reduces model parameters and accelerates computational 
speed.

DWConv [35] is a lightweight convolution proposed in 
2017, which differs from conventional convolutions as it 
involves two steps: depthwise convolution and pointwise 
convolution. Traditional convolutions operate by convolv-
ing each channel of an input image of size H×W×P with K 
N×N convolution kernels when the stride is 1. The compu-
tational complexity is H×W×P×K×N×N. In contrast, Dep-
thwise Separable Convolution divides the process into two 
steps, as illustrated in Fig. 5.

The process first involves a depthwise convolution 
on the input image of size H×W×P using P N×N con-
volution kernels, followed by the use of a 1 × 1×K con-
volution kernel. The total computational complexity is 
H×W×P×N×N + H×W×P×K. By comparing the compu-
tational complexity of depthwise and traditional convolu-
tions, the ratio between the two, denoted as S, is obtained 
and can be expressed as follows.

S =
H × W × P × N × N + H × W × P × K

H × W × P × K × N × N

=
1
K

+
1

N2

� (1)

From the equation, it can be observed that the computa-
tional complexity of DWConv is compressed to1/K + 1/N2 
times compared to the original convolution. It is evident that 
DWConv can effectively reduce the computational burden 
of model parameters.

network model. The excessive consumption of cache space 
and subsequent decrease in runtime speed are associated 
with the frequent use of the C3 module’s depth-wise sepa-
rable convolution. To strike a balance between computa-
tional precision and speed, the lightweight ShuffleNetV2 
network model is adopted, composed of alternating patterns 
of Fig. 4(a) and (b).

From Fig. 4(a), it can be observed that after the Chan-
nel Split operation, the network branch is divided into two 
branches. One branch undergoes two convolutional lay-
ers and a Depthwise Convolution (DWConv) layer before 
being concatenated using Concat. This ensures an output 
with the same channel width, reducing memory access space 
and improving computational speed. On the other hand, 
Fig. 4(b) removes the Channel Split operation, resulting in 

Fig. 5  Separable depthwise con-
volution diagram
 

Fig. 4  The network architecture diagram of ShuffleNetV2. (a) The 
basic unit structure. (b) The spatial down sampling structure
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its operating system. Model training is carried out using 
the PyTorch framework. All network models are trained 
based on pretrained models. After training, the best model 
is selected as the prediction model for testing on the test 
set, with all predictions performed on a desktop NVIDIA 
GeForce RTX 1050Ti.

2.3.2  Evaluation indicators

To comprehensively evaluate the performance of the model, 
precision (P), recall (R), average precision (AP), mean aver-
age precision (mAP), and F1 score are employed as evalu-
ation indicators for model accuracy. Additionally, model 
parameters, size of weight file, floating-point operations per 
second (GFLOPs), and detection time per image are consid-
ered as evaluation indicators for model speed and resource 
consumption. The formulas are as follows:

Recall =
TP

TP + FN
� (2)

Pr ecision =
TP

TP + FP
� (3)

AP =
∫ 1

0
P (R)dR � (4)

In order to further reduce memory usage and accelerate 
computation speed, improvements are made to the Neck 
section of YOLOv5s. This involves adjusting the input and 
output of all layers to have the same number of channels and 
replacing all C3 layers in the Neck with DWConv modules 
that have lower computational complexity. This effectively 
reduces parameter computations. To further reduce compu-
tational burden, the original Concat connections in the PAN 
feature fusion section are replaced with Add connections. 
Both Concat and Add are methods of feature fusion, where 
Concat merges information from output layers, increasing 
the number of channels without altering the information 
content. On the other hand, Add keeps the number of chan-
nels unchanged while increasing the amount of information. 
By replacing Concat with Add, computational complexity 
is reduced. Based on these improvements, the modified 
lightweight model YOLOv5s-ShuffleNetV2-DWconv-Add 
(YOLOv5s-SDA) is constructed, as depicted in Fig. 6.

2.3  Experimental setup and evaluation indicators

2.3.1  Experimental equipment and parameter settings

All training and testing experiments are conducted on 
the same server with a computer configuration of 43G 
Intel(R) Xeon(R) Platinum 8255C and NVIDIA GeForce 
RTX 2080Ti graphics card, running Ubuntu18.04LTS as 

Fig. 6  The improved lightweight network of YOLOv5s-SDA
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conduct comparisons. Faster RCNN underwent 35,200 
iterations, while the other algorithms underwent 300 itera-
tions. All models were compared on the same dataset, and 
the best-performing weight file obtained during training was 
used for testing. Finally, different detection algorithms were 
applied to predict on the test set, and the prediction results 
are presented in Table 3.

To visually compare the detection performance of differ-
ent deep learning object detection methods, Fig. 7 presents 
a comparison of recognition accuracy for four different cat-
egories of fruit, namely, “rappleyes” representing directly 
grabbable red apples, “roccludedno” representing ungrabba-
ble red apples, “gappleyes” representing directly grabbable 
green apples, and “goccludedeno” representing ungrabbable 
green apples. From Fig. 7, it is evident that YOLOv7 and 
YOLOv5s algorithms exhibit the best fruit recognition per-
formance, with high recognition accuracy for all categories.

Considering the future application of the apple recogni-
tion algorithm in orchard picking robots for real-time fruit 
harvesting, factors such as recognition accuracy, model 
size, and detection speed are vital indicators that need to be 
comprehensively evaluated. From Table 3, it is evident that 
the Faster RCNN algorithm has the lowest mAP and larger 
weight files, indicating more space occupation during future 
transplantation. On the other hand, the YOLOv7 algorithm 

mAP =
∑n

i=1 APi

n
� (5)

F1 =
2 × P × R

P + R
� (6)

M =0.1 × mAP@0.5
+ 0.9 × mAP@0.5 : 0.95

� (7)

In Eqs.  (2) and (3), TP represents the number of positive 
samples predicted as positive, FN denotes the number of 
positive samples predicted as negative, FP represents the 
number of negative samples predicted as positive. Addition-
ally, mAP in Eq.  (5) is calculated as the mean of the AP 
values across all categories.

3  Results and discussion

3.1  Comparison of different detection algorithms

To find the optimal apple recognition algorithm, the apple 
dataset was employed with various object detection algo-
rithms, namely Faster RCNN, YOLOv3, YOLOv3-Tiny, 
YOLOv5s, NanoDet-Plus-m-1.5x-416 and YOLOv7, to 

Fig. 7  The recognition accuracy for four different fruit categories using different detection algorithms

 

Model mAP@0.5 F1 Parameters Weight files/
MB

Single 
image 
detection 
time/ms

Faster RCNN 90.3% 85.2% -- 1126.4 164.2
YOLOv3 93.0% 86.5% 61.50 M 469.0 110.5
YOLOv3-Tiny 91.1% 84.9% 8.67 M 66.2 15.4
YOLOv7 96.1% 91.6% 70.80 M 135.0 167.7
NanoDet-Plus-m-1.5x-416 94.1% -- 2.44 M 16.4 20.5
YOLOv5s 95.5% 91.0% 7.10M 14.4 20.7

Table 3  Comparison of dif-
ferent deep learning detection 
algorithms
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model automatically saved the model with the highest M 
value, which is then used as the optimal model for predic-
tion (computed according to Eq. (7)). The generated weight 
files are utilized to predict the sample images in the test 
dataset, and the detection results of different lightweight 
backbone network models on the same test dataset are pre-
sented in Table 4.

Table 4 presents the recognition results of different light-
weight network models, including mAP@0.5, AP for each 
class, F1 score, model parameters, weight file size, floating-
point operation GFLOPs, and model single-image detection 
time. From Table 4, it can be observed that the utilization 
of lightweight network models with fewer parameters and 
shallower networks leads to a slight decrease in mAP and 
AP for each class. Specifically, when comparing YOLOv5s-
MobileNetV3, YOLOv5s-GhostConv, and YOLOv5s-Shuf-
fleNetV2, the mAP values decreased by 0.8%, 0.6%, and 
0.9%, respectively, and the F1 scores decreased by 1.4%, 
0.9%, and 1.5%, respectively. In terms of recognition accu-
racy, the YOLOv5s-GhostConv model exhibited the best 
precision. Moreover, for the evaluation of model speed, the 
model parameters, weight files, GFLOPs, and single-image 
detection times for the three models decreased. Specifically, 
the weight files of YOLOv5s-MobileNetV3, YOLOv5s-
GhostConv, and YOLOv5s-ShuffleNetV2 were compressed 
to 69.4%, 54.5%, and 53.1%, respectively, the GFLOPs were 
reduced to 68.9%, 51.2%, and 48.8% of the original, and 
the single-image detection times were decreased to 95.2%, 
88.4%, and 70.0% of the original, respectively. Considering 
the detection speed and portability, the YOLOv5s-Shuffle-
NetV2 model had better performance. Although the mAP 
of the YOLOv5s-GhostConv model was 0.3% higher than 
that of the YOLOv5s-ShuffleNetV2 model, its detection 
speed was slower by 3.8 ms. Therefore, the final decision 
was made to use ShuffleNetV2 as the backbone network and 
improve it based on the YOLOv5s-ShuffleNetV2 model.

The improved lightweight model, YOLOv5s-Shuffle-
NetV2-DWconv-Add (YOLOv5s-SDA), also demonstrated 
its detection results on the prediction set, as shown in 
Table 4. From the table, it can be observed that compared 
to the YOLOv5s-ShuffleNetV2 model, the YOLOv5s-SDA 

exhibits the highest mAP and F1 score, yielding the best 
recognition results. The lightweight object detection algo-
rithm NanoDet-Plus-m-1.5x-416 has a weight file size and 
detection time similar to YOLOv5s, but its accuracy appears 
to be inferior to YOLOv5s as shown in Fig. 7. However, the 
YOLOv7 network model is excessively large, with model 
parameters reaching 70.80  M, which is an order of mag-
nitude higher compared to other algorithms. Additionally, 
the YOLOv7 algorithm has the longest single-image detec-
tion time, resulting in slower recognition speed. Taking 
these factors into account, it is not the optimal fruit recog-
nition algorithm. In comparison, the YOLOv5s algorithm 
demonstrates slightly lower average recognition accuracy 
and decreased F1 score compared to YOLOv7. However, 
it outperforms Faster RCNN, YOLOv3, YOLOv3-Tiny and 
NanoDet-Plus-m-1.5x-416 algorithms. Furthermore, the 
YOLOv5s algorithm exhibits relatively faster single-image 
detection time, with a recognition speed eight times faster 
than YOLOv7. This showcases favorable performance. 
Overall, among these algorithms, the YOLOv5s algorithm 
displays the best performance and detection effectiveness. 
Hence, the YOLOv5s model is selected as the recognition 
algorithm for further research.

3.2  Comparative analysis of different lightweight 
backbone network models

In order to investigate a more lightweight algorithm with 
smaller model weight files, fewer parameters, and faster 
detection speed, this section aims to compare the predic-
tion performance of different lightweight models based on 
YOLOv5s.

The YOLOv5s architecture is modified by replacing its 
original backbone networks with more lightweight network 
structures, namely MobileNetV3, GhostConv, and Shuffle-
NetV2, resulting in YOLOv5s-MobileNetV3 (abbreviated 
as YOLOv5s-Mv3) and YOLOv5s-ShuffleNetV2 (abbre-
viated as YOLOv5s-Sv2). These modified models are then 
compared with the lightweight model YOLOv5s-Shuffle-
NetV2-DWconv-Add (abbreviated as YOLOv5s-SDA) as 
described in Sect.  2.2.2. During the training process, the 

Table 4  Comparative analysis of detection results using different lightweight backbone network algorithms
Network
model

mAP@0.5/% AP@0.5/% F1/% Parameters Weight files
/MB

GFLOPs T
/msry rn gy gn

YOLOv5s 95.5 97.8 93.7 98.4 92.0 91.0 7.10 M 14.4 16.4 20.7
YOLOv5s-Mv3 94.7 97.0 93.4 98.0 90.4 89.6 5.00 M 9.99 11.3 19.7
YOLOv5s-Gcv 94.9 97.1 93.0 98.3 91.1 90.1 3.80 M 7.85 8.4 18.3
YOLOv5s-Sv2 94.6 96.8 93.6 98.0 90.2 89.5 3.79 M 7.64 8.0 14.5
YOLOv5s-SDA 94.6 96.9 92.7 98.0 90.9 89.2 0.72 M 1.7 2.5 9.5
Note In the table, “ry” represents “rappleyes,” indicating directly graspable red apples; “rn” represents “roccludedno,” indicating non-directly 
graspable red apples; “gy” represents “gappleyes,” indicating directly graspable green apples; “gn” represents “goccludedno,” indicating non-
directly graspable green apples; “T” represents the detection time for a single image
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model maintained the same mAP, with the AP values for 
each category remaining relatively stable. However, there 
is a slight decrease of 0.3% in F1 score for the YOLOv5s-
SDA model. Remarkably, the model exhibited improved 
speed, with model parameters reduced by an order of mag-
nitude. Furthermore, the weight file size decreased to 22.3% 
of its original size, and the GFLOPs also saw a significant 
decrease. Notably, the detection time for a single image 
became 5ms faster than before, indicating that the model 
has become more lightweight.

To provide a more comprehensive display of the improved 
model, a comparison was made between the lightweight 
YOLOv5s-SDA model and the original YOLOv5s model. 
Despite a slight decrease in mAP from 95.5 to 94.6%, as 
well as a decline of 1.8% in F1 score, notable improvements 
were observed. The model parameters were reduced by an 
order of magnitude, with the weight file size shrinking from 
the original 14.4 MB to 1.7 MB, a reduction to 11.8%. Fur-
thermore, the GFLOPs decreased from 16.4 to 2.5, repre-
senting only 15.2% of the original floating-point operations. 
The detection time for a single image also decreased from 
20.7ms to 9.5ms, resulting in a detection speed that was 
2.2 times faster than before. Considering the future deploy-
ment of the recognition algorithm on embedded devices, 
combined with a robotic arm to achieve real-time apple 
grasping, the proposed improvement method not only main-
tained a slightly decreased accuracy but also enhanced the 
detection speed. Additionally, it effectively compressed the 
model size, reduced the weight file size and model param-
eters, thereby occupying less memory and exhibiting desir-
able portability.

From Table 5, it can be observed that individually adding 
ShuffleNetV2, DWConv, and ADD modules did not reduce 
the order of magnitude of the model parameters. However, 
incorporating ShuffleNetV2 into other modules reduced the 
model parameters by an order of magnitude. This is because 
ShuffleNetV2 utilizes techniques such as depth-wise sepa-
rable convolution and channel shuffle to reduce the number 
of parameters and computational costs, thereby decreasing 
network parameters without significantly affecting model 
accuracy. Combining models can reduce parameters while 
improving detection speed and decreasing model size. As 
shown in the table, simultaneously adding ShuffleNetV2 
and DWConv to YOLOv5s reduced the model size to 11.8% 
of the original, with a detection time faster by 6.3ms; adding 
ShuffleNetV2 and ADD reduced the model size to 15.3% of 
the original, with a detection time faster by 3.7ms; adding 
DWConv and ADD reduced the model size to 68.8% of the 
original, with a detection time faster by 6.2ms, indicating 
that DWConv can improve model detection speed. Finally, 
combining the original YOLOv5s model with ShuffleNetV2, 
DWConv, and ADD, while maintaining accuracy, yielded 

Ta
bl

e 
5 

A
bl

at
io

n 
ex

pe
rim

en
ts

Sv
2

D
A

m
A

P@
0.

5/
%

A
P@

0.
5/

%
F1

/%
Pa

ra
m

et
er

s
W

ei
gh

t fi
le

s
/M

B
G

FL
O

Ps
T /m

s
ry

rn
gy

gn
95

.5
97

.8
93

.7
98

.4
92

.0
91

.0
7.

10
 M

14
.4

16
.4

20
.7

√
94

.6
96

.8
93

.6
98

.0
90

.2
89

.5
3.

79
 M

7.
64

8.
0

14
.5

√
95

.3
97

.5
94

.1
98

.1
91

.6
90

.3
4.

99
 M

10
.2

12
.6

13
.5

√
95

.6
97

.7
94

.4
98

.3
92

.0
90

.4
6.

90
 M

14
.1

16
.1

15
.7

√
√

94
.5

97
.2

92
.8

97
.8

90
.2

88
.8

0.
74

 M
1.

7
2.

6
14

.4
√

√
94

.8
97

.4
93

.2
98

.3
90

.4
90

.5
4.

83
 M

9.
9

12
.4

14
.5

√
√

94
.3

96
.9

92
.0

97
.8

90
.5

88
.8

0.
98

 M
2.

2
3.

4
17

√
√

√
94

.6
96

.9
92

.7
98

.0
90

.9
89

.2
0.

72
 M

1.
7

2.
5

9.
5

N
ot

e 
In

 th
e 

ta
bl

e,
 “

Sv
2”

 re
pr

es
en

ts
 “

Sh
uffl

eN
et

V
2,

” 
“D

” 
re

pr
es

en
ts

 “
D

W
C

on
v,”

 “A
” 

re
pr

es
en

ts
 “A

D
D

”

1 3

6722



Signal, Image and Video Processing(2024) 18:6713–6727

To provide a more intuitive display of the improved 
model’s performance, a P-R curve was plotted for the 
improved model, as shown in Fig.  9. The horizontal axis 
represents the recall rate, while the vertical axis represents 
precision. The area under the curve (AUC) reflects the AP 
value. The larger the AP value, the closer the curve is to the 
coordinate (1,1), indicating a better model performance. As 
depicted in Fig. 9, the AP value of the “rappleyes” category 
is 96.9%, the “roccludedno” category achieves 92.7%, the 
“gappleyes” category attains 98.0%, and the “goccluedeno” 
category reaches 90.9%, with a mAP of 94.6% for all cat-
egories. These results demonstrate that the model exhibits 
excellent detection performance.

In the natural orchard environment, fruits exhibit vari-
ous shapes, and overlapping and occlusion phenomena are 
common due to foliage. To showcase the improved detec-
tion performance of the model, the test dataset images 
were used for predictions, yielding visual results of fruits 
under different natural conditions, as illustrated in Figs. 10 
and 11. These figures demonstrate that the YOLOv5s-SDA 
algorithm effectively identifies both red and green apples, 
regardless of their quantity (single, 2–3, or multiple) or 
lighting conditions (front-lit, backlit, or shaded). The model 
also performs well in dense and occluded conditions, indi-
cating its strong recognition capabilities towards fruits in 
complex environments after the improvements.

However, there are still cases of misclassification and 
missed detections, as shown in Fig. 12. In Fig. 12(a), the 
yellow-boxed apple on the left of the branch should be a 
non-grabbable red apple, but the model incorrectly identi-
fied it as a grabbable red apple. This misidentification could 
be due to the position of the branch at the edge of the fruit, 
where the classification features are not obvious, leading to 
a misclassification by the model. In Fig. 12 (b), the apple 
within the green circle is not recognized, possibly due to 
insufficient lighting resulting in a missed detection. In 
Fig. 12 (c), the apple within the yellow circle is incorrectly 
identified as a non-grabbable green apple, likely because the 
fruit is heavily occluded by leaves and positioned at the edge 
of the image. In Fig.  12 (d), two apples within the green 
circle are not detected, possibly because the fruits are heav-
ily occluded by obstacles and have significant shadowing on 
their surfaces. In the future, optimizations can be made in 
the following areas: incorporating more practical scenarios 
to enhance the robustness of the model, attempting to adjust 
the network structure based on the characteristics of apple 
picking scenarios, and conducting systematic optimizations 
and adjustments.

better results in terms of model parameters, size, detection 
time, and other metrics compared to other combinations.

3.3  The experimental results under different 
natural conditions

To evaluate the training results and determine if the 
YOLOv5s-SDA model converged, Fig. 8 illustrates the loss 
function curve during the training process. The loss function 
rapidly decreased from 0.220 to 0.064 within the first 50 
epochs, and gradually stabilized around 0 after 300 epochs. 
This indicates that the model has converged and received 
effective training.

Fig. 9  YOLOv5s-SDA algorithm’s P-R curve

 

Fig. 8  Variation of the loss function during the training process
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enhancements were implemented on the YOLOv5s model 
to achieve apple recognition and localization in complex 
environments. To begin with, different datasets were col-
lected for red and green apples in orchards under various 
conditions. To reduce mechanical damage to the branch and 
improve grabbing efficiency, the datasets were divided into 

4  Conclusion

This study focuses on different growth conditions and colors 
of apples in natural environments, aiming to investigate the 
identification and detection of apples in situ using deep learn-
ing object detection algorithms. Furthermore, lightweight 

Fig. 11  Recognition results of the model under different lighting conditions. (a) Towards the light. (b) Backlight. (c) Shade

 

Fig. 10  Recognition performance of the model with varying apple quantities. (a) Single. (b) 2 ~ 3 pcs. (c) Multiple
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with high accuracy and fast detection speed, and has great 
potential for future practical applications.

The models in this study were trained on computer 
devices and have not yet been tested in the field. As a result, 
there may be certain inaccuracies in their application to 
real-world environments. Subsequent research will focus 
on further refining the models to optimize their deployment 
on mobile devices. Moreover, further research will be con-
ducted to enhance the accuracy of the model detection. This 
will involve the incorporation of additional data augmen-
tation techniques and more robust target localization algo-
rithms. Furthermore, exploration of additional application 
scenarios will be undertaken to maximize the effectiveness 
of fruit-picking robots in practical implementation.
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four categories: directly grabbable and non-directly grab-
bable red and green apples. These datasets were labeled 
using LabelImg software and split into training, validation, 
and testing sets following a 6:2:2 ratio. Secondly, various 
deep learning object detection algorithms were selected, 
including the two-stage algorithm Faster RCNN and the 
single-stage recognition algorithms YOLOv3, YOLOv3-
Tiny, YOLOv5s, and YOLOv7. The YOLOv5s algorithm 
was found to have the best recognition and detection perfor-
mance compared to others. The model was then enhanced 
with a lightweight backbone network, replacing the origi-
nal backbone with different lightweight networks such as 
MobileNetV3, GhostConv, and ShuffleNetV2. After model 
prediction on the same testing set, the ShuffleNetV2 light-
weight model was found to have the best performance. 
Therefore, further fine-tuning was performed to obtain the 
final lightweight model, YOLOv5s-SDA, with a mAP value 
of 94.6%, one order of magnitude fewer model parameters 
than the original YOLOv5s model, and the size of the weight 
file has been reduced from 14.4 MB to 1.7 MB, decreasing 
to 11.8% of its original size. The GFLOPs has been reduced 
from 16.4 to 2.5, with the floating-point operations repre-
senting only 15.2% of the original amount. Furthermore, the 
detection time per image was reduced from 20.7ms to 9.5ms, 
doubling the detection speed while maintaining model pre-
cision in natural environments. Overall, the YOLOv5s-SDA 
model showed excellent performance in fruit recognition, 

Fig. 12  Misclassification and 
missed detections of fruit. (a)
The unpickable red apple error 
was misidentified as a pickable 
red apple (yellow circle). (b) Red 
apple missed detection (green cir-
cle). (c)The pickable green apple 
error was misidentified as an 
unpickable green apple (yellow 
circle). (d)Two heavily obscured 
fruits were not detected (green 
circle)
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