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Abstract
Automatic classification of dermoscopy images plays a crucial role in the early diagnosis and treatment of serious diseases
like skin cancer. However, it poses several challenges, including similar appearance lesions, different types of skin struc-
tures, variations in lesion stages, insufficient or inaccurate data, and artifacts present in dermoscopy images. In skin lesion
classification tasks, deep learning-based methods have recently demonstrated superior performance compared to traditional
machine learning-based methods. In this study, a novel ensemble-based approach is designed for skin lesion classification by
leveraging the diverse information captured by different architectures of ConvNeXt models which have been demonstrated
to achieve comparable performance to most vision transformers by utilizing a CNN backbone. More specifically, firstly,
different versions of pre-trained and fine-tuned ConvNeXt models, namely Tiny, Small, Base, and Large, were used for the
classification of skin lesion images to analyze and compare classification performances on the publicly available ISIC 2019
dataset. Among the individual models, ConvNeXt-Large achieved the highest accuracy rate of 97.2%, making it the top-
performing model. Then, all four ConvNeXt models were fused using confidence scores to improve classification accuracy.
The ensemble approach achieved an overall classification accuracy of 97.7%, surpassing both the performance of individual
models and state-of-the-art methods. Additionally, a sensitivity value of 84.2% and a specificity value of 97.9%were obtained.
The findings of this study provide evidence that the proposed approach effectively and accurately classifies skin lesions from
dermoscopy images.
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1 Introduction

Skin cancer is one of the most common types of cancer that
occurs due to abnormal growths in the skin cells [1]. Accord-
ing to the World Health Organization (WHO), skin cancer
affects roughly three million individuals globally every year,
resulting in thousands of deaths [2]. Regular skin examina-
tions by expert dermatologists and awareness of changes in
nevus or skin spots are essential for early diagnosis of poten-
tial skin cancer. This allows for the treatment of cancer cells
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before they spread to surrounding tissues.Additionally,when
skin cancer is diagnosed early, the treatment process is both
easier and less invasive [3].

Dermoscopy is a diagnostic technique that does not
involve any invasive procedures and enables the visualiza-
tion of skin lesions with higher magnification and improved
clarity [4]. It is commonly used by dermatologists in the diag-
nosis ofmelanoma and other skin cancer types. However, this
technique is known to be time-consuming, tiring, and prone
to errors and variations in diagnosis among dermatologists
[5]. Therefore, there is a demand for computer-aided diag-
nosis (CAD) systems to reduce diagnostic subjectivity and
improve accuracy and consistency. These systems can also
aid in the early detection and treatment of skin cancer by
identifying early-stage skin lesions that may be missed by
the naked eye [6].

The purpose of automated CAD systems is to catego-
rize skin lesions as malignant or benign, sometimes even
precisely categorizing these two classes into their own sub-
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classes. On the other hand, the classification of skin lesions
poses several challenges that can result in misdiagnosis.
Some of these challenges include:

1. Similar-looking lesions: Some skin lesions fromdifferent
classes may have a similar appearance.

2. Differences in skin characteristics: Different individuals
may have different skin types and structures, causing skin
lesions from the same class to look different.

3. Variations in lesion stages: An early-stage lesion may
have a different appearance from a later-stage lesion.

4. Insufficient or inaccurate data: The data used for skin
lesion classification may be insufficient (e.g., for a rare
type of lesion) or inaccurate.

5. Artifacts: Artifacts, including hair, skin lines, and blood
vessels, may be present in dermoscopy images.

With the rapid progress of deep learning technology, it
has become the preferred method for medical image analysis
in computer vision [7, 8]. Compared to traditional clas-
sification methods, deep learning has exhibited enhanced
robustness and superior generalization capability. One of
the most well-known deep learning models, Convolutional
Neural Networks (CNNs) [9] are excellent at capturing spa-
tial information and detecting local patterns, making them
suitable for image analysis tasks, including skin lesion clas-
sification. However, as higher performance and scalability
demand increased, researchers explored new architectures
such as Vision Transformers (ViTs) [10]. ViTs introduced
the concept of self-attention, allowing models to capture
global dependencies in input images. This contribution led
to remarkable improvements in image classification tasks by
dealing with the complexities of aforementioned challenges
of the image datasets. In 2022, Liu et al. [11] introduced the
ConvNeXt model, which combines the strengths of CNNs
and Transformers. ConvNeXt utilizes a CNN backbone to
capture local features and an attention mechanism to cap-
ture global dependencies. This architecture has been shown
to surpass the performance of traditional transformers and
even the successfulViTmodel, SwinTransformer [12], while
overcoming the limitations of input size.

Ensemble methods have gained significant popularity in
diversemedical image classification tasks. [13, 14]. The clas-
sifiers with different architectures used in ensemble methods
can capture image information at different levels, leading
to more accurate decisions. To our knowledge, there is no
existing study on the classification of skin lesions from der-
moscopy images usingConvNeXtmodels.On the other hand,
this study is the first to utilize both individual ConvNeXt
models and ensemble learning technique for classifying skin
lesions from dermoscopy images. Therefore, the main con-
tributions of this study are as follows:

1. This is the pioneering study that appliesConvNeXtmodel
architectures to dermoscopy images for the task of skin
lesion classification.

2. We conducted experiments without altering the exist-
ing structures of ConvNeXt models (Tiny, Small, Base,
Large) to enable effective transfer learning for eight-class
skin lesion classification.

3. We investigated the effect of ensemble learning, and the
results demonstrated that the ensemble of different Con-
vNeXt models outperformed individual models in the
classification tasks.

4. For both individual models and ensemble models, five-
fold cross-validation and testing were performed to
evaluate their performance. The ensemble of all Con-
vNeXtmodels achieved anoverall classification accuracy
of 97.7%, surpassing both the performance of individual
models and state-of-the-art methods.

5. To ensure the validity of this study, comparisons were
made with state-of-the-art methods based on CNNs [15–
19] and Vision Transformer (ViT) models [20]. These
methods were selected as they represent the most fre-
quently compared approaches in the recent literature.
Training and testing processes were conducted on the
publicly available ISIC 2019 dataset, commonly used
for skin lesion classification. This allowed for a fair
comparison of the proposed approach against other state-
of-the-art methods.

Based onour findings, this study highlights the potential of
ConvNeXtmodels in accurately classifying skin lesions from
dermoscopy images. Further research in this direction can
contribute to the development of more effective and reliable
automated systems for skin lesion analysis.

2 Related work

The initial studies on skin lesion classification in the lit-
erature considered the lesion classification problem as a
binary classification problem, where the lesions were cat-
egorized as either malignant or benign. With the emergence
of larger datasets [21–23] that include subtypes of malig-
nant and benign lesions, recent studies have focused more
on automatedmulti-class skin lesion classification. However,
automated multi-class classification of skin lesions remains
a challenging task due to the challenges mentioned in Sect. 1
and the existence of multiple classes.

Deep Learning has garnered significant attention in the
field ofmedical image classification, including the classifica-
tion of skin lesions. Extensive research has been conducted,
employing numerous deep learning approaches to tackle
this task. Esteva et al. [24] utilized the GoogleNet Incep-
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tion v3 model to train on a dataset consisting of 129,450
clinical images, encompassing 2,032 different diseases. The
proposed model achieved performance comparable to that
of all tested experts and demonstrated the ability of artifi-
cial intelligence to classify skin cancer at a level similar to
dermatologists.Abbas andCelebi [25] proposed a newclassi-
ficationmethod namedDermoDeep,which combines various
visual features and deep neural network approaches to clas-
sify pigmented skin lesions. They evaluated the method on
2800 region-of-interests (ROIs) and achieved an AUC of
0.96,with a sensitivity of 93%and specificity of 95%.Gessert
et al. [17] proposed an ensemble of deep learning models
comprising EfficientNets, SENet, and ResNeXtWSL, which
were selected using a search strategy. They addressed the
class imbalance issue with a loss balancing approach. The
results showed that EfficientNets models performed well on
the ISIC2019 dataset. Furthermore, the automatic selection
of the ensemble of SENet154 and ResNext models indicated
that the variability in network architectures yielded better
results. Pacheco and Krohling [26] highlighted the poten-
tial for achieving improved performance by considering the
demographic characteristics of the patient, rather than solely
relying on the classification of skin lesions based on images.
To this end, they proposed a new approach calledMetaBlock,
which uses the most relevant features and metadata. The
results showed that the MetaBlock approach improved clas-
sification for all tested models. Kassem et al. [18] tested a
modified GoogleNet model using transfer learning approach
on the ISIC2019 dataset. The proposed model achieved the
following classification metrics: accuracy of 94.92%, sensi-
tivity of 79.8%, specificity of 97%, and precision of 80.36%.
Molina-Molina et al. [15] presented an approach that com-
bines deep learning features extracted from Densenet-201
with 1D fractal signatures of texture-based features through
transfer learning. The proposedmethod achieved an accuracy
of 97.35%, sensitivity of 66.45%, and specificity of 97.85%
on the ISIC2019 dataset. Iqbal et al. [19] proposed a Deep
Convolutional Neural Network (DCNN) model with fewer
filters and parameters to improve efficacy and performance.
The proposed model achieved an accuracy of 89.58%, sensi-
tivity of 89.58%, and specificity of 97.57% on the ISIC2019
dataset. Zhao et al. [16] presented a new skin lesion image
classification approach based on SLA-StyleGAN, a spe-
cific image augmentation method for skin lesions, using the
DenseNet201 architecture. Additionally, they introduced a
novel loss function that aims to increase the distance between
samples from different classes while reducing the distance
between samples within the same class. Experimental results
demonstrated that the proposed framework achieved a bal-
anced multi-class accuracy of 93.64% on the ISIC2019
dataset. Ayas [20] proposed the first vision transformer-based
model for multi-class skin lesion image classification. The
proposed Swin Transformer model achieved a sensitivity of

82.3%, specificity of 97.9%, accuracy of 97.2%, and bal-
anced accuracy of 82.3% on the ISIC2019 dataset.

In this paper, we presented the effectiveness of ConvNeXt
[11] model, which combines the strengths of CNNs and
Transformers, in skin lesion classification. The ConvNeXt
is a CNN-based model and it has been proposed to improve
the performance of vision transformers. Unlike vision trans-
formers, ConvNext does not rely on specialized modules
such as shifting window attention or relative position biases,
resulting in a more modern model that achieves compara-
ble performance, memory usage, and FLOPs (floating-point
operations per second) to the Swin Transformer [27]. To the
best of the author’s knowledge, this is the first study to utilize
theConvNextmodel formulti-class skin lesion classification.
The experimental results demonstrated that the proposed
approach achieved better performance for both individual
and ensemble models in terms of sensitivity, specificity, and
accuracy metrics.

3 Methods

3.1 ConvNeXt

The ConvNeXt architecture [11], proposed by Liu et al.
in 2022, aims to outperform the performance of ViTs. To
achieve this goal, it takes advantage of attention-based classi-
fiers and conventional ResNet model. Motivated by the need
to capture global dependencies and contextual information,
the ConvNeXt architecture employs convolutions with large
receptive fields as its fundamental building block. Addition-
ally, as a pure CNN architecture, ConvNeXt outperforms
Swin Transformer, the most powerful transformer model on
the ImageNet-1K dataset [28]. The ConvNeXt architecture
is shown in Fig. 1.

ConvNeXt has a structure that is very similar to ResNet50,
consisting of a head feature extraction layer, a middle layer
characterized by a bottleneck structure encompassing four
different dimensions, and a high-dimensional feature clas-
sification layer. However, the interior of each layer and the
strategy of stacking have undergone several changes. First,
the stacking number of each block has been revised from
3:4:6:3 to 3:3:9:3, which is similar to the transformer model.
Within each ConvNeXt block, there is a depth-wise convo-
lution operation, which is then accompanied by 1×1 convo-
lutions. To achieve this, the depth-wise convolution adopts a
group-wise convolution approach that involves grouping the
channels together. Secondly, the bottleneck design has been
modified to following sequence of operations: firstly, it per-
forms feature extraction, followed by dimension reduction,
and finally, dimension expansion. Thirdly, the size of the con-
volution kernel has been changed from 3x3 to 7x7. Fourthly,
the activation function has been replaced from Rectified Lin-
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Fig. 1 The architecture of the
ConvNeXt-Tiny model. The
downsample layer and
ConvNeXt block are stacked in
the ratio of 3:3:9:3 ratio of 4
stages. The GELU represents
the Gaussian Error Linear Unit.
The output class names are
abbreviated as AK: actinic
keratosis, BCC: basal cell
carcinoma, BKL: benign
keratosis, DF: dermatofibroma,
NV: melanocytic nevus, MEL:
melanoma, SCC: squamous cell
carcinoma, and VASC: vascular
lesion, respectively

Table 1 The configurations of the four ConvNeXt model versions

Model Number of channels Number of blocks

Tiny (T) (96, 192, 384, 768) (3, 3, 9, 3)

Small (S) (96, 192, 384, 768) (3, 3, 27, 3)

Base (B) (128, 256, 512, 1024) (3, 3, 27, 3)

Large (L) (192, 384, 768, 1536) (3, 3, 27, 3)

ear Unit (ReLU) toGaussian Error LinearUnit (GELU), with
fewer activation functions used. Finally, a notable change
is the adoption of layer normalization instead of batch nor-
malization as well as employing fewer normalization layer.
These modifications, along with new parameters, structures,
and functions, have gradually improved the performance of
ConvNeXt, even outperforming the ViT such as Swin Trans-
former.

Additionally, four versions of ConvNeXt are proposed,
namely, ConvNeXt-Tiny (T), ConvNeXt-Small (S),
ConvNeXt-Base (B), and ConvNeXt-Large (L). The diver-
sity of these versions varies as the number of channels and
blocks used in each stage differs, as shown in Table 1.

3.2 The proposed ensemble of ConvNeXt classifiers

Ensemble learning is a powerful technique widely used in
computer vision, where different classifiers are combined
to enhance classification performance. By leveraging the
diverse information captured by classifiers with different
architectures, ensemble models have the potential to achieve
higher accuracy compared to individual base learners. This
approach is commonly employed in various medical image
classification tasks [13, 14]. In this study, all versions of the
ConvNeXt model (ConvNeXt-T, ConvNeXt-S, ConvNeXt-
B, ConvNeXt-L) are selected as the base classifiers of the
ensemble model.

Let x(w, h, c) be an unseen test image with a size ofw×h
pixels and c channels. To classify x , we utilize the following
approach. In the final decision step, each individual fine-
tuned ConvNeXt classifier Ci in the ensemble C produces
confidence scores of the input x belonging to the class y
membership as given in (1). We then select the class with
high confidence value as the label for x as given in (2).

Py(x) =
∑

Ci εC

PCi ,y(x) (1)

C(x) = arg max
yεY

Py(x) (2)

4 Experimental setup and results

All experiments were conducted on a computer equipped
with an Intel(R) Core(TM) i9-11900K 3.50 GHz CPU and
an NVIDIAGeForce RTX 3080 12GBGPU. The ConvNeXt
models were developed using the PyTorch deep learning
library.

4.1 ISIC2019 Skin lesion classification dataset

The ISIC 2019 skin lesion dataset [21–23, 29, 30] is a der-
matology dataset created by the International Skin Imaging
Collaboration (ISIC) in 2019. It is specifically designed for
skin cancer diagnosis and consists of a total of 25,331 images
belonging to 8 subcategories of both benign and malignant
skin lesions. The subcategories are named as follows: actinic
keratosis (AK), basal cell carcinoma (BCC), benign kerato-
sis (BKL), dermatofibroma (DF), melanocytic nevus (NV),
melanoma (MEL), squamous cell carcinoma (SCC), and vas-
cular lesion (VASC). Figure2 includes some sample images
of the dataset in each lesion category. The dataset does not
provide ground truth labels for the test data. To make a fair
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Fig. 2 Some sample images of the dataset in each leasion category. AK:
actinic keratosis, BCC: basal cell carcinoma, BKL: benign keratosis,
DF: dermatofibroma, NV: melanocytic nevus, MEL: melanoma, SCC:
squamous cell carcinoma, VASC: vascular lesion

comparison with state-of-the-art methods we followed the
same training/testing protocol presented in [20]. We divided
the available training data into three subsets: training, val-
idation, and test, with a split ratio of 70%, 10%, and 20%,
respectively.Wealso applied the 5-fold cross-validation tech-
nique, where the dataset was split into 5 folds, keeping the
number of images of the same class in each fold equal. This
ensures to avoid problems such as all samples being from
one class or certain classes not being represented. Table 2
presents the number of training, validation, and test samples
in each lesion category.

We employed data augmentation techniques during the
training process to enhance the model’s generalization abil-
ity. The augmentation techniques include a range of transfor-
mations, including geometric transformations like random
horizontal and vertical flips, random rotation, and color jitter
transformations that involve brightness, contrast, and satura-
tion adjustments. Additionally, we resized all the images to
224×224 pixels to ensure consistency in input dimensions
during training.

4.2 Training details

The ISIC 2019 dataset exhibits class imbalance, with the NV
class containing over 12,000 images whereas classes such
as AK, DF, SVC, and VASC comprise a smaller number of
images ranging from 200 to 900. Imbalanced datasets tend
to bias the model towards the class with a larger number of
samples, which can result in an increase in false positives
(FP) or false negatives (FN) depending on the imbalance. In
this study, to address the issue of overfitting on the NV class
during training, a weighting scheme based on inverse class
frequency is applied to the cross-entropy loss function. The
weight value for each class,weightCi , is calculated using the
Eq.3.

Table 2 The number of training, validation, and test samples in each
lesion category

AK BCC BKL DF MEL NV SCC VASC

Training 607 2326 1837 168 3165 9012 440 177

Validation 87 333 263 24 453 1288 63 26

Test 173 664 524 47 904 2575 125 50

AK actinic keratosis, BCC basal cell carcinoma, BKL benign kerato-
sis,DF dermatofibroma, NV melanocytic nevus,MEL melanoma, SCC
squamous cell carcinoma, VASC vascular lesion

weightCi =
∑k

j=1 N j

k × Ni
(3)

where Ni denotes the number of images in i th class and k
denotes the number of class.

The training data in the ISIC 2019 dataset is not sufficient
for training CNN-based architectures from scratch. There-
fore, in this study, instead of training ConvNeXtmodels from
scratch, pre-trainedmodels on the 1K-class ImageNet dataset
were fine-tuned as skin lesion classifiers. During the training
of the models, the AdamW optimization method was applied
with a learning rate of 1e-5 and a weight decay value of 1e-8.
The cross-entropy loss function was used as the error func-
tion. The batch size was set to 8, and the number of epochs
was set to 50 for all individual and ensemble models.

4.3 Performancemetrics

The classification performance of the models was evaluated
considering three widely used quantitative metrics, i.e., Sen-
sitivity, Specificity, and Accuracy. The study was considered
as a multi-class (c) classification problem, where each test
sample is assigned to one of the predefined classes Class1,
Class2,...,Classc. The confusionmatrix [31] is used to anal-
yse the results of the multi-class classifier. The confusion
matrix shows the relationship between the actual class values
and the class values predicted by the classifier. The confusion
matrix for the c-class problem can be expressed as a c × c
table where each cell xi, j , (i = 1, ..., c and j = 1, ..., c)
of the confusion matrix at row i and column j provides the
number of instances for which the predicted class is j and
the actual class is i. A binary confusion matrix is a special
case when there are only two classes. Hence, a c × c confu-
sion matrix can be represented as a set of c binary confusion
matrices, one for each class. Table 3 represents a confusion
matrix for a c-class problem.

Sensitivitymeasures the ability of a classificationmodel to
correctly identify positive instances out of all actual positive
instances whereas specificity measures the ability of a clas-
sification model to correctly identify negative instances out
of all actual negative instances in a dataset. Accuracy mea-
sures the overall correctness of a classification model across
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Table 3 Confusion matrix used to calculate evaluation metrics

Classifier output

Class1 Class2 Class3 · · · Classc

Ground truth Class1 x11 x12 x13 · · · x1c

Class2 x21 x22 x23 · · · x2c

Class3 x31 x32 x33 · · · x3c
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Classc xc1 xc2 xc3 · · · xcc

all classes. The sensitivity, specificity, and accuracy metrics
for classi are formulated as follows:

Sensi tivi t yclassi = xii
xii + ∑c

j=1 xi j
(4)

Speci f ici t yclassi =
∑c

j �=i
∑c

k �=i x jk∑c
j �=i

∑c
k �=i x jk + ∑c

j �=i xi j
(5)

Accuracyclassi = xii + ∑c
j �=i

∑c
k �=i x jk∑c

i=1
∑c

j=1 xi j
(6)

Accuracy, sensitivity, and specificity measures are calcu-
lated separately for each class using the confusion matrix
obtained. In the study, the class for which the classification
performance is to be calculated was defined as the positive
class, while all other classes were defined as negative classes.
As a result, the overall classification performance measure
was obtained by averaging the c classes.

4.4 Results

First, the individual and ensemble performances of four dif-
ferent versions of the ConvNeXt model, as stated in Table 1,
were analyzed for skin lesion classification. The mean and
standard deviation results of each model obtained through
5-fold cross-validation are provided in Table 4. The classi-
fication performance was evaluated using the three metrics
described in Sect. 4.3: accuracy, sensitivity, and specificity.
The results show that by increasing the model complexity
in the order of tiny, small, base, and large, the SE metric
improves from 80.5% to 81.3%. Furthermore, it has been
observed that the transfer learning approach achieves an
accuracy of over 96% for all ConvNeXt models. Addition-
ally, ensemble models have increased the highest sensitivity
value obtained in individual models from 81.3 to 84.2. The
proposed ConvNeXt T-S-B-L (overall) ensemble method
achieved the best values with accuracy of 97.7%, sensitivity
of 84.2%, and specificity of 97.9%. Furthermore, the high
average results and low standard deviation values indicate
that the models generally perform well and the results are

consistent. In conclusion, such results have demonstrated the
effectiveness of both individual and ensemble architecture of
ConvNeXt models.

We also compared the effectiveness and robustness of
the ConvNeXt models with state-of-art methods: Molina’s
method [15], Zhao’s method [16], EfficientNets [17],
Kassem’s method [18], CSLNet [19], and Swin transformer-
based models [20]. We chose these methods because they
are the most frequently compared studies in the literature.
For a fair comparison, we used the same configuration of the
dataset as in [20]. We also applied 5-fold cross-validation to
avoid the variability of samples which may affect the per-
formance of the models. Quantitatively, Table 5 summarizes
the classification performance of the proposed method with
six state-of-the-art methods on the ISIC 2019 dataset. The
symbol “-” refers unreported results. The highest accuracy
of 97.7% was achieved with the ensemble of all ConvNeXt
models. Additionally, it can be observed that the sensitiv-
ity and specificity values are also high. Molina et al. [15]
achieved an average sensitivity value of 66.5% by using the
entire datasetwithout performing a specific training-test split.
However, they reported that the low sensitivity values for
classes like DF, SCC, and VASC were attributed to the lim-
ited number of images available for these classes. Zhao et
al. [16] were able to increase the sensitivity value to 68.2%
by incorporating various contributions. Gessert et al. [17]
achieved the best sensitivity value of 72.5% by using an addi-
tional dataset. Kassem et al. [18] addressed the imbalanced
dataset problem and achieved a sensitivity of 79.8% by using
only 191 images. Iqbal et al. [19], addressed the issue of
class imbalance in the dataset and achieved an impressive
sensitivity using their proposed CSLNet model. However,
the classification accuracy of the model was considerably
low. Ayas et al. [20] obtained state-of-the-art classification
results by using different sub-versions of the Swin transform-
ers. Table 5 further demonstrates that the proposedConvNext
models in the study yield competitive results against the Swin
Transformer models. These findings highlight that different
models may be effective in different scenarios. Researchers
can contribute to a better understanding of the strengths of
each approach and guide future studies by conducting in-
depth analysis of these competitive results. This competition
encourages progress and fosters continuous innovation to
achieve better performance.

Figure 3 shows the confusion matrices obtained for indi-
vidual and ensemble models on the fold-1 test set. The
diagonal values in the confusion matrices represent the ratio
of correctly classified samples to the total number of samples
in each class, giving the sensitivity values for each class. As
can be seen from Fig. 3, the ConvNeXt-T model achieved
68% sensitivity for the AK class in the fold-1 test set, which
was increased to 78% with the ensemble model. Similarly,
the classification of MEL class images obtained 74% accu-
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Fig. 3 Confusion matrices depicting the performance on the test set for
the eight-class skin lesion classification, highlighting individual sub-
versions of ConvNeXt (T: tiny, S: small, B: base, L: large) and the

proposed ensemble model, with results specifically from fold 1 test set.
The diagonal values represent the sensitivity values for each class

racy with the individual ConvNeXt-T model, which was also
improved to 78% with the ensemble model. It is noteworthy
that the individual accuracies of themodels vary significantly

for each class. For instance, the individual performances of
tiny, small, base and large models for AK class are 68%,
76%, 73%, and 76%, respectively. In addition, the ensemble
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Table 4 Performance
comparison of the individual and
ensemble of ConvNeXt models

Model Sensitivity Specificity Accuracy

ConvNeXt T 80.5± 0.5867 97.4± 0.0946 96.9± 0.0923

ConvNeXt S 80.2± 2.1921 97.5 ± 0.0672 96.9± 0.0742

ConvNeXt B 80.8 ± 0.7194 97.4 ± 0.0912 97 ± 0.1286

ConvNeXt L 81.3 ± 0.6173 97.5 ± 0.0768 97.2 ± 0.1196

ConvNeXt T-S 82.8 ± 1.6220 97.8 ± 0.0845 97.4 ± 0.0759

ConvNeXt T-B 82.8 ± 0.4938 97.7 ± 0.0893 97.4 ± 0.1403

ConvNeXt T-L 82.6 ± 0.3386 97.7 ± 0.0506 97.5 ± 0.0704

ConvNeXt S-B 82.7 ± 1.2465 97.8 ± 0.0892 97.5 ± 0.1052

ConvNeXt S-L 83.0 ± 1.0438 97.8 ± 0.0804 97.5 ± 0.1018

ConvNeXt B-L 83.1± 0.8498 97.7 ± 0.0661 97.5±0.1575

ConvNeXt T-S-B 83.9 ± 0.7566 97.9± 0.1130 97.6± 0.1293

ConvNeXt T-S-L 83.9 ± 0.8369 97.9 ± 0.0844 97.6 ± 0.0952

ConvNeXt T-B-L 83.8± 0.3986 97.8± 0.0847 97.6±0.1420

ConvNeXt S-B-L 83.6 ±0.5586 97.9 ± 0.0807 97.6 ±0.1070

ConvNeXt T-S-B-L 84.2±0.6460 97.9±0.0852 97.7±0.1134

Table 5 Performance comparison of the ConvNeXt models with state-
of-the-art models

Models Sensitivity Specificity Accuracy

Molina et al. [15] 66.5 97.9 97.4

Zhao et al. [16] 68.2 – –

EfficientNets [17] 72.5 – –

Kassem et al. [18] 79.8 97.0 94.9

CSLNet [19] 89.6 97.6 89.6

Swin-T [20] 80.3 97.3 96.3

Swin-S [20] 83.0 97.5 96.5

Swin-B [20] 84.5 97.8 96.9

Swin-L [20] 83.1 97.7 97.0

Proposed Method 84.2 97.9 97.7

model achieves 78% accuracy for the AK class and demon-
strates higher accuracy than the individual models for almost
all other classes as well.

5 Conclusion

Automatic classification of skin lesions is a very challenging
step due to various factors such as similar appearance lesions,
diverse skin structures, variations in lesion stages, limited or
inaccurate data, and artifacts present in dermoscopy images.
In this study, we conducted an analysis and comparison of
different versions of pre-trained and fine-tuned ConvNeXt
models, i.e. Tiny, Small, Base, and Large, for skin lesion
classification on publicly available ISIC 2019 dataset. How-
ever, the true strength of our approach lies in the ensemble
model, which combines all four ConvNeXt models to pro-

duce more accurate result. The proposed ensemble model
achieved an impressive overall classification accuracy of
97.7%, surpassing the performance of both individual mod-
els and state-of-the-art methods. Furthermore, our proposed
method yielded a sensitivity value of 84.2% and a specificity
value of 97.9%, indicating its ability to accurately classify
skin lesions from dermoscopy images. These results high-
light the effectiveness of the ConvNeXt architecture and its
ensemble approach in addressing the challenges associated
with skin lesion classification. The successful application
of ConvNeXt models in this study opens up possibilities
for developing more robust and reliable automated systems
for skin lesion analysis. Future research can explore further
enhancements to the ConvNeXt architecture and ensemble
learning techniques to improve the performance and gener-
alizability of skin lesion classification systems. Ultimately,
such advancements can contribute to early detection, timely
treatment, and improved outcomes for patients with skin dis-
eases.
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