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Abstract
Tensor decomposition methods are inefficient when dealing with low-rank approximation of large-scale data. Randomized
tensor decomposition has emerged to meet this need, but most existing methods exhibit high computational costs in handling
large-scale tensors and poor approximation accuracy in noisy data scenarios. In this work, a Tucker decomposition method
based on randomized block Krylov iteration (rBKI-TK) is proposed to reduce computational complexity and guarantee
approximation accuracyby employing cumulative sketches rather than randomized initialization to construct a better projection
space with fewer iterations. In addition, a hierarchical tensor ring decomposition based on rBKI-TK is proposed to enhance
the scalability of the rBKI-TK method. Numerical results demonstrate the efficiency and accuracy of the proposed methods
in large-scale and noisy data processing.

Keywords Tensor decomposition · Low-rank approximation · Randomized block Krylov iteration · Noise reduction ·
Large-scale data processing

1 Introduction

Tensor data are ubiquitous in scientific computing and
numerical applications, such as color images, video sequences,
and EEG signals [1, 2]. Compared to matrix factorization,
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tensor decomposition provides a more natural and efficient
way to represent, store and compute such data [3–7]. Since
observations are often noisy, incomplete, and redundant, low-
rank tensor decomposition plays an increasingly important
role in many machine learning tasks, such as network com-
pression [8], image imputation [9] and data mining [10].
However, when dealing with large-scale problems, tensor
decomposition solved by deterministic methods such as sin-
gular value decomposition (SVD) [11] and alternating least
squares (ALS) [12] can be computationally expensive and
resource-intensive.

Randomized sketching techniques offer the possibility of
eliminating this limitation. The basic idea of randomized
sketching is to capture a representative subset or subspace
of the data in order to efficiently produce a satisfactory
approximation. Extensiveworks have reveal that randomized
sketching techniques can effectively reduce computational
complexity, thus improve efficiency [13–16]. Without loss
of generality, random sketching techniques are divided into
non-iterative and iterative sketching in this work. Non-
iterative sketching involves sketching the input data in a
single pass, while iterative sketching employs power iter-
ation to perform the sketching process.

With the development of sketching techniques, a num-
ber of randomized tensor decomposition have emerged to
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provide more computational efficiency and approximation
accuracy. In the non-iterative sketching category, there are
tensor decomposition methods based on Gaussian random
projection [17–20], CountSketch sampling [21, 22], and
leverage score sampling [23, 24]. In the iterative sketching
category, there are tensor decomposition methods based on
Gaussian random iterations [19, 25], power iteration [26, 27],
and rank revealing projection [28, 29]. While existing meth-
ods offer effective solutions for handling large-scale data,
many of them fail to capture critical information in the pres-
ence of noise, leading to reduced approximation accuracy.

The Krylov methods aim to search for more accurate
approximations by constructing more efficient projection
spaces. The traditional Krylov methods construct the pro-
jection space with random initial vectors [30, 31] or matrices
[32]. However, when applying these methods directly to ten-
sor decomposition, the iterative orthonormalization required
to construct the projection space leads to high computational
costs, limiting the applicability of these methods to large
tensor, and simple initialization using randomized vectors or
matrices may lead to poor convergence [33, 34]. Therefore,
the randomized block Krylov iteration (rBKI) method [35]
was proposed to improve on the existing Krylov methods
by using cumulative sketches instead of random initial data
to construct projection spaces, thus obtaining more accurate
approximation with fewer iterations.

The aim of this work is to developmore efficient and accu-
rate randomized tensor decomposition methods for large-
scale and noisy data. Although the rBKI method has been
widely used inmatrix analysis [35–37], it has not yet attracted
attention in tensor community. The main innovation of this
work is the first incorporation of rBKI into tensor decompo-
sition, enablingmore efficient and accurate approximation of
large-scale and noisy tensors. Specifically, the rBKI method
is introduced into the Tucker decomposition (rBKI-TK) for
searching significant subspace of each mode, thus capturing
the key information when optimizing the multi-linear fac-
tors. Besides, a hierarchical tensor ring model is developed
to improve the scalability of rBKI-TKmethod. Yu et al. cited
and discussed ourmethods in theirwork,which uses the rBKI
method in tensor train model [38].

The contribution of our work can be summarised below.

• The rBKI-TKmethod offers more efficient processing of
large-scale data and effectively reduce the noise interfer-
ence.

• The hierarchical tensor ring decomposition based on
rBKI-TK can further reduce the storage cost, which is
important for applying large-scale data to various tasks.

• Numerical results demonstrate that the proposedmethods
exhibit significant efficiency and accuracy in processing
large-scale and noisy data.

The following sections are organized as follows. In Sect. 2,
some frequently used notations and definitions are out-
lined. In Sect. 3, main algorithms are presented. In Sect. 4,
evaluations on both synthetic and real-world data are con-
ducted. Finally, concluding remarks and future directions are
depicted in Sect. 5.

2 Preliminaries

2.1 Notations

Throughout the paper, the terms “order” or “mode” are used
to interchangeably describe a tensor data. For example, an
Nth-order tensor can be unfolded into a mode-n unfolding
matrix on eachmode (n = 1, 2, . . . , N ). Besides, a tensor set
to [N=3, I=20, R=3] represents a 3D tensor of dimension
20 and rank 3 on each mode. For better description, some
frequently used notations are listed in Table 1.

2.2 Basic tensor decompositionmodels

Two basic tensor decomposition models studied in this work
that are described below, and their corresponding diagrams
are shown in Fig. 2.

Definition 1 Tucker decomposition of an N th-order tensor
X ∈ R

I1×I2···×IN is expressed as an N th-order core tensor
interacting with N factor matrices. Suppose the Tucker-rank
of X is (R1, R2, . . . , RN ), also known as multilinear-rank,
then it has the following mathematical expression,

X = C ×1 U(1) ×2 U(2) · · · ×N U(N )

.= [C;U(1),U(2), . . . ,U(N )], (1)

where U(n) ∈ R
In×Rn is the mode-n factor matrix, and C ∈

R
R1×R2···×RN is the core tensor reflecting the connections

between the factor matrices.

Definition 2 Tensor ring (TR) decomposition of an N th-
order tensor X ∈ R

I1×I2···×IN is expressed as a cyclic
multilinear product of N third-order core tensors that can
be shifted circularly. Given a TR-ranks of (J1, J2, . . . , JN ),
the TR operator in denoted byX

.= R[G1,G2, . . . ,GN ], and
the element-wise TR decomposition is expressed below.

X(i1, i2, . . . , iN ) =
J1∑

j1=1

J2∑

j2=1

· · ·
JN∑

jN =1

G
(i1)
1 ( jN , j1)G

(i2)
2 ( j1, j2) · · ·G(iN )

N ( jN−1 , jN ),

(2)
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Table 1 Notations
R Set of real numbers

x,X,X Vector, matrix, and tensor

X� The transpose of matrix X

X(n) The standard mode-n unfolding of tensor X

X[n] The TR mode-n unfolding of tensor X

X(i, j, k) The (i, j, k)th-entry of tensor X

⊗ The Kronecker product

×n The mode-n product

‖X‖F = √
X�X Frobenius norm of matrix X

where Gn ∈ R
Jn−1×In×Jn and G(in)

n ∈ R
Jn−1×Jn denotes the

n-th TR-core and the in-th slice of the n-th TR-core, respec-
tively.

Note that, each TR-coreGn contains one dimension-mode
(In in mode-2) and two rank-modes (Rn−1 in mode-1 and
Rn in mode-3). Besides, adjoin factors Gn and Gn+1 have
a shared rank to ensure the contraction operation between
them.

2.3 Low-rank approximation for matrix

The Low-rank approximation problem with respect to the
Frobenius norm, and the (1+ε) quasi-optimal approximation
is described as follows.

Definition 3 Low-rank approximation of any matrix X ∈
R
n×d with specific rank(X) = r ≤ min(n, d), is to find a

rank-k (k ≤ r ) approximation Xk that minimizes the Frobe-
nius norm as

min
Xk

‖X − Xk‖2F . (3)

Generally, the optimal rank-k approximation Xk can be
obtained from the truncated SVD of X, which is known as
the Eckart-Young-Mirsky theorem [39]. Since SVD is pro-
hibitive for large-scale data, randomized SVD addresses this
limitation by using a variety of sketching techniques aimed
at obtaining satisfactory approximation accuracy while sig-
nificantly reducing storage and computational costs [13–15].

For amatrixX ∈ R
n×d , the low-rank approximation based

on randomized SVD consists of three main steps: 1) draw a
sketch matrix Y = X� ∈ R

n×s by employing a random
sketching matrix � ∈ R

d×s with a sketch-size k ≤ s ≤
min(n, d); 2) compute the orthonormal basis Q ∈ R

n×s of
Y to project the data onto the sketching spaceQ�X ∈ R

s×d ;
3) compute the low-rank approximation: X̃ = UU�X via
truncated SVD of Z = Q�X, i.e., [U,S,V] = svd(Z).

Definition 4 The (1 + ε) quasi-optimal approximation can
be described as the Frobenius norm error bound for the ran-
domized rank-k approximation holds with high probability

that

‖X − X̃k‖2F ≤ (1 + ε)‖X − Xk‖2F . (4)

As X̃k denotes the (1 + ε) rank-k approximation in a s-
dimension subspace spaned by Q ∈ R

n×s, s ≥ k, sketching
can further speed up the low-rank approximationwhen s > k.
More theoretical analysis can be found in the work [40].

2.4 Lowmultilinear-rank approximation for tensor

Definition 5 The lowmultilinear-rank approximation [17] of
an N th-order tensor X ∈ R

I1×I2···×IN with multilinear-rank
(R1, R2, . . . , RN ) can be expressed as

X̃ = C ×1 U(1) ×2 U(2) · · · ×N U(N )

=X×1(U(1)U(1)�)×2(U(2)U(2)�) · · · ×N (U(N )U(N )�),

(5)

whereU(n) ∈ R
In×Rn is the left singularmatrix of themode-n

unfolding X(n).

Note that, Eq. (5) can be defined as a randomized low
multilinear-rank approximation when U(n) is obtained from
a randomized SVD. More details can be found in work [17].

3 Methodology

3.1 Randomized block Krylov iteration (rBKI)

The Krylov methods have been extensively investigated in
matrix approximation. Traditional Krylov methods tended to
capture the key information of data by simply constructing
a Krylov subspace in a vector-by-vector paradigm [30, 31],
i.e.,

K .= [v,Xv,X2v, . . . ,Xq−1v], (6)

where X ∈ R
n×d is the input and v ∈ R

n is a randomized
initial vector. To improve the efficiency, blockKrylovmethod
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was proposed to construct a Krylov subspace in a block-by-
block paradigm [32], i.e.,

K .= [V,XV,X2V, . . . ,Xq−1V], (7)

where V ∈ R
n×s is a random initial matrix.

However, when extended to large-scale data, these Krylov
methodswith random initial vectors ormatricesmay result in
poor convergence [37], and the repeated orthonormalization
required for constructing subspace results in high computa-
tional costs, limiting the applicability of these methods to
large-scale data [33, 34]. Accordingly, randomized block
Krylov iteration (rBKI) [35] was proposed to construct a
Krylov subspace using sketches W = X� in a cumulative
way instead of random initial data to capture more informa-
tion about the original data with fewer iterations, i.e.,

K .= [W, (XX�)W, . . . , (XX�)qW], (8)

where � ∈ R
d×s is a random initial matrix. Empirically,

q = 2 is sufficient to achieve a satisfactory approximate
accuracy [35].

Compared with the existing popular randomized sketch-
ing methods: non-iterative method (e.g., Gaussian random
projection), and power iteration method (K .= (XX�)qW),
rBKI performs better in reducing the effect of tail singu-
lar values. Although the power iteration method construct
the sketching space in an iterative way, (XX�)qW focuses
solely on computing the dominant eigenspace. In contrast,
rBKImethod accumulates important information of the orig-
inal data when constructing [W, (XX�)W, . . . , (XX�)qW],
minimizing the loss of information during the projection
process. With a more accurate projection subspace, rBKI
facilitates higher accuracy approximation.

For better understanding, given a tensor with setting of
[N=3, I=10, R=5], the clean data is drawn from N (0, 1)
and the noisy data is corrupted by SNR=0dB Gaussian ran-
dom noise. The pseudocolor plot of singular value matrices
of the clean data, noisy data, and projections based on three
representative randomized SVD methods, namely Gaussian
random projection (GR-SVD), Gaussian random power iter-
ation (GRpi-SVD), and rBKI (rBKI-SVD), are presented in
Fig. 1. As shown, rBKI-SVD performed better in eliminating

Fig. 1 Comparison of Gaussian random projection (GR-SVD), Gaus-
sian random power iteration (GRpi-SVD) and rBKI (rBKI-SVD)
methods in removing tail singular values of an [N=3, I=10, R=5]
tensor

tail singular values (i.e., noise interference) than the non-
iterative GR-SVD and the GRpi-SVD method.

Besides, since rBKI constructs the subspace through
a lower q-degree polynomials (8), it requires only q =
Θ(logd/

√
ε) iterations to achieve the (1+ ε) approximation

to an n × d matrix, which is more efficient than the power
iteration that requires q = Θ(logd/ε) iterations (Theorem
1 in [35]). Particularly, when the data have a rapid decay
or a heavy-tail of singular value, rBKI can offer faster con-
vergence performance, which is validated in the simulation
section.

Moreover, the time complexity of several typical com-
pared methods is presented in Table 2. Given a matrix
X ∈ R

n×d with sketch-size s, according to the cost of
each stage, the runtime of SVD is O(n2d) while that of
the GR-SVD is O(nds). With the number of iteration
for rBKI of q = Θ(logd/

√
ε) and for power iteration

method of q = Θ(logd/ε), the corresponding runtime

is O(nds log d/
√

ε + ns2 log2 d/ε + s3 log3 d/ε
3
2 ) and

O(nds log d/ε + ns2 log d/ε), respectively.

3.2 Tucker decomposition based on rBKI (rBKI-TK)

Tucker decomposition canbe regarded as a higher-order SVD
(HOSVD) model [3], and randomized sketching techniques
can be used to achieve efficient low multilinear-rank approx-
imation of large-scale tensors. Besides, the challenges posed
by low approximation accuracy in noisy data scenarios can
be addressed by leveraging the rBKI method. Therefore, the
rBKI-based Tucker decomposition (rBKI-TK) is proposed to
search for crucial projection subspace with fewer iterations,
thus improving the optimization of multilinear factors.

When computing the Tucker decomposition (Eq. 1), the
standard mode-n unfolding on X as X(n) ∈ R

In×∏
p 	=n Ip is

Table 2 Comparison of time
complexity between the
deterministic SVD and
randomized SVD based on
Gaussian random projection
(GR-SVD), power iteration
(GRpi-SVD) and rBKI
(rBKI-SVD), on an (n × d)

matrix with sketch-size s

Methods SVD GR-SVD GRpi-SVD rBKI-SVD

SketchW – O(nds) O(nds) O(nds)

Construct K – – O(ns2q + ndsq) O(ns2q + ndsq)

Compute Q – O(ns2) O(ns2) O(n(sq)2)

Compute Z – O(nds) O(nds + ns2) O(nd(sq) + nd(sq)2)

Factorization O(n2d) O(s2d) O(s3) O((sq)3)
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Fig. 2 A tensor network diagram of Tucker decomposition (TK), tensor ring decomposition (TR), and hierarchical TK-TR decomposition for a
4th-order tensor. The dimension size and rank are marked on the edges

necessary to be performed first and then optimize factors in
a form of matrix product as follows.

min
U(n),G(n)

∥∥∥∥X(n) − U(n)C(n)

(⊗
p 	=n

U(p)
)�∥∥∥∥

2

F
, (9)

whereU(n)∈RIn×Rn , andC(n)

(⊗
p 	=nU

(p)
)� ∈RRn× ∏

p 	=n Ip

can be computed by SVD [11] or ALS [12] algorithms.
Given an Nth-order tensor X ∈ R

I1×I2···×IN with sketch-
size (S1, S2, . . . , SN ) and Tucker-rank (R1, R2, . . . , RN ),
the rBKI-TKmethodprovides a lowmultilinear-rank approx-
imation of X through the following steps:

1) Draw a sketchW(n) = X(n)�
(n) to construct the mode-n

block Krylov subspace

K(n) .= [W(n), (X(n)X�
(n))W

(n), . . . , (X(n)X�
(n))

qW(n)],
(10)

where �(n) ∈ R

∏
p 	=n Ip×Sn is a Gaussian random matrix.

2) Compute the orthonormal basis Q(n) via QR of K(n)

to project data X(n) onto the sketch subspace Z(n) =
Q(n)�X(n).

3) Compute the factor matrices via U(n) = Q(n)Ũ(n)(:, 1 :
Rn), where Ũ(n) is the left singular basis of the projection
data Z(n).

4) Compute the core tensorC ← X×1U(1)�×2U(2)� · · ·×N

U(N )�, and obtain the low multilinear-rank approxima-
tion by X̃ ← C ×1 U(1) ×2 U(2) · · · ×N U(N ).

The proposed rBKI-TK method offers the advantage of
lower computational complexity and better denoising ability,
which can be applied to large-scale and noisy data, thus has
the potential for a wider range of applications. Details of the
rBKI-TK method are presented in Algorithm 1.

Algorithm 1 The rBKI-based Tucker Decomposition (rBKI-
TK)
Require: Tensor X ∈ R

I1×I2···×IN , sketch-size (S1, S2, . . . , SN ) and
Tucker-rank (R1, R2, . . . , RN ), q = 2.

Ensure: X̃ = [C;U(1),U(2), . . . ,U(N )].
1: for n = 1, 2, . . . , N do
2: Draw a Gaussian random matirx �(n) ∈ R

∏
p 	=n Ip×Sn ;

3: Draw a sketchW(n) = X(n)�
(n);

4: Construct the block Krylov subspace K(n) via Eq. (10);
5: Compute the orthonormal basis [Q(n),∼,∼] = qr(K(n));
6: Project data onto the sketch subspace Z(n) = Q(n)�X(n);
7: Compute the SVD of Z(n): [Ũ(n),∼,∼] = svd(Z(n));
8: Compute the nth factor matrix U(n) = Q(n)Ũ(n)(:, 1 : Rn);
9: end for
10: Compute core tensor C ← X ×1 U(1)� ×2 U(2)� . . . ×N U(N )�;
11: Return Tucker factors [C,U(1),U(2), . . . ,U(N )].
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3.3 Extensions to hierarchical tensor decomposition

Tensor Ring (TR) decomposition is a powerful tool for
higher-order (three or more) tensor analysis [6]. When com-
puting the TR decomposition, Eq. (2) can be rewritten in a
TR mode-n unfolding form as

min
Gn(2)

∥∥∥X[n] − Gn(2)(G
	=n
[2] )

�
∥∥∥
2

F
, n = 1, 2, . . . , N , (11)

where Gn(2) ∈ R
In×Jn−1 Jn and G 	=n

[2] ∈ R

∏
p 	=n Ip×Jn−1 Jn

denotes the mode-2 unfolding of the nth core and the
subchain except the nth core, respectively. Note that, the dif-
ference between the TR mode-n unfolding
X[n] ∈ R

In×In+1···IN I1···In−1 and the standard mode-n unfold-
ing X(n) ∈ R

In×I1···In−1 In+1···IN is the order of TR-cores in
the subchain.

TR-ALS is a typical algorithm for updating TR-cores,
which updates the nth TR-core by first computing the
unfolding Gn(2) via Eq. (11), and then reshape Gn(2)

into a third-order tensor Gn ∈ R
Jn−1×In×Jn , for n =

1, 2, . . . , N , and repeated until the relative error δ =∥∥∥X[n] − Gn(2)(G
	=n
[2] )�

∥∥∥
F

/
∥∥X[n]

∥∥
F reaches the set tolerance

δp or reaches the maximum number of iteration p [6].
However, the direct application of TR decomposition

to large-scale data processing often results in inefficiency.
Therefore, hierarchical tensor decomposition methods with
randomized algorithm were extensively studied for reduc-
ing the computation and storage cost [17, 19, 20, 29]. In
this subsection, a hierarchical tensor decomposition based
on rBKI method is developed to improve the scalability of
the rBKI-TKmethod and the efficiency of TRmethod. In the
rBKI-TK-TRmodel, the rBKI-TK can efficiently obtain fac-
tors and reduce noise interference, and the TR decomposition
can further reduce the data storage cost when the TR-ranks
are much smaller than the Tucker-rank.

Generally, such hierarchical framework can be extended
to other tensor decomposition methods. The proposed rBKI-
TK-TR method is detailed in Algorithm 2, and a tensor
network diagram of TK, TD, hierarchical TK-TR decom-
position and contraction operations among them are shown
in Fig. 2.

4 Experiments

This section evaluates the efficiency and accuracy of the pro-
posedmethod for large-scale processing and noise reduction.
All evaluations were conducted on a computer with an Intel
Core i5 3 GHz CPU and 8GB of RAM. The algorithms were
coded in MATLAB 2020r.

Algorithm 2 The rBKI-TK-based Tensor Ring Decomposi-
tion (rBKI-TK-TR)
Require: Tensor X ∈ R

I1×I2···×IN , sketch-size (S1, S2, . . . , SN ),
Tucker-rank (R1, R2, . . . , RN ), and TR-ranks (J1, J2, . . . , JN ), tol-
erance δp , max-iteration p.

Ensure: X̃ = R[X1,X2, . . . ,XN ].
1: while δ > δp , or the max-iteration p is not reached do
2: for n = 1, 2, . . . , N do
3: Compute Tucker factors [C;U(1),U(2), . . . ,U(N )] via rBKI-

TK(X);
4: Compute unfolding TR-core Gn(2) ←

argmin
∥∥∥C[n] − Gn(2)(G

	=n
[2] )�

∥∥∥
2

F
;

5: Normalize colums of Gn(2), if n < N ;
6: Reshape TR-core Gn ← permute(reshape(Gn(2),

[Rn, Jn−1, Jn]), [2, 1, 3]);
7: Contraction: Xn ← Gn ×2 U(n);
8: end for
9: Compute relative error δ ← ||X − R

[X1,X2, . . . ,XN ]||F/||X||F ;
10: end while
11: Return TR-cores X1,X2, . . . ,XN .

4.1 Evaluationmetric

The following metrics were employed for evaluations. Note
that all results were the average of 10 runs.

• Fitting rate, Fit= (1−‖X−X̃k‖F/‖X‖F )×100%,where
X and X̃k is the original tensor and the sketched rank-
k approximation, respectively. A larger value indicates
higher recovery accuracy.

• Frobenius norm error (Eq. 4), FErr = ‖X− X̃k‖F/‖X−
Xk‖F , where Xk is the deterministic rank-k approxima-
tion obtained by truncated SVD (T-SVD). When FErr =
1, the randomized rank-k approximation X̃k captures the
main information as well as the deterministic one Xk .
The larger the ratio, the worse the results [35].

• Peak-Signal-Noise-Ratio, PSNR= 10 log10(255
2/MSE),

where MSE is the Mean-Square-Error denoted by ‖X −
X̃k‖F/num(X), and num(·) denotes the number of com-
ponents.

• Running time in seconds. For the TR-ALS, the iterations
were repeated until the maximum number of iterations
50 is reached, or the relative error δ < δp = 10−3.

4.2 Datasets

4.2.1 Synthetic data

The generation of tensor data followed X + λN, where the
original dataXwas corrupted by a noise termλN, andλwas a
parameter for tuning the noise level ofN via Signal-to-Noise-
Ratio, SNR(dB) = 20log10(‖X‖F/‖λN‖F ). A relatively
comprehensive test was provided that considers higher and
lower rank tensors with Gaussian random noise.
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Table 3 Comparison in terms of
FErr, Fit(%) and Time(s) of
variant methods on the
[N=3,I=200,Rn =10] tensor
of power functional (PF) and
Gaussian random (GR) at
different Gaussian noise level.

Algorithm PF-data, SNR = 5 dB GR-data, SNR = −5 dB GR-data, SNR = 5 dB

FErr Fit Time FErr Fit Time FErr Fit Time

GR-SVD [19] 12.73 62.91 5.42 17.69 2.03 4.17 46.75 22.75 8.89

CS-SVD [21] 12.64 63.20 5.55 17.68 2.11 5.87 47.07 22.21 11.09

LS-SVD [23] 13.98 59.28 21.41 17.68 2.07 14.48 47.80 21.00 33.74

IS-SVD [13] 10.78 68.60 3.86 17.59 2.56 4.81 43.71 27.77 8.69

SRHT-SVD [13] 12.78 62.78 105.05 17.68 2.08 188.01 46.43 23.27 447.71

GR3i-SVD [25] 20.58 40.05 28.03 15.74 12.83 39.12 21.39 64.65 33.97

GR2i-SVD [19] 2.19 93.62 3.11 8.97 50.31 11.74 16.18 73.27 10.65

GRrr-SVD [29] 2.53 92.63 9.14 5.84 67.67 23.84 1.04 98.27 5.67

GRpi-SVD [27] 2.12 93.83 1.97 2.72 84.94 12.54 1.00 98.34 1.57

rBKI-SVD [ours] 1.10 96.80 0.85 1.00 94.46 1.68 1.00 98.35 1.47

T-SVD [11] 1.00 97.09 2.48 1.00 94.46 4.30 1.00 98.35 3.74

Compared to the deterministic LRA method (T-SVD), the proposed method achieve the best results among
the randomized LRA methods

Table 4 Comparison of the
denoising performance in terms
of PSNR(dB), FErr, and Time(s)
of variant methods on three
YUV video data with Gaussian
noise (SNR=5dB).

Algorithm News M&D Hall

PSNR FErr Time PSNR FErr Time PSNR FErr Time

GR-SVD [19] 20.34 2.89 127.02 21.48 2.68 124.82 20.10 2.82 63.44

CS-SVD [21] 20.30 2.90 130.72 21.32 2.70 126.10 20.32 2.79 75.49

IS-SVD [13] 20.58 2.76 86.95 21.56 2.58 62.15 22.05 2.89 42.85

GRrr-SVD [29] 24.88 1.59 90.06 25.70 1.45 65.36 25.32 1.45 55.92

GRpi-SVD [27] 25.22 1.52 32.46 25.99 1.41 33.26 25.12 1.49 25.66

rBKI-SVD [ours] 28.69 1.01 18.50 28.99 1.01 18.83 28.40 1.01 16.78

T-SVD [11] 28.73 1.00 51.85 29.07 1.00 56.55 28.50 1.00 38.26

Compared to the deterministic T-SVD, the proposed method achieve the best results among the randomized
methods
Bold values indicates the best results. The deterministic method T-SVD serves as the benchmark algorithm
and our method achieves the best results among the other randomized algorithms (except for TSVD).

Fig. 3 Examples of video denoising, including original data, noisy data and recovered data. Our method achieves accurate approximations
comparable to T-SVD, while in a more time-efficient fashion
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Table 5 Comparison in terms of
Fit(%) and Time (s) of variant
hierarchical TR models on two
large-scale image datasets. The
TR-ranks is set ranged from
R= [3,3,3,3], R= [6,6,3,6] to
R= [9,9,3,9].

Algorithm COIL-100

R = [3, 3, 3, 3] R = [6, 6, 3, 6] R = [9, 9, 3, 9]

Fit Time Fit Time Fit Time

GR-TK-TR [20] 57.33 15.40 65.25 19.79 69.20 25.14

RR-TK-TR [29] 64.63 12.90 72.60 16.15 76.04 20.14

rBKI-TK-TR [ours] 64.68 4.27 72.69 5.51 76.25 7.23

TR-ALS [6] 64.85 111.69 73.80 277.18 77.78 474.53

Algorithm CIFAR-10

R = [3, 3, 3, 3] R = [6, 6, 3, 6] R = [9, 9, 3, 9]

Fit Time Fit Time Fit Time

GR-TK-TR [20] 64.94 23.62 71.03 29.28 73.63 30.51

RR-TK-TR [29] 71.78 19.78 76.77 24.21 78.99 24.88

rBKI-TK-TR [ours] 71.80 7.11 76.91 8.96 79.00 9.38

TR-ALS [6] 71.91 156.68 77.46 390.90 80.00 802.87

Compared to the deterministic TR-ALS, our method achieve the best results among the randomized methods,
which are shown in bold. All results are the average of 10 runs

Fig. 4 Comparison in terms of Fit (×100%) of the compared methods on COIL-100 and CIFAR-10 datasets. The TR-ranks is set ranged from
R= [3,3,3,3], R= [6,6,3,6] to R= [9,9,3,9]

Specifically, in the higher rank case, 3D tensors X with
dimension of 200 and rank of 10 were given by Tucker
model (1), where the entries of latent factor matrices U(n) ∈
R

In×Rn , n = 1, 2, 3 and core tensor C ∈ R
R1×R2×R3 were

drawn fromN (0, 1). In the lower rank case, the singular val-
ues of the data decay rapidly. The 3D tensors X were given
by a power function xi, j,k = 1/ p

√
i p + j p + k p, where p is

a power parameter controlling the singular values ofX (here,
p=10). It is noted that, for the additional noise, SNR=0dB
indicates that the power of signal is equal to the volume of
noise, while SNR>0 and SNR<0 represents a less noisy and
a much noisier case, respectively.

4.2.2 Real-world datasets

Three YUV video sequences (“News”, “Hall”, “M&D”) 1

were utilized for denoising evaluations. The sequences were
converted into fourth-order RGB tensors with a size of 288
pixels × 352 pixels × 3 RGB × 300 frames. The 123th-
frame of “News” video, the 15th-frame of “M&D” video,
and the 120th-frame of “Hall” video were randomly selected
for demonstration. Moreover, two large-scale image datasets
were used for comparison of efficiency: COIL-100 dataset of
size 32 × 32 × 3 × 7200, and a subset of CIFAR-10 dataset
of size 32×32×3×10000. Both datasets contain a number
of elements at the 107 level.

1 http://trace.eas.asu.edu/yuv/index.html.
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Fig. 5 Comparison in terms of Time consumption of the compared methods on COIL-100 and CIFAR-10 datasets. The TR-ranks is set ranged
from R= [3,3,3,3], R= [6,6,3,6] to R= [9,9,3,9]

4.3 Evaluation of rBKI-TK

In this section, the proposed rBKI-TK is compared with
the deterministic truncated higher-order SVD (T-SVD) [11]
and existing randomized tensor decomposition methods
based on different sketching techniques. The non-iterative
series includes Gaussian random projection (GR-SVD)
[19], CountSketch sampling (CS-SVD) [21], leverage score
sampling [23], importance sampling (IS-SVD) [13] and
subsampled randomized Hadamard transform [13]. The
iterative series includes Gaussian random power iteration
(GRpi-SVD) [27], Gaussian random iteration (GR3i-SVD,
GR2i-SVD) [19, 25], and Gaussian random rank reveal-
ing (GRrr-SVD) [29]. Besides, the sketch size was set by
Sn = Rn + 1/γ , where the overlapping parameter γ was set
to 0.2, as suggested in [15].

The experimental results of synthetic data were detailed
in Table 3, where the the best results were shown in
bold. Specifically, iterative methods obtained higher accu-
racy than non-iterative methods, except GR3i-SVD [25] in
the lower rank case (PF-data). With different noise setting,
non-iterative methods and two Gaussian random iteration
methods (GR3i-SVD, GR2i-SVD) were severely invalidated
by noise interference, while our method remained valid as
T-SVD in terms of FErr and Fit in most cases. These results
show that the proposedmethodwas superior in terms of accu-
racy and efficiency in both lower and higher rank data types,
as well as in severe and slight noise interference.

Moreover, to evaluate the denoising performance of rBKI-
TK in real-world case, Gaussian noise with an SNR of 5dB
were added to video sequences. The approximate rankwas set

to 85×90×3×30,whichwas selected byT-SVDand yielded
satisfactory results in terms of both accuracy and efficiency.
The T-SVD, two competitive iterative methods: GRpi-SVD,
GRrr-SVD, and three non-iterative methods: GR-SVD, CS-
SVD, IS-SVD were adopted in comparisons. The average
results were given in Table 4, and a visual comparison of
denoising performance was shown in Fig. 3.

As shown, iterativemethods also outperform non-iterative
methods in terms of approximation accuracy in real-world
data, which produced a clear foreground (e.g., the letters
“MPEG4 WORLD” in the “News” video). Besides, the pro-
posed rBKI-TK and T-SVD both provided more details of
contents (e.g., moving objects in the “Hall” video) that were
not captured by the othermethods, which are important infor-
mation.

4.4 Evaluation of rBKI-TK-TR

In the subsection, the proposed rBKI-TK-TR model were
compared with the deterministic TR-ALS [6] and two exist-
ing hierarchical TR models, i.e., Gaussian random TK-TR
model (GR-TK-TR) [20] and rank revealing TK-TR model
(RR-TK-TR) [29] on two large-scale image datasets. For
large-scale data, higher rank leads to huge computational
costs, we empirically chose several sets of TR-ranks for com-
parison and evaluation. The TR-ranks Jn was set ranged from
[3,3,3,3], [6,6,3,6] to [9,9,3,9], while the Tucker-rank was
set to Rn =min(5Jn, In), and in order to minimize informa-
tion loss without reducing efficiency, the Tucker-rank Rn and
sketch-size Sn were set to the same value in the hierarchical
TK-TR model.
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The efficiency and recovery accuracy of comparisonmod-
els were detailed in Table 5.Moreover, the visual comparison
in terms of fitting rate and running time were provided in
Figs. 4 and 5, respectively. Comparable to the deterministic
TR-ALS, our method achieved the best recovery accuracy
and time efficiency among randomized methods. In all cases,
the Fit of non-iterative GR-TK-TR was lower than the other
methods and slightly unstable, while iterative methods, i.e.,
RR-TK-TR and the proposed rBKI-TK-TR performed sta-
bly and better (see Fig. 4). Besides, the consumed time by
the TR-ALS was extremely larger than the other randomized
methods. Our method was the most time efficient, and as the
rank increases the efficiency became more prominent, even
86 times faster than TR-ALS (see Fig. 5).

5 Conclusion

In this work, a randomized Tucker decomposition method
is proposed by leveraging the strength of rBKI algorithm
in reducing computational complexity and noise inferences,
which achieves efficient and accurate low-rank approxima-
tion for large-scale and noisy tensors. Besides, a hierarchical
rBKI-TK-TR method is developed for further reducing the
storage cost. Experimental results promisingly validate the
superior performance of the proposed methods in large-
scale processing and noise reduction. Recently, adversarial
attacks in visual data has attracted much attention. There-
fore, randomized tensor decomposition and its application to
machine learning for improving adversarial robustness will
be explored in future work.
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