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Abstract
The implementation of convolutional neural networks (CNNs) and Transformers has significantly accelerated the booming
advances of human pose estimation. However, challenges persist in accurately estimating target details. Pose estimation faces
inherent difficulties when applied in complex environments marked by intricate conditions, including factors like motion blur
and chaotic scenes. In this paper, we revisit the design of CNNs and Transformers, delving deeper into their internal structures.
We sequentially utilize CNNs and Transformers, leveraging the proficiency of CNNs in extracting low-level features and the
capability ofTransformers in establishing long-range dependencies.Building upon this framework,we introducemodifications
to both CNNs and Transformer-related structures, enhancing the overall expressive capacity of the model. The modification
is made to the original CNNs section: we alter BasicBlock to AtBlock to maintain high-resolution information exchange to
further excavate details of objects. The two following modifications are applied to the subsequent Transformer section: (1)
we replace the self-attention layer in each encoder block with the local enhancement self-attention module to capture local
information. (2) We propose a local perception feed-forward network to substitute for the feed-forward network layer in
each encoder block, which employs the depth-wise convolution to enhance the correlation of neighbour information in the
spatial dimension. Our modifications contribute to analyzing poses that are arduous to estimate due to occlusion. Our method
combines self-attention and depth-wise convolution, named CSDNet. The experiments on both COCO2017 andMPII datasets
show improved performance over the baseline. Compared to other models achieving the similar accuracy, our model has fewer
parameters and requires less computation. Additionally, in complicated environments such as poor lighting conditions, our
method can more accurately estimate fuzzy keypoints.

Keywords Computer vision · Human pose estimation · Transformer · Attention mechanism

1 Introduction

Human pose estimation (HPE) determines the spatial posi-
tion of human keypoints from sensor input to obtain a
representation of the human pose. HPE has wide-ranging
practical applications, including but not limited to action
recognition [1–3], actiondetection [4], human-object interac-
tion [5, 6], and person re-identification [7, 8]. The synergistic
cooperation of convolutional neural networks (CNNs) and
Transformers leverages the strengths of both approaches,
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with CNNs excelling in extracting intricate low-level fea-
tures, while Transformers excel in capturing long-range
dependencies. This powerful combination drives its vigor-
ous advancement in HPE.

The convolution operation considers the local spatial con-
text at various levels, capturing information from simple
low-level edges and textures to more complex higher-order
semantic patterns. It can effectively establish connections
between nearby keypoints, such as the ankle and knee.
However, it is limited in modeling dependencies between
keypoints that are further apart. This limitation arises due to
the poor scalability of convolution. Repeatedly stacking con-
volutions to expand the receptive field does not adequately
capture global dependencies. Moreover, that increases the
complexity and computational cost of the model. The self-
attention layers of Transformers can capture interactions
between any pair of positions and excel at associating the
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Fig. 1 An example of human pose estimation in complex poses. From
left to right, the images represent the original image, prediction results
of HRNet, and our prediction results. The area surrounded by yellow

ellipses is a comparison of estimates between different methods. We
observe that our method can better estimate complex poses compared
to HRNet

long-range dependencies. It can progressively expand sizes
of the receptive fields via aggregating information from
other tokens. Based on these observations, we incorpo-
rate CNNs with Transformers to integrate the capability of
CNNs in extracting local spatial context and the capability
of Transformers inmodeling long-range dependencies. Input
images first pass through the convolution to extract low-level
features, then resulting partitioned patches are fed into Trans-
former layers to acquire high-level global dependencies.

To enhance CNNs’ performance on fine-grained tasks [9]
and improve their ability to detect target details, we introduce
attention mechanisms for fine-grained visual recognition
tasks. This allows the model to adaptively focus on crucial
areas in the context. Specifically for pose estimation, our
aim is to better distinguish blurred human bodies and key-
points in complex environments, as well as distinguishing
between human bodies and similar surrounding individu-
als or environments. Previous approaches, such as channel
attention [10], explicitly model the dependencies between
channels but may suffer from spatial information collapse
due to pooling. While CBAM [11] compresses spatial and
channel features separately, it fails to maintain high resolu-
tion internally. DANet [12], on the other hand, preserves high
resolution in both attention branches but comes with a high
computational cost. In contrary to CBAM and DANet, Polar-
ized Self-Attention (PSA) [13] maintains high resolution in
one direction of the branch while compressing features in
its orthogonal branches. It leverages softmax and sigmoid
functions to fit the output distribution. This preserves high
resolution internally tomitigate potential resolution loss from
downsampling while maintaining a reasonable computation
overhead. In this paper, we design AtBlock which employs
PSA to make the model more accurate in detecting object
details.

Transformers excel at modeling the global dependencies
among tokens using self-attention layers. However, the fixed

token size limits their ability to account for the 2D struc-
ture and spatial local information within each block. To
address this limitation, we introduce the local enhancement
self attention (LESA) module. We leverage depth-wise con-
volutions to aggregate nearby information to enhance local
information exchange. The original Multi-Head Attention
(MHA) layer is replaced with the LESA module. In tra-
ditional feed-forward networks, fully connected layers are
point-wise and may fail to learn cross-tagged information.
Complementary to the MHA module, the feed-forward net-
work module can supplement local information based on
the long-range dependencies established by Transformers.
Therefore, we introduce the local perception feed-forward
network (LPFFN) layer, which enhances local information
interaction using depth-wise convolutions. After the MHA
module in each encoder, the original feed-forward network
is replaced with the LPFFN.

The experiments are conducted on both COCO2017 and
MPII datasets, yielding significant improvements over the
baseline. In comparison to other models achieving similar
accuracy, our model has fewer parameters and requires less
computation. Ablation experiments are performed on each
module to verify their effectiveness. HRNet [14] is a classic
pose estimation network. It excels in estimating human body
poses and is frequently used for benchmarking pose estima-
tion results. A detailed introduction to HRNet is provided
in Sect. 2.4. We visualize the experimental results and com-
pare them with the visualization results of HRNet. As shown
in Fig. 1, in complex poses, our model can more accurately
estimate overlapping or occluded limbs to better estimate
complete poses.Moreover, in challenging environments such
as poor lighting conditions, ourmodel performs better in esti-
mating fuzzy keypoints.
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2 Related work

2.1 Attentionmechanisms

Attention mechanisms play a crucial role in human pose
perception [15–17]. They assign substantial weights to the
most informative features and suppresses less useful expres-
sions. This adaptive focusing enables themodel to emphasize
the prominent parts effectively. SE-Net [10] first presents an
effective channel attention learning mechanism that mod-
els dependencies between channels, resulting in an excellent
performance. CBAM [11] combines both average and max
pooling to aggregate features and incorporates spatial atten-
tion and channel attention. ACmix [18] reveals the powerful
latent relationship between self-attention and convolution
and elegantly integrates them. That combines their strengths
and avoids computationally expensive operations. BiFormer
[19] introduces a novel dynamic sparse attention via bi-
level routing for more flexible computation allocation with
content-awareness. However, the abovemethods either focus
on designing more intricate attention modules that inevitably
incur greater computational costs, or fail to establish a long-
range channel dependency. In this paper, we employ PSA to
preserve high-resolution semantics in attention calculation
for information interaction while maintaining low compu-
tational cost. That helps address the fine-grained regression
problem which were previously neglected.

2.2 Transformers

Motivated by the remarkable success of Transformers in nat-
ural language processing (NLP) [20, 21], many attempts
[22–24] have been made to introduce Transformer archi-
tectures to vision tasks. ViT [25] innovatively applies the
Transformer architecture, inherited from NLP, to the field of
computer vision. Specifically, ViT decomposes images into
a series of fixed-length token sequences. Subsequently, DeiT
[26] introduces token-based distillation to reduce the data
required for training Transformers. LocalViT [27] enhances
the locality of the Visual Transformer by incorporating
depth-wise convolution into the feed-forward network. Swin
Transformer [28] partitions inputs into non-overlapping win-
dows, constraining self-attention within each local window.
While it performs well, its computational complexity grows
linearly with the number of input tokens. NomMer [29] can
dynamically nominate the synergistic global–local context
in vision Transformers. Global and local context can adap-
tively contribute based on different visual data and tasks.
The deformable self-attention module in DAT [30] trans-
fers candidate keys/values to crucial regions, allowing the
self-attention module to focus on relevant areas. The work
of CvT [31] aims to introduce convolution with image
domain specific inductive bias into the Transformer archi-

tecture, achieving promising results by incorporating both.
SMT [32] also integrates convolutional networks and vision
Transformers. It introduces the Multi-Head Mixed Convo-
lution (MHMC) module and the Scale-Aware Aggregation
(SAA) module to further enhance convolutional modula-
tion. In this paper, we carefully explore how to better utilize
the advantages of different components of Transformers and
compensate for their shortcomings in specific visual tasks.

2.3 Human pose estimation

Deep convolutional neural networks have demonstrated
remarkable success in the field of human pose estimation
[33–36]. This can be attributed to their inherent induc-
tive bias, which includes translation invariance and locality,
enabling them to efficiently extract local features from low-
level images. Several sophisticated strategies have been
incorporated into network designs, including multi-scale
fusion [37–39], stacking [40, 41], and high-resolution rep-
resentation [14]. These strategies lead to the development
of several notable network architectures, such as CPM [42],
Hourglass network [41], FPN [43], CPN [44], SimpleBase-
line [40], HRNet [14] and many more. SimpleBaseline
[40] designs a simple architecture by stacking transposed
convolution and achieves promising results. The subse-
quent HRNet [14] maintains a high-resolution representation
throughout the whole network to provide accurate heatmap
estimation.

Capturing global dependencies is essential for accu-
rate human pose estimation [45–47]. The introduction of
Transformers based on self-attention enables the effective
acquisition of remote dependency information required for
visual tasks. This overcomes the limitations of CNNs, where
stacking convolutions cannot effectively expand the receptive
field and it is difficult to obtain global dependent infor-
mation. Additionally, Transformers can better model the
constraint relationships between keypoints. PRTR [48] grad-
ually refines the location of the estimated critical points using
a cascade approach. Similar to HRNet structure, HRFormer
[49] proposes a parallel Transformer module to fuse multi-
resolution features. ViTPose [50] utilizes plain and non-
hierarchical vision Transformers as backbones for feature
extraction. It shows the excellent capabilities of large plain
vision Transformer models for pose estimation from various
aspects. While these approaches improve model structures
and achieve outstanding results, purely Transformer-based
large models come with significant memory and compu-
tational costs. Other methods combine the advantages of
convolution and Transformers. For example, TransPose [51]
initially employs CNNs for extracting low-level features and
then utilizes attention layers to capture global correlations. It
reveals the long-term dependencies in predicting keypoints.
Different from previous approaches that apply Transformers
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Fig. 2 The architecture of HRNet

[52, 53] to output a one-dimensional sequence of joint/vertex
coordinates, TransPose utilizes Transformers to predict the
2D heatmaps represented with spatial distributions of key-
points. However, it lacks the ability to directly model
the constraint relationships between keypoints. TokenPose
[54] explicitly embeds keypoints as tokens, simultaneously
learning visual cues and constraint relationships through
self-attention interactions. UniFormer [55] employs differ-
ent tokens in shallow and deep layers, seamlessly integrating
the benefits of both convolutional and self-attention mech-
anisms via Transformers. In this paper, we re-examin the
design of CNNs and Transformers, delving deeper into their
internal structures. We first modify CNNs BasicBlocks to
alleviate the resolution loss caused by downsampling. Then,
we improve the Transformer layers to enhance its ability to
extract local informationwhile extractingglobal correlations.
These explorations aim to enhance the overall expressive
capability of the model and explore more possibilities in
model architecture.

2.4 HRNet

Asshown inFig. 2,HRNetmaintains high resolution through-
out the process and employs parallel connections from high
to low resolution. It starts with a high-resolution branch in
the initial stage. It gradually adds branches from high to low
resolution in each subsequent stage, with the resolution of
the new branch being half of the lowest resolution in the pre-
vious stage. HRNet performs multiple multi-scale fusions,
allowing each representation to repeatedly receive informa-
tion from other parallel representations, thus obtaining rich
high-resolution representations. This enhances the accuracy
of predicted keypoint heatmaps. HRNet is frequently chosen
as the backbone network in various pose estimation studies
due to its outstanding performance. For meaningful com-
parisons and more intuitive representations, we also select
HRNet as the backbone network for our research.

3 Method

We present a hybrid network architecture as shown in Fig. 3
that effectively combines the strengths of CNNs and Trans-
formers. CNNs is utilized to extract low-level image features
efficiently. Meanwhile, Transformers facilitate higher-order
information exchange, allowing for the effective capture of
global dependencies. That allows Transformers to operate
directly on feature maps processed by CNNs, rather than
requiring access to the original image. To further improve
model performance, we introduce several modifications to
both the corresponding CNN and Transformer sections.
Specifically, we replace the BasicBlock in HRNet with our
AtBlock in the CNN section. In the Transformer section, we
propose local enhancement self-attention (LESA) and local
perception feed-forward network (LPFFN) to replace tradi-
tional Transformer layers.

3.1 Image to tokens

We aim to model long-range dependencies at high resolution
and minimize information loss caused by resolution reduc-
tion. Attention mechanisms have shown promising results
in fine-grained tasks, allowing models to adaptively focus
on important areas in the context. Therefore, we incorpo-
rated an attention mechanism into our approach. As shown
in Fig. 4, we compare several commonly used channel atten-
tion and spatial attention mechanisms, and ultimately adopt
Polarized Self Attention (PSA).

As shown in Fig. 4b, e, the first channel attention mecha-
nism and spatial attention mechanism compress the internal
resolution and lead to a significant loss of image informa-
tion, thereby hindering subsequent image feature extraction.
On the other hand, as shown in Fig. 4c, f, the second channel
attention mechanism and spatial attention mechanism pre-
serve high resolution in the spatial dimension but involves
redundant computations when generating a large attention
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Fig. 3 The pipeline of our proposed CSDNet. We replace BasicBlock
with AtBlock in the initial three stages of HRNet for feature extraction.
The extracted feature map is then partitioned into equally-sized patches
and transformed into a sequence of one-dimensional vectors, referred
to as visual tokens. These tokens are fed into Transformer encoding lay-

ers, comprising LESA and LPFFN, which effectively capture the global
dependencies of tokenswhile enhancing the interactionwith local infor-
mation. Finally, the output keypoint tokens pass through the MLP head
to generate the predicted heatmap of keypoints

matrix of size H ×W ×C . In contrast, PSA strikes a balance
between memory consumption and high-resolution feature
extraction. Specifically, as shown in Fig. 4a, in the chan-
nel dimension, it maintains a C/2 channel resolution on one
branch while compressing channels on the other branch to
generate an attention matrix of size 1× 1×C . It maintains a
high spatial resolution of H×W internally, avoiding the com-
plete collapse of spatial information. Similarly, as shown in
Fig. 4d, in the spatial dimension, PSA preserves high spatial
resolution in one branchwhile suppressing the spatial dimen-
sions via global pooling operations, and ultimately obtain an
attentionmatrix of size H×W×1. That also usesC/2 channel
resolution to minimize memory consumption.

PSA preserves high-resolution information in both chan-
nel and spatial domains, which facilitates accurate estimation
of highly nonlinear pixel-level semantics. Moreover, the
computational complexity of PSA is CHW,which is less than
or equal to that of other methods. Therefore, we employ PSA
and transform the BasicBlock into AtBlock in our work.

We feed the image into the modified HRNet to obtain the
feature map. Next, we partition the feature map into a range

of flattened 2D patches with a size of 4 × 4 and apply a
trainable linear projection to obtain patch embeddings. To
preserve positional information, we subsequently add posi-
tion embeddings to the patch embeddings. Afterwards, feed
the obtained embedding vectors into the Transformer layers.

3.2 Local enhancement self-attention

The self-attention layer of Transformers can capture interac-
tions between any pair of positions, providing a significant
advantage in representing global interactions. However, due
to the fixed size of tokens, capturing local information can
be challenging. To address this issue, we leverage depth-wise
convolution to aggregate information from nearby positions
and enhance local information exchange. Specifically, we
utilize a 3 × 3 depth-wise convolution that can aggregate
information from 8 adjacent patches in this paper.

The Transformer layer takes a one-dimensional embed-
ding vector of tokens as input. Therefore, it is necessary to
process the 2D feature maps extracted by the CNN back-
bone. Firstly, the features X ∈ RH×W×C are divided into N
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Fig. 4 Polarized Self-Attention (PSA) and two classic mechanisms of
the channel attention and spatial attention. a The channel attention part
of PSA. b The first type of channel attention mechanism. c The sec-
ond type of channel attention mechanism. d The spatial attention part
of PSA. e The first type of spatial attention mechanism. f The second

type of spatial attention mechanism. The figures illustrate how atten-
tion maps vary during different attention operations. The final attention
maps are all added to the input feature map to obtain an output of size
H × W × C

Fig. 5 The structure of the Local Enhancement Self-Attention. To obtain the output, we apply a depth-wise convolution operation on K andmultiply
it with Q. The result then passes through softmax and is multiplied with V that also undergoes depth-wise convolution
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patches of size Ph × Pw, where N is H
Ph

× W
Pw

. Subsequently,
each patch is flattened into a 1D vector of size Ph × Pw ×C
and then mapped to a d-dimensional embedding. Then we
obtain visual tokens Xv ∈ RN×d . We randomly initialize J
learnable d-dimensional embedding vectors to represent key-
points, called keypoint tokens X j ∈ RJ×d . Finally, we add
the two to obtain input X ∈ R(N+J )×d .

Figure 5 depicts the details of the Local Enhancement
Self-Attention operation. A linear transformation is first per-
formed on the input X ∈ R(N+J )×d to obtain the key
K ∈ R(N+J )×dk , query Q ∈ R(N+J )×dk , and value V ∈
R(N+J )×dv , where d, dk and dv respectively represent the
dimensions of input, key (query) and value. In DWConv,
V

′ ∈ RN×dv passes through a depth-wise convolution, while
V

′′ ∈ RJ×dv remains unaffected. In the end, V
′
and V

′′
are

concatenated to form V . The same applies to K as well.
Afterwards, K passes through the DWConv and then matrix
multiplied with Q. Then, a so f tmax operation is applied,
and the resultant output is subjected to matrix multiplication
with V to obtain X

′
. Subsequently, V passes through the

DWConv and multiplied by X
′
to obtain Xlesa ∈ R(N+J )×d .

These processes can be formulated as:

X
′ = so f tmax

(
Q(DWConv(K ))T√

dk

)
V (1)

Xlesa = DWConv(V )X
′

(2)

3.3 Local perception feed-forward network

The feed-forward network module performs dimensional
expansion/reduction and non-linear transformation on tokens
to improve the nonlinear fitting ability of the model. How-
ever, the interaction of spatially contiguous information
among tokens is not considered. Complementary to the
LESAmodule, the FFNmodule can additionally extract local
information based on the ability of Transformers to estab-
lish long range dependencies. Therefore, we propose a local
perception feed-forward network (LPFFN). In each encoder
block, after the LESAmodule, the original feed-forward net-
work layer is replaced with the LPFFN.

As illustrated in Fig. 6, the LPFFN includes the follow-
ing steps. Firstly, the Xlesa ∈ R(N+J )×d obtained from the
LESA is divided into two parts: keypoint tokens X j ∈ RJ×d

and visual tokens Xv ∈ RN×d , where J is the number of
keypoints and N is the number of patches. Subsequently,
Xv is projected onto a higher dimensional tensor X

′
v ∈

RN×(r×d) using a linear projection, where r represents the
expansion ratio. Following this, X

′
v is restored back to an

Xsp ∈ R
H
Ph

× W
Pw

×(r×d)
in the spatial dimension, based on

the position of the original image. Furthermore, a depth-
wise convolution with kernel size of k is performed on

Xsp to obtain Xdw, which enhances its correlation with
the k2 − 1 tokens in the surrounding area. Afterwards, the
two-dimensional spatial dimension is flattened into a one-
dimensional sequence, and then linearly projected back to
the initial dimension to obtain the X

′′
p ∈ RN×d . Finally, it is

added to the input Xlesa to obtain X f f n ∈ R(N+J )×d . The
application of residual connections is motivated by the clas-
sical residual networks to enhance the propagation ability of
gradients across the layers. These processes can be formu-
lated as:

X j , Xv = Spli t(Xlesa), (3)

Xsp = Reshape(GELU (BN (Conv(Xv)))), (4)

Xdw = GELU (BN (dwConv(Xsp))), (5)

X
′′
v = GELU (BN (Conv(Flatten(Xdw)))), (6)

X f f n = Concat
(
X j , X

′′
v

)
+ Xlesa . (7)

3.4 Loss function and heatmap estimation

Ourmodel utilizes theMSE loss function to compare the gap
between the predicted heatmap and the groundtruth heatmap.
MSE is formulated as:

LMSE = 1

J

J∑
j=1

∥∥Y j − Ŷ j
∥∥
2 , (8)

where Y j and Ŷ j represent the groundtruth and predicted
heatmap respectively, and J represents the number of key-
points. We use the MLP head to obtain final predicted
heatmaps for different keypoints. We employ the last Trans-
former layer as an aggregator, computing the maximum
activation of keypoints in the heatmap to be predicted. It
uses the contribution scores gathered from various locations
in the image. To create a h × w-sized 2D heatmap, the d-
dimensional keypoint tokens output by the Transformer are
linearly projected onto the corresponding h×w-dimensional
tensor. The resulting one-dimensional tensor is then reshaped
into a two-dimensional predicted heatmap.

4 Experiments

4.1 Datasets and evaluationmetrics

• Datasets
COCO The COCO2017 [56] dataset contains 200k out-
door images in the wild and 250k person instances. The
pose annotations in the dataset are based on 17 keypoints.
The train2017 set consists of 57k images and 150k person
instances. The val2017 set contains 5k images, and the
test2017 set contains 20k images. All the experiments
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Fig. 6 The structure of the Local Perception Feed-Forward Network.
The initial input tokens are divided into keypoint tokens and visual
tokens. The visual tokens are then convolved to higher dimensions,
followed by reshaping to a two-dimensional tokens. After undergoing

depth-wise convolution, tokens are flattened and then restored to its
original dimension. Subsequently, These vector are concatenated with
the keypoint tokens

reported in this paper are conducted on the train2017
set and evaluated on the val2017 dataset. In Sect. 4.3.1,
we present the results of our experiments on the COCO
dataset.
MPII The MPII [57] dataset contains approximately
25k images with over 40k human targets with anno-
tated human keypoint information. Each human target
in the MPII dataset is annotated with 16 keypoints. In
Sect. 4.3.2, we present the results of our experiments on
the MPII dataset.

• Evaluation metrics
OKSWe employ the standard Average Precision (AP) as
an evaluation metric for the experimental results on the
COCO dataset. AP is based on Object Keypoint Similar-
ity (OKS):

OK S =
∑

i exp
(
−d̂2i /2s2k2i

)
δ (vi > 0)∑

i δ (vi > 0)
, (9)

where d̂i is the Euclidean distance between i-th predicted
keypoint coordinate and the corresponding ground truth,
vi is the visibility flag of the groundtruth, s is the object
scale, δ() is the indicator function, and ki is a per-keypoint
constant that controls falloff. AP (the mean of AP scores
at 10OKS positions, 0.50, 0.55,…, 0.90, 0.95), AP50 (AP
at OKS = 0.50); APM and APL for medium and large
objects respectively, and AR (the mean of AR scores at
10 OKS positions, 0.50, 0.55,…, 0.90, 0.95).
PCKh For the experimental results on the MPII dataset,
we evaluate them using the head-normalized Percentage
of Correct Keypoints (PCKh) [57]:

PCKhi =
∑

p δ
(
dpi ≤ T · dheadp

)
∑

p 1
, (10)

PCKhmean =
∑

i PCKhi∑
i1

, (11)

where PCKhi is the PCK value of the predicted results
for the i-th keypoint, dpi is the Euclidean distance
between the predicted value of the i-th keypoint of the
p-th person and groundtruth, dheadp is the Euclidean dis-
tance between the upper left point and the lower right
point of the header rectangle of the p-the person, T is a
threshold, and δ() is the indicator function. In our exper-
iment, T is set to 0.5, which we denote as PCKh@0.5
and use as the evaluation metric to compare with other
methods.

4.2 Implementation details andModel architecture
configurations

• Implementation details
In our experiments, we adopt the top-down human pose
estimation paradigm. The training samples, consisting of
cropped imageswith a single person, are initially detected
by a person detector, and then the keypoints are pre-
dicted.To carry out this task,weutilize the popular person
detector provided by Simple Baseline. Prior to training
on COCO2017 dataset, we resize input images to either
256 × 192 resolution. Conversely, when working with
MPII dataset, we resize input images to 256 × 256 res-
olution during training. To minimize quantization errors
while decoding from a downscaled heatmap, we employ
the coordinate decodingmethod proposed byZhangFeng
[58]. The Adam optimizer is used to optimize the model
and we follow the learning schedule outlined in [14]. Our
research adopts the TokenPose setting. We set the base
learning rate to 1e-3, which is reduced to 1e-4 and 1e-5
at stage 200 and 260, respectively. We conduct a total
of 300 epochs during the training process, as the struc-
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ture of the Transformer tends to rely on a longer training
time to converge. We provide the GFLOPs of the models
to compare their complexity. The GFLOPs calculation in
this paper includes convolutional layers and linear layers,
with the formulas as follows:

1GFLOPs = 109FLOPs, (12)

FLOPs = k × k × Cin × Cout × Sout

+Sin × Sout × C, (13)

whereCin ,Cout andC are the number of input and output
channels, k is the convolution kernel size, Sin and Sout
represent the size of input and output features, respec-
tively.

• Model architecture configurations
We apply a hybrid variant based on CNNs and Trans-
formers. In this experiment, we use HRNet [14] with
various depths as backbone. The architecture configu-
ration is shown in Table 1. CSDNet-s, CSDNet-m, and
CSDNet-l use stem-net, HRNet-W32 and HRNet-W48
as backbone, respectively. The stem-net [37, 59] includes
several simple convolutions and is often used for quickly
downsampling to a quarter of the input resolution.

4.3 Quantitative analysis

4.3.1 Results on COCO dataset

Wecomparewith severalmethods based onCNNs andTrans-
formers on the COCO dataset. The model configurations are
presented in Table 1. The experimental results are summa-
rized in Table 2. The result of CSDNet-m/12 shows an AP
of 75.0%. Notably, our AP result is comparable to HRNet
[14], but with significantly fewer parameters and GFLOPs.
Similarly, both CSDNet-m/12 and UniFormer-B [55] reach
an AP of 75.0%, but CSDNet-m/12 requires fewer parame-
ters and GFLOPs compared to UniFormer-B [55]. CSDNet-l
achieves an experimental result of 75.8%, while using about
3 million fewer parameters compared to TokenPose-L/D24
[54]. The results of CSDNet-l and ViTPose [50] are both
75.8% but CSDNet-l have fewer parameters than ViTPose,
only about one-third. Compared to TransPose-H-A6 [51],
the results are comparable. Although there are many param-
eters, GFLOPs is still less than half of it. Furthermore, our
approach is slightly better than HRFormer-B [49] in terms of
results, while utilizing fewer parameters andGFLOPs. These
findings reflect the effectiveness of our proposed improve-
ments,which are not inferior, and in some cases even superior
to other CNN+Transformer-based architectures. It indicates
that the internal structure of CNNs and Transformers is
indeed worth further analysis and exploration, and there is
still room for improvement.

4.3.2 Results on MPII dataset

We adhere to the experimental setup and testing procedure
of TokenPose L/D6, as described in TokenPose [54]. Specif-
ically, we employ HRNet-W48 as the backbone and add 6
Transformer layers, while keeping the experimental settings
such as learning rate and epochs unchanged. All experiments
are conducted using an input image size of 256 × 256. In
Table 3, we compare our experimental results with those
of other experiments. Additionally, we provide the PCK for
different keypoints, namely: Head, Shoulder, Elbow, Wrist,
Hip, Knee, and Ankle. The amount of parameters in our
experiment is 25.3M, 1.8Mmore than TokenPose-L/D12 and
2.8M less than TokenPose-L/D24. Our method achieves an
overall accuracy improvement of 0.5 percentage points com-
pared to D6, and achieves better performance compared to
D12 and D24. Notably, our approach also exhibits substan-
tial improvements in detecting various body parts, including
elbow, wrists and ankles. Our initial results on the MPII
dataset demonstrate that training a Transformer-based model
on large-scale pose correlation data would be effective for
robust representation of pose estimation.

4.4 Ablation study

Weexplore the internal structures of CNNs andTransformers
to further improve the model performance. To evaluate the
effectiveness of our proposed modules, we conduct ablation
experiments. We also study the individual modules sepa-
rately.
Effectiveness of Components To evaluate the effectiveness
of our proposed modules, we conduct ablation experiments
on PSA, LESA, andLPFFN. Specifically, we conduct experi-
ments usingCSDNet-m/6,which incorporates 6 Transformer
layers. The model with no modifications or added modules
serves as the baseline. By adding or replacing our modules,
we assess their impact on the overall model performance. As
illustrated in Table 4, we make some modifications to the
model architecture, specifically replacing BasicBlock with
AtBlock, the FFNmodule in Transformer layerswith LPFFN
module, and the MHA module in Transformer layers with
LESA module. The first three rows in the table represent the
model results using AtBlock, LPFFN, and LESA modules,
respectively. It can be observed that the individual usage of
AtBlock andLPFFN increases by 0.2 percentage points com-
pared to the baseline. It is evident that the performance of the
AtBlock and LPFFNmodules is relatively better than LESA.
Subsequently, pairwise combinations are conducted. It can
be observed that the combination of AtBlock and LPFFN
performs slightly better than the combination with LESA
individually. Finally, the result using all modules reaches
90.7%, surpassing the baseline by 0.5 percentage points.
Moreover, our optimized model achieves superior detection
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Table 1 Model architecture
configurations

Model CNN backbone Layers Heads Patch size

CSDNet-s Stem-net 12 8 4 × 3

CSDNet-m/6 HRNet-W32-stage3 6 8 4 × 3

CSDNet-m/12 HRNet-W32-stage3 12 8 4 × 3

CSDNet-l HRNet-W48-stage3 6 8 4 × 3

‘Layers’ represents the number of Transformer layers in the model

Table 2 Comparison with other
advanced top-down 2D pose
estimation approaches on the
COCO validation set

Method #Params GFLOPs AP AP50 AP75 APM APL AR

SimpleBaseline-Res50 [40] 34.0M 8.9 70.4 88.6 78.3 67.1 77.2 76.3

SimpleBaseline-Res101 [40] 53.0M 12.4 71.4 89.3 79.3 68.1 78.1 77.1

SimpleBaseline-Res152 [40] 68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8

HRNet-W32 [14] 28.5M 7.1 74.4 90.5 81.9 70.8 81.0 79.8

HRNet-W48 [14] 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.4

TokenPose-B [54] 13.5M 5.7 74.7 89.8 81.4 71.3 81.4 80.0

TokenPose-L/D6 [54] 20.8M 9.1 75.4 90.0 81.8 71.8 82.4 80.4

TokenPose-L/D24 [54] 27.5M 11.0 75.8 90.3 82.5 72.3 82.7 80.9

TransPose-H-S [51] 8M 10.2 74.2 – – – – 78.0

TransPose-H-A4 [51] 17.3M 17.5 75.3 – – – – 80.3

TransPose-H-A6 [51] 17.5M 21.8 75.8 – – – – 80.8

ViTPose-B [50] 86M 75.8 – – – – 81.1

HRFormer-S [49] 7.8M 2.8 74.0 90.2 81.2 70.4 80.7 79.4

HRFormer-B [49] 43.8M 14.1 75.6 90.8 82.8 71.7 82.6 80.8

UniFormer-S [55] 25.2M 4.7 74.0 90.3 82.2 66.8 76.7 79.5

UniFormer-B [55] 53.5M 9.2 75.0 90.6 83.0 67.8 77.7 80.4

CSDNet-m/6 11.4M 5.3 74.5 89.6 81.5 71.2 81.6 79.9

CSDNet-m/12 17.4M 6.9 75.0 89.9 81.7 71.4 81.9 80.1

CSDNet-l 24.7M 10.0 75.8 90.1 82.5 72.4 82.5 80.9

The input size is 256 × 192

Table 3 Comparison with other
advanced top-down 2D pose
estimation approaches on the
MPII validation set
(PCKh@0.5)

Method Hea Sho Elb Wri Hip Kne Ank Mean #Params

SimpleBaseline-Res50 [40] 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0M

SimpleBaseline-Res101 [40] 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 53.0M

SimpleBaseline-Res152 [40] 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 68.6M

HRNet-W32 [14] 96.9 96.0 90.6 85.8 88.7 86.6 82.6 90.1 28.5M

TokenPose-L/D6 [54] 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2 21.4M

TokenPose-L/D12 [54] 97.2 95.8 90.7 85.9 89.2 86.2 82.3 90.1 23.5M

TokenPose-L/D24 [54] 97.1 95.9 90.4 86.0 89.3 87.1 82.5 90.2 28.1M

CSDNet-l 97.1 96.1 91.2 86.8 89.5 87.0 83.1 90.7 25.3M

The input size is 256 × 256

accuracy at multiple keypoints, with significant improve-
ments observed at the elbow, wrist and ankle joints.
The position of PSA in the AtBlockWe discuss the optimal
location of adding PSAmodules and conduct ablation exper-
iments. We utilize TokenPose-L/D6 [54] as the baseline.
Specifically, we add PSA to the first and second 3×3 convo-
lution respectively, and evaluate the experimental results. As

indicated in Table 5, adding PSA to the first 3×3 convolution
yields significantly better results. However, adding PSA to
the second 3 × 3 convolution results in worse performance
than the original experiment. These results indicate that the
location of attention mechanisms usage also greatly affects
the performance of them.
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Table 4 The ablation study of
three proposed modules on the
MPII dataset

Method Hea Sho Elb Wri Hip Kne Ank Mean

BasicBlock(baseline) 96.9 96.1 90.9 85.5 89.4 86.9 82.5 90.2

AtBlock 97.3 96.1 91.1 86.6 89.4 86.8 82.6 90.4

LPFFN 97.1 95.9 90.9 86.9 89.1 86.8 82.7 90.4

LESA 97.1 95.8 90.7 85.8 89.2 86.4 82.8 90.3

AtBlock+LPFFN 97.1 96.0 90.9 86.2 89.6 87.0 82.6 90.6

AtBlock+LESA 97.0 95.9 91.1 87.0 89.1 86.9 82.9 90.5

LPFFN+LESA 90.0 95.8 90.9 86.8 89.2 86.8 82.9 90.5

AtBlock+LPFFN+LESA 97.1 96.1 91.2 86.8 89.5 87.0 83.1 90.7

The first column represents the utilized modules

Table 5 The ablation
experiment on the placement
position of PSA

Method Hea Sho Elb Wri Hip Kne Ank Mean

Baseline 97.1 95.9 91.0 85.8 89.5 86.1 82.7 90.2

After 1st 97.3 96.1 91.1 86.6 89.4 86.8 82.6 90.4(+0.2)

After 2nd 96.8 95.6 90.3 84.8 89.4 84.7 81.6 90.2(+0)

Table 6 Ablation study results on the type of LPFFN

Kernel Size Mean #Params

× 72.5 6.6M

1 × 1 71.5(−1.0) 7.54M

3 × 3 73.5(+1.0) 7.61M

5 × 5 73.2(+0.7) 7.76M

The type of LPFFN For depth-wise convolution, the kernel
size determines the size of the region in which local cor-
relation is established. Therefore, we compare the effect of
different kernels on the experiment. We employ TokenPose-
Small-v1 [54] as the baseline, which does not include any
depth-wise convolutions. Both kernel sizes of 3×3 and 5×5
yield good results. Based on the trade-off between number
of parameters and accuracy, we choose the depth-wise con-
volution with the kernel of 3×3. As shown in Table 6, when
the kernel size is 3 × 3, the experimental result is the best,
and the parameter consumption is not significant.

4.5 Qualitative analysis

Examples of the final predicted heatmap of 17 keypoints
in the COCO dataset are visualized in Fig. 7. We use the
keypoint tokens output from the last Transformer layer and
process them through the MLP head to predict the keypoint
heatmaps. The MLP output generates 17 channels, each cor-
responding to one of the keypoints. As illustrated in Fig. 7,
each channel is dedicated to a fixed keypoint. If a keypoint
exists, the corresponding heatmap estimation is outputted.
Conversely, if a key point does not exist, the corresponding
channel output is set to none.

As illustrated in Fig. 8, we compare the estimation of
our method with HRNet for complex poses. It is obvious
that our method outperforms HRNet in accurately estimat-
ing occluded or undetected limb parts in complex poses.
According to our analysis, it is because our method takes
into account both local and global information. By consid-
ering nearby keypoints in conjunction with distant keypoints
from a global perspective, our method is able to effectively
analyze and localize keypoints that are challenging to dis-
cernible or occluded in complex poses. This comprehensive
approach of considering both local and global information
contributes to its promising performance in estimating com-
plex poses. In the first and third columns of the pose, the arms
are obstructed, and local information alone cannot effectively
connect the wrist to the human body over long distances in
HRNet. In contrast, our approach leverages global informa-
tion, enablingmore accurate association of keypoints that are
farther away from the human body with the body structure.

As demonstrated in Fig. 9, we conduct a comparative anal-
ysis between our proposedmethod andHRNet for estimating
limbs that are challenging to recognize under poor lighting
conditions. It can be seen that in such conditions, keypoints
and limbs of the human body are difficult to discern and even
blend with the environment. However, our method effec-
tively addresses this challenge by preserving high-resolution
information and mitigating the loss of information due to
reduced resolution. By retaining detailed information of
blurred objects and lower noise levels, our method facili-
tates accurate identification of blurred objects. In particular,
high-resolution images of blurred objects may reveal more
details at the pixel level, enabling us to better capture the
shape, contour, and texture features of the objects. In the
final column of Fig. 9, under similar low-light conditions,
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Fig. 7 Examples of heatmap visualization of 17 human keypoints on the COCO dataset. The keypoint tokens output from the Transformer layers
are processed through the Multilayer Perceptron (MLP) module to obtain 17 channels, corresponding to 17 keypoints

Fig. 8 Comparison of our method with HRNet method in terms of complex poses

HRNet exhibits errors in connecting keypoints and fails to
recognize the correct arm posture. In contrast, our method
successfully identifies the accurate arm posture. As a result,
our method exhibits certain advantages in recognizing limbs
that are blurry due to poor lighting conditions.

Figure 10 illustrates the comparison between our proposed
method and HRNet on some examples of large-scale human
pose estimation. It is evident that our method achieves supe-
rior performance in estimating the posture of the entire body

at larger scales. We leverage the LESA module to capture
long-range dependencies, enabling us to better recognize the
complete posture and eliminate erroneous poses. Addition-
ally, as shown in the last column,we enhance the connectivity
of local information, resulting in better distinguishing poses
that have similar content in certain regions.
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Fig. 9 Comparison of our method with HRNet method for pose estimation under adverse lighting conditions

Fig. 10 Comparison of our method with HRNet method in terms of large scale human body
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5 Conclusion

In this paper, we employ a hybrid architecture that syner-
gistically leverages the strengths of CNNs and Transformers
to capture both local and global information for enhanced
feature extraction in human pose estimation. To alleviate the
issue of reduced resolution inCNNs,we propose theAtBlock
to preserve internal high resolution, thereby enabling more
precise pixel-level regression for the estimation of human
details. Furthermore, we replace the Multi-Head Attention
(MHA) layers and the feed-forward network layers in the
Transformer with local enhancement self-attention (LESA)
and local perception feed-forward network (LPFFN), com-
pensating for theTransformer’s limitations in extracting local
information in 2D space and alleviating the limitations of
utilizing Transformers in the field of computer vision. Our
modifications enable more accurate estimation of poses in
complex environments. Overall, our approach enhances the
network’s feature extraction ability, paving the way for fur-
ther advances in human pose estimation to some extent.
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