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Abstract
Visual Speech Recognition (VSR) is an appealing technology for predicting and analyzing spoken language based on lip
movements. Previous research in this area has primarily concentrated on leveraging both audio and visual cues to achieve
enhanced accuracy in speech recognition. However, existing solutions encounter significant limitations, including inadequate
training data, variations in speech patterns, and similar homophones, which need more comprehensive feature representation
to improve accuracy. This article presents a novel deep learning model for performing word level VSR. In this study, we have
introduced a dynamic learning rate scheduler to adapt the learning parameter during model training. Additionally, we employ
an optimized Three-Dimensional Convolution Neural Network for extracting spatio-temporal features. To enhance context
processing and ensure accurate mapping of input sequences to output sequences, we combine Bidirectional Long Short Term
Memory with the CTC loss function. We have utilized the GRID dataset to assess word-level metrics, including Word Error
Rate (WER) and Word Recognition Rate (WRR). The model achieves 1.11% WER and 98.89% WRR, respectively, for
overlapped speakers. This result demonstrates that our strategy outperforms and is more effective than existing VSRmethods.
Practical Implications - The proposed work aims to elevate the accuracy of VSR, facilitating its seamless integration into
real-time applications. The VSRmodel finds applications in liveness detection for person authentication, improving password
security by not relying on written or spoken passcodes, underwater communications and aiding individuals with hearing and
speech impairments in the medical field.
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1 Introduction

People commonly interact through their senses of hearing and
vision. In day-to-day life, speech recognition is a popular and
effective method for understanding a person emotions and
expressions. Speech recognition technology is remarkable in
its ability to comprehend spoken language with precision.
Previous research has primarily concentrated on the auditory
mode of communication because of its outstanding ability
to recognize spoken words. Unfortunately, this technique
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is not helpful for deaf and mute individuals, and even for
normal people when the acoustic data is tainted. However,
it becomes particularly challenging in noisy environments
or when the acoustic signal is unavailable. Audio speech
recognition faces challenges in accurately transcribing spo-
ken language due to background noise, variations in speech
patterns, speaker accents, and homophones that can result
in different words being transcribed identically. To address
these challenges, researchers have explored combining audio
features with visual features techniques to improve the over-
all accuracy of speech recognition systems [1, 2]. Despite
the numerous advantages of audio visual speech recognition,
it encounters challenges that can lead to reduced accuracy.
These challenges include operating in noisy environments,
accounting for speaker variability, managing computational
complexity, and addressing limited training data availability.
Ensuring proper synchronization between audio and visual
modalities is crucial for reliable speech recognition.
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Fig. 1 General architecture of VSR system

To overcome these challenges, engaging in continu-
ous research and advancements in AVSR algorithms, data
collection techniques, noise robustness, speaker adapta-
tion, and synchronization methods is imperative. Nowadays,
researchers have moved towards the VSR technique, also
known as lip reading technology, which identifies the spo-
ken content by analyzing the lip movement characteristics of
the speaker without relying on audio signals [3, 4]. Lipread-
ing can identify a speaker speech in noisy environments,
even without audio signals. Lip movements in visual-based
speech recognition systems have proven effective in mitigat-
ing background noise and aiding individuals with auditory
impairments [5]. This promising area of research has the
ability to strengthen the precision and stability of automatic
speech recognition systems. VSR is a fascinating study area
in computer vision and image processing that has gained
recent attention. The goal of VSR systems is to use visual
information from lip movements to recognize speech con-
tent. In VSR, the data will be in videos converted into frames
for further implementation. Each frame contains a wealth of
information about the variability of visual cues across dif-
ferent speakers. VSR has emerged as an essential research
topic with potential uses in areas like speech recognition [6,
7], facial bio-metric [8, 9], healthcare [10, 11], and security
[12]. To enhance the accuracy of VSR, extraction of spatio-
temporal characteristics from video recordings is essential in
video-based speech recognition. In a broader sense, spatio-
temporal pertains to a phenomenon where data is gathered
simultaneously in space and time. VSR refers to video fea-
tures that are considered indispensable in accomplishing the
task. The general architecture of VSR system is given in
Fig. 1.

The study conducted by [13] illuminates the pivotal role
played by the morphology of the mouth and lips in the pro-
cessing of speech. Particularly in scenarios where speech
may be compromised due to environmental noise or other
factors, lip-reading emerges as a valuable adjunct, augment-
ing our comprehension of spoken language. In this work,
we have introduced a deep learning based architecture for
VSR, which leverages spatio-temporal features and utilizes
haar cascade [14] for face with lip localization and detec-
tion. Furthermore, we have optimized Three-Dimensional

Convolution Neural Network (3D-CNN) to extract essential
spatio-temporal features from video data and used Bidirec-
tional Long Short Term Memory (BiLSTM) [15] to process
the input video frame sequence bidirectionally for capturing
dependencies between past and future elements for accurate
speech recognition. Furthermore, the proposed framework
analyses the visual characteristics of the users lip in the video
to transcribe the spoken speech accurately. Spatial features
encompass information about the shape and position of the
lips, while temporal characteristics capture details such as
the speed and direction of lip movements. This work also
employs data shuffling during training to mitigate bias and
promotemodel generalization. Additionally, themodel train-
ing incorporates the variable LearningRate Scheduler (LRS),
as presented in algorithm 3, to optimize the learning process
effectively. Learning rate tuning is essential for optimizing
the performance of a machine learning model by striking
the proper balance between convergence speed and avoiding
overshooting the optimal parameter values. It affects how
rapidly the model learns and adapts during training; there-
fore, determining the optimal learning rate is frequently a
vital stage in the hyper-parameter tuning process. Further-
more, we employ the Connectionist Temporal Classification
(CTC) loss function [16] to calculate the associated loss,
followed by a CTC decoder to perform the final speech-to-
text conversion. Researchers previously used Bidirectional
Gated Recurrent Units (BiGRU) [17] to process data forward
and backward to capture bidirectional context and dependen-
cies in sequential data. BiGRU is computationally lighter
and better suited for tasks with moderate dependencies and
shorter sequences. BiLSTMhas an advantage over BiGRU in
capturing complex dependencies memory capacity through
multiple gates and potentially performing better on large
datasets. However, in the context of the gating mechanisms,
Long short-term memory (LSTM) [18] units used in BiL-
STMhave three gates (input, forget, and output gates), which
allow formore fine-grained control over the information flow
within the cell state and hidden state. This intricate gating
mechanism enables LSTM to capture and retain longer-
term dependencies in sequences, making it better suited for
tasks requiring complex sequence modeling. On the other
hand, GRU units used in BiGRU have two gates (update
and reset gates), which can lead to slightly fewer parame-
ters and potentially more straightforward training dynamics.
We monitored the LRS to observe its impact on the model
output. After careful analysis, it was concluded that it sig-
nificantly affects model training performance. Consequently,
we proposed optimized LRS to adjust the learning rate bet-
ter, aiming for improvedmodel performance adaptation. This
paper presents the significant contributions as follows:

1. This paper reviews state-of-the-art approaches anddatasets
for character, digit, word, and sentence-level VSR.
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2. The proposed deep learning model exhibits versatility,
making it suitable for character, word, sentence, and digit
datasets, which rely only on visual information.

3. We have optimized the 3D-CNN architecture and imple-
mented a dynamic Learning Rate Scheduler (LRS) to
regulate the learning rate throughout the model training
adaptively.

4. We showcased the enhanced accuracy and effectiveness
of the proposedmodel compared to existing deep learning
frameworks utilized in implementing VSR systems.

This article is structured as follows. Section2 discusses
relevant work on various techniques and datasets. Sec-
tion3 describes the proposed methodology in multi-phases
ranging from lip dataset development to model architec-
ture, experiment results, and evaluation details, followed
by comparing the proposed methodology to state-of-the-art
methods. Section4 includes the conclusion, future endeav-
ors, and acknowledgment.

2 Related work

The major problem in the VSR system is visual ambiguity
that arises due to the similar homophones of words or char-
acters because they generate identical lip movements (e.g.,
‘m’, ‘b’, ‘p’, ‘pat’, ‘mat’, ‘bat’). The phoneme is the small-
est standard unit capable of distinguishing the meaning of a
word in speech processing. Similarly, viseme is the standard
unit many researchers use for analyzing the visual informa-
tion from the video domain. Our research primarily focuses
on word-level performance, even though we are utilizing a
sentence-level dataset for VSR. We have identified several
existing datasets that are suitable for performing VSR tasks.
The datasets available for this task are as follows: LRW and
LRS2-BBC [19], LRW-1000 [20], AVLetters [21], AVLet-
ters2 [22], LRS3-TED [23], MIRACLE-VC1 [24], LIPAR
[25], AV Digits [26], OuluVS2 [27], GRID [28].

A deep learning methodology has been proposed in [29]
for recognizing complete words. This study trained LSTM
network with discrete cosine transform, and deep bottleneck
features for word recognition. Similarly, [30] employed an
LSTM with Visual Geometry Group Network (VGGNet) to
recognize the complete word. Distinguishing different words
or characters with similar phonemes in lipreading poses a
challenge due to the similarity in lip movements associ-
ated with those phonemes. The model aims to overcome
phoneme similarity challenges by training a recurrent neu-
ral network on spatio-temporal feature patterns, resulting in
state-of-the-art performance for the challenging lip reading
task. Similarly, [31] introduced a lip-reading model incor-
porating a multi-grained spati-temporal approach to capture
the distinctions between words and the individual speaking

styles of different speakers. The model was trained for Word
Recognition Rate using Dense-Net3D and BiLSTM. Amore
complex model than LipNet [3] has been introduced in the
research work [32], which introduces residual networks with
3D convolutions to extract more robust features.

Existingdatasets contain recordingswith a limitednumber
of participants and a limited lexicon, which further impedes
progress in the field of VSR. In order to tackle this issue, [19]
proposed a methodology to tackle the challenge of a small
lexicon by contributing the LRW and LRS2-BBC dataset,
encompassing a vocabulary of more words. Their approach
introduced the Watch, Listen, Attend, and Spell (WLAS)
model, which effectively converts mouth movements into
words. The WLAS model transcribes spoken sentences into
characters and can handle input solely from the visual stream.
It achieved aWRR of 76.20% on the LRWdataset. Likewise,
[20] proposed a work in which they provided a comprehen-
sive and naturally distributed benchmark dataset, LRW-1000,
for the lip-reading task. A non-autoregressive lipreading
model proposed by [33] for fast lip reading and generating
target word. It is designed to recognize silent source videos
and generate all target text tokens simultaneously.

Wang et al. [11] created an HMM-based lip-reading
software for the speech impairment people. The software
employs a pre-trained VGGNet model with a user-friendly
graphical user interface. However, the software disadvan-
tage is its lower testing accuracy. Similarly, [34] focus on
appearance-based visual features for people with learning
disabilities. Based on the test results, the proposed system
obtains a visual speech accuracy of 76.60%. In 2022, Huang
et al. [35] proposed a lip-reading model, which utilizes a pre-
trained neural network for feature extraction and processing
through a transformer network. The overall accuracy assess-
ment was based on word-level accuracy, achieving a result of
45.81%. Vayadande et al. [48] recognized the significance of
lip reading for individuals with hearing impairments, lead-
ing to the development of advanced deep learning model,
LipReadNet. This model has used 3D-CNNwith LSTM net-
works and demonstrated substantial efficacy by achieving a
93%WRRon theGRID corpus. Time complexity is essential
in analyzing the model performance; therefore, a lightweight
deep learning model has been introduced in [36] based on
isolatedword-level recognition.This system investigates effi-
cient models for VSR, achieving the exhibit similarity to the
availablemodel, but computational costs are reduced by eight
times. Recognizing the slow training pace of conventional
lipreading models, He et al. [37] proposed a new approach
called the batch group training strategy. Their architecture
combines 3D-CNN,MouthNet, andBi-LSTMnetworkswith
a CTC loss function, resulting in a 93.8% accuracy on the
GRID corpus. The performance of existing models with the
GRID dataset as well as other datasets for VSR is provided
in Tables 1 and 2 , respectively. Lip reading poses significant
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Table 1 VSR comparison on different existing dataset and model

References Methodology Database Work WRR%

[30] LSTM, VGG+CFI MIRACLVC1 Words, Phrases 76.00

[29] LSTM, DBNF+DCT AVLetters Alphabet 58.10

[38] DNN-HMM, DBNF CUAVE Digits 64.90

[19] CNN+LSTM, Attention+LSTM LRW Words 76.20

[26] Bi-LSTM, Autoencoder AVDigits Digits 68.00

[31] Bi-LSTM, DenseNet3D+ResNet LRW Words 83.34

[39] Bi-GRU, ResNet+3D-CNN LRW Words 84.41

[9] Bi-GRU, Resnet+3D-CNN LRW Words 85.20

[40] HMM, Haar Cascade Arabic Figures(0-9) Digits 96.20

[41] LDT+GPT Transformer, 3D-CNN+ResNet LRS2 Sentences 64.60

[42] Temporal CNN, ResNet LRW Words 85.30

[36] MS-TCN+ResNet LRW-1000, LRW Words 46.60, 88.50

[25] 3D-CNN, Dlib LIPAR Words 77.90

[34] ANN, SVM, NB, LBP+GLCM CUAVE Digits 76.60

[2] TM-CTC, SSD+CNN LRS2-BBC, LRS3-TED Sentences 65.00, 73.00

TM-seq2seq, SSD+CNN LRS2-BBC, LRS3-TED 51.20, 59.30

Table 2 VSR comparison on
GRID dataset

References Methodology Database Work WRR%

[43] LSTM, Feed-Forward GRID Words 79.60

[3] Bi-GRU+CTC, 3D-CNN GRID Words 95.20

[44] LSTM, Feed-Forward GRID Words 83.30

[1] LSTM, Feed-Forward GRID Words 84.70

[19] LSTM+Attention, CNN+LSTM GRID Words 97.00

[4] Bi-GRU+Attention+CTC, 3D-CNN GRID Words 97.10

[33] Transformer + CTC, STCNN GRID Words 95.50

[45] BiGRU + Attention CTC, STCNN GRID Words 97.30

[46] GRU + 3D-CNN, ResNet GRID Words 88.80

[47] BiGRU + CTC, STCNN GRID Words 90.30

[37] BiLSTM, 3D-CNN+MouthNet GRID Words 93.8

[35] Transformer, VGG16 GRID Words 45.81

[48] LSTM, 3D-CNN GRID Words 93

challenges due to similar lipmovements observed across var-
ious consonant sounds.

In response to the inherent complexities associated with
the VSR task, Rastogi et al. [45] proposed a deep learning
approach involving a sequential model. The model incor-
porates the context of preceding and subsequent words to
better interpret lip movements. To address the limitations
stemming from the assumption of conditional indepen-
dence in the CTC framework, they introduced a hybrid
CTC/Attention model, effectively integrating the strengths
of both approaches. Typical seq2seq models face two main
challenges: exposure bias and a mismatch between the opti-
mization target and the evaluation metric. To tackle these
issues, [46] introduced a GRU based deep learning model

known as pseudo-convolutional policy gradient. This model
incorporates a pseudo-convolutional operation on the reward
and loss dimensions, allowing it to consider more context
around each time step. This approach produces amore robust
reward and loss for the overall optimization process. To
enhance lip-reading accuracy [41] introduced a neural net-
work based model for a lip reading task that system relies
only on visual information and operates without a lexi-
con. The system effectively reads sentences with a diverse
vocabulary, even including words absent from its training
data. 3D-CNN architecture has been customized by [25] for
VSR that extracts spatio-temporal features to recognize the
words. A thirteen-layer CNN integrated with batch normal-
ization methodology has been proposed in the work [49] for
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lip-reading. However, the model exhibited a lower testing
accuracy. Sarhan et al. [47] proposed a hybrid lip-reading
model that uses encoding at the front end and decoding at
the back end. The front end contains inception, gradient
preservation, and a BiGRU layer, while the rear end has an
attention layer, a fully connected layer, and a CTC layer.
The model achieved 1.4% CER and 3.3% WER for over-
lapping speakers. LCSNet [50], an architecture designed by
Xue et al., utilizes the channel attentionmechanism to capture
essential lip movement features. These extracted features are
subsequently fed into a BiGRU to acquire long-term spatio-
temporal features.

The performance of the VSR task is also degraded
due to pose variations, lighting, and speaking speed. To
address these challenges, Speaker Adaptive Training (SAT)
is used in the research [51] to train Deep Neural Networks,
which allows them to recognise words efficiently regardless
of the speakers viewing angles. Similarly, [39] employed
two constraints: local mutual information maximization for
fine-grained lipmovement detection and globalmutual infor-
mation maximization for essential frame identification to
capture the lip movements. Three categories of speech data
have been utilized by [26], including normal, whispered,
and silent speech, to facilitate precise transcription of spo-
ken words. Their methodology involved training an LSTM
classifier while extracting DCT features. The model demon-
strated a commendable 68% WRR on the AVDigits dataset.
A comprehensive analysis of three pivotal works for VSR, as
proposed by [1, 43, 44], is given in Table 2. Their proposed
deep learning approach trained an LSTM classifier with
a feed-forward network and obtained a maximum 84.70%
WRR on the GRID dataset.

3 Proposedmethodology

This section describes the architecture of the proposed
approach to deal the GRID dataset. The approach begins
with a detailed dataset description, followed by video frame
extraction and conversion. The next steps proceed to extract
Regions of Interest (ROI) and normalization of ROI. These
normalized frames are given to the model to extract features
and use them to forecast frame sequence prediction. Finally,
themodel target ismodel evaluation, with the primary goal of
rigorously assessing the proposed framework performance,
particularly regarding WER and WRR.

3.1 Dataset, image pre-processing and feature
concatenation

In the following subsections, we will cover the dataset
description, image pre-processing techniques employed for
localizing the subject face and lip regions, cropping the lip

areas, and further image processing techniques for process-
ing the cropped lip region.

3.1.1 Dataset description

Our study utilizes the GRID dataset publicly available [52],
widely recognized and extensively employed within speech
recognition. The dataset consists of.mpg video files and cor-
responding.align files that contain a series of time intervals
paired with related labels. These files describe a sequence of
events or activities, each with its start and end times, repre-
senting the duration of the specific event.

The dataset offers a comprehensive collection of videos
and alignments of 34 speakers (s1 to s34), each delivering
1000 sentences. These sentences follow a fixed structure,
consisting of a command (4 options), a colour (4 options),
a preposition (4 options), a letter (25 options), a digit (10
options), and an adverb (4 options). There are 51 exclusive
words represented in the dataset, and the random word alter-
natives are used to avoid dependency on contextual cues
for classification. The chosen dataset offers valuable tem-
poral insights with a comprehensive collection of diverse
recordings. It includes speakers from various backgrounds,
ethnicities, and age groups,making it suitable for training and
evaluating VSR models that can handle variations in speech
and visual cues. Significantly, in this particular dataset, our
research has been solely centered around video content with-
out audio. It is worth noting that many earlier researchers
have also chosen to focus exclusively on the video without
relying on the audio portion of this dataset for the VSR task
(refer Table 2). Each sentence within the corpus lasts 3 s, cap-
turing 25 frames per second. As a result, the data for each
speaker encompasses 3000s (50min) in total. In this paper,
we have utilized 7200 videos, a subset of the corpus compris-
ing 30 subjects, each with 240 videos. The subjects available
in the dataset are given in Fig. 2.

3.1.2 Face localization and cropping region of interest (ROI)

The first stage of this pipeline entails using a video in which
the subject pronounces a sentence from the provided corpus.
We divide the video into separate frames, convert them into
gray scale, and treat each frameas a sub-input for the pipeline.
The importance of converting color frame to grayscale lies
in its capacity to decrease the dimensions of the input vector.
Consequently, this results in fewer parameters for training the
model. The algorithm 1 outlines the entire process from face
localization to ROI cropping, while Fig. 3 provides a visual
representation of this procedure. Figure3a is an original color
frame, (b) is a converted grayscale frame, (c), (d) represents
the face localization and lip detection, (e) represents the final
phase of lip region (ROI) extraction for lip data preparation.
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Fig. 2 Subjects in GRID dataset

(a) (b) (c) (d) (e)

Fig. 3 a Original frame b Gray scale frame c Face localization d Lip localization e Lip extraction

In this process, ROI is a lip region, which will be the model
input for tracking the lip movement for word recognition.

3.1.3 Extraction and normalization of ROI

As described in the previous section, the image processing
technique depicted in Fig. 3 is utilized to precisely crop the
ROI of the subject.

Algorithm 1 Video Pre-processing and Extraction of ROI
Require: Video
Ensure: Array of Cropped ROI
1: Initialize Roi_frames as an empty list
2: Convert input frame to grayscale
3: Load pre-trained model for face detection
4: faces = Detect_Face()
5: for each (x, y, w, h) in faces do
6: Draw_Rectangle_Region()
7: Localize mouth region
8: lips = Extract_Lips()
9: for each detected lip do
10: Draw rectangle around the detected lip
11: Calculate and append Roi size to Roi_frames list
12: end for
13: end for
14: Return Roi_frames

The subsequent part of this step is ROI normalization. The
following stage of this pipeline involves image Contrast Nor-
malization (CN). During this process, the converted image
pixel values are adjusted to operate within the limit of [0 to
128 intensity values]. It defines image contrast and intensity,
rendering them more uniform and suited for later process-

ing or analysis. The CN method is applied to mitigate the
contrast disparity between light and dark pixels in an image
(refer to Algorithm 2).

Algorithm 2 Contrast Normalization (CN)
Require: ROI, μ, ε
Ensure: Normalized ROI
1: if ROI �= None then
2: img = Read(ROI)
3: a = Convert img into array
4: Contrast =

√
μ + mean(a2)

5: CN = s f × a/max(Contrast, ε)
6: end if
7: return Normalized ROI

In algorithm 2, μ represents a parameter that controls the
strength of contrast normalization, s f is a scaling factor, and
ε (epsilon) is a small positive constant used in algorithms
and mathematical operations to prevent division by zero and
ensure numerical stability.

3.1.4 ROI concatenation

The last stage of the image pre-processing pipeline involves
combining normalized ROI frames for the preparation of
feature matrix. Due to variations in the number of features
obtained from each sentence, the feature vector can become
uneven. The reason for this is that the number of frames
captured for each sentence varies, causing imbalanced data
features that can pose challenges in training the model. To
address this issue, we have concatenated some silent frame
denoted as ’sil’. The silent frame is a video frame captured
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Table 3 Alignment of a video Start time End time Label

0 23,750 sil

23,750 29,500 bin

29,500 34,000 blue

34,000 35,500 at

35,500 41,000 f

41,000 47,250 two

47,250 53,000 now

53,000 74,500 sil

when the subject remains silent and does not articulate any
words from the sentence. In the alignment of a video, ’sil’
is added at the beginning and ending of the alignments. The
alignment of a video file with the spoken words“bin blue at
f two now”is illustrated in Table 3.

Consider max is the maximum number of frames utilized
as input for 3D-CNN.The maximum frame count (max) is
configured at 75, and the specially designated augmented
frame is labeled as ’sil’ represented by b. For a person p with
n frames, we define the qth frame as f pq . The concatenated
frames Fc of one person can be defined by Eq.1. The visual
representation of Fc is shown in Fig. 4.

Fc =
⎛

⎝
n∑

q=1

f pq +
75−n∑

k=1

bk

⎞

⎠ (1)

3.2 Model architecture

This section will explore various components of the pro-
posed model architecture given in Fig. 5. Firstly, the feature
extraction process is achieved by utilizing optimized 3D-
CNN, effectively capturing spatial and temporal information.
Activation functions are pivotal, introducing non-linearity to
enhance the model capacity to learn intricate patterns. In
addition, pooling layers are responsible for dimensionality
reduction and preserving essential information. Furthermore,
BiLSTM layers are employed to enable bidirectional context
processing. To mitigate over-fitting, dropout layers are inte-
grated. A dense layer with softmax activation is incorporated
to facilitate class prediction. An appropriate loss function
is selected to quantify the model performance effectively.
Finally, a learning rate scheduler is implemented to adjust
hyper-parameters during training dynamically, optimizing
the models convergence and performance.

3.2.1 2D CNN

Two-dimensional convolution (2D-CNN) is employed at the
convolutional layers to extract features from the immediate
neighborhood on feature maps in the preceding layer. In 2D-

CNN, the convolution layers primarily extract spatial features
from the input data. The formal representation of the output
of a neuron located at coordinates (p, q) in the nth feature
map in the mth layer, denoted as S p,q

m,n is given by:

S p,q
m,n = ReLU

(
∑

g

H−1∑

h=0

W−1∑

w=0

Kh,w
m,n,gS

(p+h)(q+w)

(m−1)g

)

(2)

Where ReLU is an activation function and S p,q
m,n signifies the

value of the unit associated with the feature map at point
(p, q) within the previous (m − 1)th layers of nth feature
map. H andW are the kernels height and width, respectively,
and g is an index over the set of feature maps in the previous
(m − 1)th layer corresponding to the current feature map.
Kh,w
m,n,g is the kernel weight value at position (p, q). In this

analysis, bias terms are omitted.

3.2.2 3D CNN

In 2D-CNN, convolution only focus on capturing the spatial
feature, while to capture the motion information from video,
it is desirable to use 3D-CNN to capture both spatial and
temporal feature map. The proposed model has three 3D-
convolution layers with 128, 256, and 75 filters of size 3 ×
3 × 3 for each layer, expecting input data in the shape of
a sequence of 3D frames with dimensions 75 × 81 × 140
denoting the number of frames for each video with frame
size. The feature maps within the convolution layer establish
connections with several adjacent frames from the preceding
layer, effectively capturing motion details. Given a 3D-CNN
with multiple layers, the function computes the value at a
specific position (p, q, r) in the mth feature map in the nth

layer is given by:

S p,q,r
m,n = ReLU

(
∑

g

H−1∑

h=0

W−1∑

w=0

T−1∑

t=0

Kh,w,t
m,n,gS

(p+h),(q+w),(r+t)
(m−1)g

)

(3)

where, S p,q,r
m,n denotes the value of the unit connected to the

current feature map located at position (p, q, r) within the
nth feature map of the preceding (m − 1)th layer. H and W
are the height and width of kernel, T represents the dimen-
sions of a 3D kernel along the temporal axis. g is indexed
over the set of features map in the (m − 1)th layer connected
to the current feature map. Kh,w,t

m,n,g is the kernel weight value
at position (p, q, r). A ReLU activation function processes
the output of a CNN before passing it to subsequent layers to
introduce non-linearity, allowing the model to learn complex
patterns and relationships in the data. It replaces all nega-
tive values in the CNN output with zeros and leaves positive
values unchanged.
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3.3 ReLU

A good activation function improves CNN performance sig-
nificantly. The proposed architecture adds three layers of
ReLU after each convolutional layer. ReLU is a widely rec-
ognized and frequently used activation function in neural
networks [53] and is a notable choice due to its non-saturating
nature. In this work, Fig. 6 is adapted from [54] to represent
the mathematical architecture of ReLU. The definition of the
ReLU activation function is given in Eq.4.

am,n,k = max(Su,v,k, 0) (4)

where Su,v,k represents the input to the activation function
at the index (u, v) in the kth channel. ReLU is a piecewise
linear function that zeroes off negative numbers while keep-
ing positive values. The max operation employed by ReLU
enables faster computation compared to sigmoid or tanh acti-
vation functions. Additionally, it encourages sparsity within
the hidden units and facilitates the networks acquisition of
sparse representations. Deep networks can be trained effi-
ciently with ReLU even if no prior training has been given
[55]. Even though the disruption of ReLU at 0 may degrade
performance, prior research has indicated its empirical supe-
riority over sigmoid and tanh activation functions [56]. The
ReLU activation and max-pooling combination helps CNNs
learn complex features, reduce computational complexity,

and improve the network ability to recognize patterns regard-
less of their exact location in the input data.

3.4 Max pooling

In CNN, pooling reduces computational complexity by
minimizing connections between convolution layers. The
proposed model provides three 3D Max-Pooling layers with
a pool size of (1, 2, 2) for reducing the feature map. This
layer performs down-sampling, reducing the spatial dimen-
sions of the data while preserving important features. The
pooling procedure entails sliding a three dimensional filter
over each channel of the feature map and aggregating the
features within the filters covered region. For an image with
a feature map of dimensions nhi x nwi x nch , the resulting
dimensions after applying a max pooling layer can be calcu-
lated as follows:

[
(
nhi − a + 1

b

)
×

(
nwi − a + 1

b

)
× nch] (5)

Where nhi , nwi , nch is the height, width and channel of the
feature map and a, b is the size of filters and stride. Here, nch
is one because the analysis is conducted on gray scale frames.
A one-time distributed flattened layer is added before giving
the down-sampled features to the BiLSTM. TimeDistributed
wrapper with a flattened layer combination is applied to each
temporal slice of the input tensor. It independently flattens

Fig. 4 Concatenated ROI frames including silent frames

Fig. 5 Proposed model architecture
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Fig. 6 ReLU [54]

the features at each timestep, allowing the model to capture
temporal patterns. This layer is beneficial when dealing with
sequential data, such as text sequences.

3.5 BiLSTM

The architecture of LSTM is based on three gates and cells,
which help to store, forget, and retain the information bidirec-
tionally during data processing. The proposed architecture
contains two layers of BiLSTM for better context embed-
ding. Each Layer of BiLSTM contains 128 memory units
and an orthogonalweight initializer, and the returns sequence
is true as a parameter. To elaborate, it involves an input
sequence vector denoted as X, which can be represented as
(x1, x2, . . . , xn), where n represents the length of the input
sentence.The LSTM structure is made up of three distinct
gates: an input gate, an output gate, and a forget gate. These
gates are essential components for controlling the flow of
information within the LSTM cell. The hardware level sym-
bolic circuit representation of the LSTM network structure is
derived from [57] and illustrated in Fig. 7. The initial phase
in LSTM revolves around determining which information of
the cell state should forget, facilitated by the forgetting gate.

3.5.1 Forget gate

Typically, a sigmoid function within this gate determines
what information to eliminate from the LSTMmemory. This
determination primarily relies on ht−1 and xt . The result of
this gate is denoted as ft , a value ranging from 0 to 1. A value
of 0 indicates that the learnt information has been completely
removed, whereas a value of 1 indicates that the entire value
has been retained. The calculation for this output is as fol-
lows:

{
ft = σ(W f hht−1 + W f x xt + b f )

ct f = ft .ct−1
(6)

Where σ is the sigmoid activation function, (W f hht−1

represents the weight value of the previous hidden state that

is ht−1, W f x xt denotes the current weight value of the cur-
rent input state xt at particular time step t. Additionally, b f

represents the bias value at the forget gate.

3.5.2 Input gate

This gate is responsible for determining whether or not the
incoming data should be stored in the LSTM memory. It
comprises two parts: a sigmoid segment and a tanh segment.
The sigmoid segment decides which values must be updated,
whereas the tanh component generates a vector of potential
new values for LSTM memory integration. The outputs of
these two components are computed as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

it = σ(Wihht−1 + Wix xt + bi )

gt = tanh(Wghht−1 + Wgx xt + bg)

cti = it .gt
ct = cti + ct f

(7)

Where (Wihht−1) represents the weight value of the pre-
vious hidden state ht−1, (Wix xt ) denotes the weight value of
the current input state xt at a particular time step t . Addition-
ally, bi represents the bias value for the input gate. A similar
representation is used for the weight matrix of the previous
hidden state, the current input state, and for the bias in the
tanh activation function.

3.5.3 Output gate

The process begins with a sigmoid layer determining the
influence of a segment of LSTMmemory on the output. The
values are then adjusted with tanh functions to fall inside
the range of −1 to 1. Finally, the result is multiplied by the
output of the sigmoid layer. The equations below illustrate
the computation process:

{
ot = σ(Wohht−1 + Wox xt + bo)

ht = tanh(ct ) · ot
(8)

The sigmoid activation function (σ ) is applied to theoutput
gate. In this context, (Wohht−1) represents the weight value
associated with the previous hidden state, while (Wox xt )
denotes the weight value corresponding to the current input
state at time step t . Additionally, bo represents the bias value
at the output gate. A single LSTM cell, which is limited to
capturing the preceding context and lacks the ability to incor-
porate future information, is enhanced by the introduction of
a bidirectional recurrent neural network proposed by [15]. A
BiLSTM processes the input sequence X = (x1, x2, . . . , xn)
in both the forward and backward directions, generating
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Fig. 7 Architecture of LSTM
cell [57]

forward hidden states
→
h t = (

→
h 1,

→
h 2, . . . ,

→
h n) and back-

ward hidden states
←
h t = (

←
h 1,

←
h 2, . . . ,

←
h n). The resulting

encoded vector is constructed by concatenating the final for-

ward and backward outputs, denoted as Y = [→h t ,
←
h t ].

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

→
h t = σ(W→

h x
xt + W→

h
→
h

→
h t−1 + b→

h
)

←
h t = σ(W←

h x
xt + W←

h
←
h

←
h t+1 + b←

h
)

Yt = W
y
→
h

→
h t + W

y
←
h

←
h t + by

(9)

Y denotes the output sequence of the initial hidden layer,
expressed as (y1, y2, . . . , yt , . . . , yn). The BiLSTM layer
output is transferred to the dropout layer to improve model
resilience and prevent overfitting. This dropout layer ran-
domly deactivates neurons during training, encouraging
more generalized representations and reducing reliance on
specific patterns.

3.6 Dropout layer

Dropout is a strategy that prevents neural networks from rely-
ing too heavily on individual neurons or groups of neurons,
enabling the network to maintain accuracy even when spe-
cific input ismissing. The proposed architecture includes two
dropout layers, each with a dropout rate of 0.5, after each
BiLSTM layer. This strategic integration seeks to reduce
overfitting and improve the model generalization abilities
while training. Dropout was first applied to fully connected
layers by [58], demonstrating its effectiveness in reducing
overfitting. The output of the BiLSTM layer (Y) is applied

to dropout, and then it is defined as follows:

Z = r�b(W AY ) (10)

where Y = [y1, y2, . . . , yn]A is input to the dense layer,
W ∈ R

u×v is a weight matrix, and r is a binary vector whose
elements are independently drawn from a bernoulli distribu-
tion. The BiLSTM output, enhanced by a dropout layer by
mitigating overfitting, is subsequently fed into a dense layer.
The dense layer predicts class probabilities using softmax
function.

3.7 Dense layer

The proposed model includes a fully connected neural
network with a softmax activation function. This layer estab-
lishes connections between all neurons from the preceding
layer to the current one.Utilizing the softmax activation func-
tion, the model transforms a real-numbered vector into a
probability distribution spanning multiple classes. The out-
put of dropout layer passed to the dense layer containing
softmax function. The input vector Z is Z = (z1, z2, . . . , zn),
where total number of categories deonoted as n, the softmax
function calculates the probability pi for each class i through
the following formula:

pi = ezi
∑n

j=1 e
z j

(11)

where ezi represents the exponential of the i th element of the
input vector. This exponential transformation ensures that
all values are positive. pi ’ is the probability that the input
belongs to class i, and the denominator

∑n
j=1 e

z j calculates
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the sum of exponentials for all classes. The softmax func-
tion generates a higher likelihood of categories with higher
scores and a lower possibility of categorieswith lower scores,
transforming raw scores into probability distributions over
the classes. The softmax layer produces class probabilities,
while theCTC loss ensures that the predicted sequence aligns
correctly with the ground truth, making it a crucial compo-
nent in sequence-to-sequence tasks like speech recognition.

3.8 CTC LOSS

CTC loss is used as an objective function to train the pro-
posed model, which permits end-to-end training without the
necessity for frame-level alignment between input and tar-
get labels. A single set of label tokens at each time step can
be denoted as χ through the utilization of CTC, where the
sequence of size-T produced by the temporal module con-
stitutes the output marked with the blank symbols φ and
consecutive symbols are repeated.Wecandefine a function to
remove the adjacent character and the blank symbol denoted
as function F : (χ ∪{φ})∗ → χ∗ because blank symbol may
come in the processed string. The probability of observing a
labeled sequence α can be computed by summing over this
label as γ (α|β) = ∑

u∈F−1(α) γ (u1|β) . . . γ (uT |β), consid-
ering all possible alignments. The conventional CTC loss,
denoted as LCTC, is defined as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ ctc(α|β) = ∑

η∈F−1(α)

γ ctc(η|α)

= ∑

η∈F−1(α)

T∏

t=1

τ tρt

Lctc = − ln γ ctc(α|β)

(12)

Ti represents the input time duration of the frame sequence,
while ρi is the output label produced by softmax proba-
bility τ iρi , where ρi is chosen from the set {la, le, bn, bl,
…, pl, blank} at frame t . The sequence path of CTC is
defined as ρ = (ρ1, ρ2, . . . , ρT ), and α denotes the sentence
label (ground truth). The set of all viable paths within CTC
that can be mapped to the ground truth α is represented by
F−1(α). CTC restricts auto-regressive connections to model
dependencies between time steps in a label sequence. This
conditional independence is obtained by ensuring that the
model is unaffected by the marginal distributions created at
each successive phase. Consequently, CTC often decoded
using a beam search method to reintroduce label tempo-
ral dependencies, combining probabilities with a language
model to achieve this.

3.9 Learning rate scheduler

This article present a dynamic learning rate scheduler for
adjusting the learning rate during the training process. The
learning rate is a hyper-parameter that defines the step size
during each iteration. Reducing the learning rate as the train-
ing advances to improvemodel performance is advantageous.
To adopt the variable learning rate, first, we find the max-
imum number of epochs to be required for training the
model, then, the range of the maximum number of epochs is
divided into three parts(epoch < EH1, EH1 > epoch <

EH1, epoch > EH1), a fixed learning rate of 0.0001 is
employed for the first EH1 epochs initially.

Algorithm 3 Learning Rate Scheduler
Require: ini tial_lr(0.0001),max_epochs(80)
Ensure: optimized_learning_rate
1: Initialize current_lr to ini tial_lr
2: Initialize epoch to 0
3: Create an empty list lrs to store learning rates
4: while epoch < max_epochs do
5: if epoch ≤ EH1 then
6: Append current_lr to the lrs list
7: return current_lr
8: else if EH1 < epoch < EH2 then
9: Update current_lr by multiplying it by eλ1

10: Append current_lr to the lrs list
11: return current_lr
12: else
13: Update current_lr by multiplying it by eλ2

14: Append current_lr to the lrs list
15: return current_lr
16: end if
17: end while
18: return lrs

Subsequently, an exponential decay technique is applied,
causing the learning rate to decrease exponentially with each
epoch. This gradual reduction in the learning rate allows the
model to adjust its weights more precisely. So, the learning
rate is reduced exponentially by λ1 for the epochs greater
than EH1 to less than EH2 epoch. Then, learning rate is
reset to the initial value of 0.0001 and decays exponentially
by λ2 for the epochs greater than EH2 to max_epochs. These
adaptive adjustments have resulted in achieving a training
accuracy of 98.85%. In our experiment, we observe that the
proposed model requires max_epochs is 80 to achieve bet-
ter performance. We have also set EH1 = 15, EH2 = 30,
λ1 = −0.2 and λ2 = −0.1 experimentally (refer Algorithm
3). After completingmax_epochs, the training loss and accu-
racy of the model reach a point where model have remained
constant and did not show significant improvement or degra-
dation. The graph for model evaluations with respect to the
learning rate includes data points at 21 intervals, with sam-
pling occurring every 4th epoch, including the last epoch,
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within the range from 1 to max_epochs. The visualization of
graph is given in Fig. 8, which helps to understand how the
learning rate influences the model convergence and perfor-
mance as the training progress.

Figure8 depicts the relationship between loss, accuracy,
and learning rate throughout training epochs. The graph
presents data at intervals of every 4th epoch, up to a max-
imum of 80 epochs. Initially set at 0.0001, the learning
rate remains constant for some epochs before gradually
decreasing through exponential decay. The implementation
of dynamic learning rate scheduler is given in algorithm
3. As the number of epochs increases, the learning rate
decreases, and training and validation losses decrease aswell,
converging towards zero. Simultaneously, accuracy trends
towards 1.00, indicating optimal model performance. Ulti-
mately, when the learning rate approaches zero, the model
achieves peak performance, with optimized loss and accu-
racy values.

3.10 Model evaluation

An exhaustive evaluation of the model performance is
being carried out using the GRID dataset. This assessment
encompasses various metrics, including WER, WRR, and
monitoring loss and accuracy of the model throughout the
training and validation phases.

3.10.1 Training and validation

Training is the process of teaching a model to make pre-
dictions by adjusting its parameters based on labeled data,
while validation is the evaluation of the model performance
on a separate dataset to ensure its accuracy and generaliza-
tion capabilities. Our model undergoes an extensive training
process spanning 80 epochs, employing the highly effective
Adam optimizer to maximize its performance. Experimen-
tal dataset is partitioned into distinct segments to ensure a
robust evaluation, allocating 80% of the data for rigorous
training. The remaining 10% each is designated for the cru-
cial tasks of validation and testing, allowing us to scrutinize
the model capabilities and effectiveness meticulously. The
model obtained 99.5% training accurcay, 98.8% validation
accuracy while 1% training loss and 1.5% validation loss.
The total number of examined frames can be computed as
the product of the number of videos (Vd ), frames per video
(N f ), and subjects (Ts): total analyzed frames=Vd×N f ×Ts .

The Table 4 offers a comprehensive breakdown of the
video dataset, encompassing the distribution ratio for the total
data sample (Data Size), as well as metrics such as model
training loss (Train Loss), training accuracy (Train Acc.),
validation loss (Valid Loss), and validation accuracy (Valid
Acc.), expressed in percentages. The last three columns of
Table 4 indicates the percentage of data allocated for model

training (Train), model validation (Valid), and model test-
ing (Test). We have conducted model testing on a subset
of 720 videos, representing 10% of the whole dataset (7200
videos), for assessing bothWERandWRR. In contrast, Fig. 9
represents the loss and accuracy ofmodel training and valida-
tion, enhancing visualization and understanding. The model
demonstrates high training and validation accuracy and low
loss, indicating its effectiveness in capturing patterns and
enhancing its potential for accurate predictions.

3.10.2 WER andWRR

TheWERandWRR is essentialmeasures for determining the
predictive power of the VSR model. These metrics measure
the dissimilarity between the words recognized by the VSR
model and spoken words in the visual input, which serves as
the reference or ground truth. The WER is evaluated for the
overlapping speakers, given in Eq.13. TheWER is calculated
by the sum of the minimum number of insertions, substitu-
tions, and deletions denoted as (Mi , Ms, Md ), respectively
and divided by the total number of words in the ground truth.
WRR serves as a complementary metric to WER, computed
as 1-WER.

WER = (Mi + Ms + Md)

N
(13)

The Table 5 illustrates the comparison of WER andWRR
between the proposedmodel with the existingmodels, which
contains significant observations on the overall effectiveness
of the proposed model. Specifically, when tested on over-
lapped speakers, the model achieves a WER of 1.11% and a
WRRof 98.89%. These results highlight themodel effective-
ness in differentiating spoken words in challenging scenarios
involving overlapping. The results revealed that the proposed
model outperforms the existing VSR models, demonstrating
better performance in terms of both WER and WRR.

4 Conclusion and future scope

This study has presented a comprehensive deep-learning
approach for word-level VSR on the GRID dataset. The pro-
posed methodology showcases the development of a more
robust system, leading to significant enhancements compared
to existing VSR models. This work optimized the 3D-CNN
architecture to extract detailed local information from the lip
region. The incorporation of BiLSTM introduced temporal
relationship, enriching context embeddings that are crucial
for VSR. The proposed dynamic LRS plays a vital role in
adjusting the learning rate during model training, consid-
erably improving its performance. Additionally, CTC loss
measures the difference between actual and predicted out-
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Fig. 8 Training, validation accuracy and loss with learning rate

Table 4 Metrics for loss and accuracy based on data split ratio

Data size Train loss (%) Train Acc. (%) Valid loss (%) Valid Acc. (%) Train (%) Valid (%) Test (%)

7200 1 99.5 1.5 98.8 80 10 10

Fig. 9 Model loss and accuracy
with training, validation
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Table 5 WER and WRR
comparison with existing
methods

Dataset Methodology proposed by authors Overlapped speakers
WER% WRR%

GRID Assael et al. [3] 4.80 95.20

GRID Chung et al. [19] 3.00 97.00

GRID Wand et al. [44] 16.70 83.30

GRID Xu et al. [4] 2.90 97.10

GRID Wand et al. [1] 15.30 84.70

GRID Rastogi et al. [45] 2.70 97.30

GRID Liu et al. [33] 4.50 95.50

GRID Sarhan et al. [47] 3.30 96.70

GRID Huang et al. [35] 54.19 45.81

GRID He et al. [37] 6.20 93.8

GRID Vayadande et al. [48] 7 93

GRID Xue et al. [50] 2.30 97.70

GRID Proposed Model 1.11 98.89

puts, which improves the model training and performance.
The model is verified through the experiment and compared
with existing techniques, obtained 1.11% WER and 98.89%
WRR for overlapped speakers, which outperforms than
the existing state-of-the-art methods. The future endeavor
involves leveraging multi-modal features to articulate lip
motion, prioritizing speaker independence by incorporating
a self-attention mechanism.
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