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Abstract
Within the domain of molecular biology research, the intricate regulation of transcription continues to present a challenging
yet imperative area of study. According to recent scientific studies, the nucleotide double helix shape is a major factor in
improving the accuracy and comprehensibility of Transcription Factor Binding Sites (TFBSs). Despite the significant growth
in computational methods aiming to concurrently incorporate both DNA sequence and DNA shape features, devising an
effective model remains a challenging and unresolved issue. In this paper, we proposed a deep learning prediction model for
TFBSs using attention mechanism, convolutional, and RNN-based networks by incorporating the DNA sequence and shape
data. Attention mechanisms recognise the long-range dependencies but encounter challenges in focusing on local feature
details. On the other hand, convolutional operations are proficient at extracting local features but may inadvertently neglect
global information. Recurrent Neural Networks (RNNs) capture long-term dependencies within sequences. We demonstrate
that the ability to predict TFBSs is greatly improved by our proposed technique, DeepCTF, using 12 in-vitro datasets collected
from Protein Binding Microarray (PBMs) compared to the other state-of-the-art models.

Keywords Transcription factor binding sites · Convolutional layer · BiLSTM layer · Attention mechanism · DNA sequence ·
DNA shape

1 Introduction

Understanding how proteins and DNA interact is crucial for
controlling gene transcription, splicing, translation, repli-
cation, and degradation. These interactions significantly
influence the complex systems of genetic regulation [1–3].
To annotate and investigate the activity of cis-regulatory
elements, modelling of Transcription Factor (TF) binding
affinity and predictions of TF binding locations are of key
importance. Transcription factor binding sites (TFBSs), also
known as motifs [4], are a particular class of functional DNA
sites that typically range in size from a few to around 20
base pairs (bps). Recognising the many processes involved
in gene expression and gaining knowledge about in vitro
cellular processes and the design of medicinal treatments
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[5] depend on precisely finding the TFBS within the DNA
sequence. In the past ten years, improvements in techniques
such as Protein Binding Microarrays (PBMs) [6, 7], Chro-
matin Immunoprecipitation coupled with high-throughput
sequencing (ChIP-seq) [8, 9], and Systematic Evolution
of Ligands by Exponential Enrichment coupled with high-
throughput sequencing (SELEXseq) have produced detailed
datasets of TFBSs, encompassing both in vivo and in vitro
contexts. Nevertheless, regardless of the steadily growing
variety of these datasets, we can still not predict the genomic
regions where a certain TF binds with total accuracy.

Numerous precise techniques for analysing PBM data
have been suggested to predict TFBSs accurately [10–12].
Due to the availability of this data, computational meth-
ods performance is enhanced for the prediction of specific
expression of transcription factor binding [13–15]. Thus,
computational technologies have replaced biological exper-
imentation as the principal strategy for answering critical
biological questions [12, 16]. Plus, computational technolo-
gies have inherent simplicity, speed, and cost-effectiveness
advantages that are responsible for replacing conventional
biological experiments.
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Computational technology like Deep learning (DL) [17–
21] has experienced rapid advancements and showcased
remarkable performance in diverse fields [22–24], and sim-
ilarly in predicting functional genomics [25–28]. Input data
of high-dimension can be processed and automatically iden-
tified by this technology. Encoding input data in DL models
like Convolutional Neural Networks (CNN) or Recurrent
NeuralNetworks (RNN) have demonstrated favorable results
in the identification of TFBSs [29–33] by producing a proba-
bility value representing the binding or no binding of TFBSs.
Thus, these DL models greatly outperform conventional
methods.

Identifying particular sequences (TFBS) within DNA
sequences is regarded as a Natural Language Processing
(NLP) task, and we know that advancements in NLP have
been propelled by the emergence of the self-attention mech-
anism [34, 35]. Ullah et al. [36] introduced a Deep Learning
(DL) model based on CNN and self-attention layers to cap-
ture interactions among regulatory elements within genomic
sequences. This model incorporates attention mechanisms
to enhance the network’s learning capability by inferring
a global view of interactions in the genomic dataset. Shen
et al. [37] introduced SAResNet, a model that merges the
self-attention mechanism with a residual network structure,
enhancing the network’s learning capability by capturing
positional information in biological sequences using the
self-attention mechanism and with residual connections to
extract high-level features, enabling accurate prediction of
DNA-protein binding interactions. These notable studies
demonstrate the self-attention layer’s significant utility in
detecting potential motifs and its capacity to accurately pic-
ture the relationships between regulatory components inside
a particular sequence.

An expanding volume of research suggests that the shape
of DNA in specific targeted locations may provide insight
into a critical aspect of TF binding. The reason for this lies
in the 3D structure of DNA, formed by the stacking of physi-
cal interactions among adjacent base pairs, which inherently
contains the dependencies among nucleotides [38]. Studies
have demonstrated that TF binding is notably affected by
four separate shape characteristics derived fromMonte Carlo
(MC) simulations: Minor Groove Width (MGW), Roll, Pro-
peller Twist (ProT), and Helix Twist (HelT) [39]. In [40],
a kernel-based framework was introduced to identify TF-
DNA binding similarities precisely. In this approach, the
spectrum + shape kernel and the di-mismatch + shape kernel
were employed for modeling TF binding without requiring
sequence alignment and potentially offering better scalabil-
ity for large datasets. Unlike Ullah et al. [36] and Shen et al.
[37], Ma et al. [40] rely on kernel-basedmethods, whichmay
have limitations in capturing complex interactions and long-
range dependencies within genomic sequences, potentially
leading to lower predictive performance.

Yang et al. [41] employed the DEep Sequence and Shape
mOtif (DESSO) model, a straightforward DL model that
incorporated DNA shape to predict TFBSs using human
ChIP-seq datasets. They discovered that the shape of DNA
holds significant predictive capability for TF-DNA binding,
offering novel potential shape motifs for human TFs. How-
ever, DESSO may lack the advanced attention mechanisms
utilized by Ullah et al. [36] and Shen et al. [37], potentially
limiting its ability to capture intricate interactions and long-
range dependencieswithin genomic sequences.Additionally,
it may not offer the flexibility and scalability of kernel-based
methods like Ma et al. [40] for handling diverse datasets.
Zhang et al. [42] introduced a sequence + shape framework
called DLBSS, and Wang et al. [43] introduced a hybrid
convolutional recurrent neural network framework named
CRPTSboth predictedTFBSusingDNAsequence and shape
features. Thus, the conclusion was that including DNA shape
significantly enhances the results of TFBS prediction.

Although promising results were obtained by using pri-
mary DNA sequences and shape features as input, like in
DLBSS and CRPTS models, these models lack the lack
the advanced attention mechanisms presented in Ullah et
al. [36] and Shen et al. [37], potentially limiting their abil-
ity to capture complex dependencies and interactions within
genomic sequences effectively. Moreover, the approach
encounters challenges like prioritizing key features over
comprehensively considering all features and working with
the continuous nature of shape features, which differs from
the discrete nature of sequence features. So, there is still
room for advancement in DL models. Thus, we present an
improved shared DL architecture incorporating an attention
mechanism, drawing inspiration from Wang et al. [43]. Our
approach in the DeepCTF model combines attention mech-
anisms with CNN and recurrent neural networks (RNNs) to
adapt DNA sequences and their associated local DNA shape
features, enabling an enhanced predictive model for TFBS
identification. The improved performance of our proposed
model, DeepCTF, stems from two important advances: (1)
the strategic incorporation of a self-attentionmechanism into
CNN andRNN,which effectively allows for the extraction of
complex features from DNA sequences acquired from high-
throughput technologies; (2) DeepCTF’s exceptional ability
to extract hidden local structural information from DNA
sequences, which reduces the need for solely depending on
DNA shape data. This combination highlights the model’s
adaptability to complex genomic contexts while improving
performance.

2 Approach

This study employedkernelmethods to construct quantitative
TF binding prediction models [40]. We have considered a set
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of triples (s1, x1, y1) up to (sn, xn, yn). Each si represents
a DNA sequence of a specific length, denoted as w. The
information in xi pertains to the DNA shape conformation of
si . Meanwhile, yi is a binary indicator, signifying whether a
TF binds to the sequence. We aim to construct a predictive
model, denoted as f (.), with the objective that when given
si and xi as inputs, the model f (si , xi ) accurately predicts
yi . As we have integrated DNA shape local features within
our prediction framework, we examined four DNA Shapes:
MGW, Roll, ProT, and HelT.

2.1 Attentionmechanism

Figure 1 depicts the attention mechanism’s framework. To
allow the layer after batch normalisation to learn from ear-
lier layers and concentrate on achieving its objective of
expediting the training process, we first applied the batch
normalisation technique on the input features to reduce the
internal covariate shift. Then, we utilise the Rectified Linear
Unit (ReLU) activation, computed by the formula described
below:

f (x) = max(0, x) (1)

Subsequently, X is transformed linearly to yield three vectors
which are Query Qr ∈ RT×dk , Key KY ∈ RT×dk , and Value
VV ∈ RT×dv . T denotes the sequence length, while the hid-
den dimensionality for query or key and value is indicated by
dk and dv , respectively. These three vectors are formulated
as follows:

Qr = WT
Qr

X (2)

KY = WT
KY

X (3)

VV = WT
VV X (4)

Where the learned weight metrics of the query, key, and
value vectors are denoted by the variables WQr , WKY , and
WVV . We have selected the scaled dot-product attention; in
other words, the attention value from x to y is determined
by the similarity between (Qr )x and (KY )y , and it is then
normalized andmultipliedbyVV to provide thefinal attention
weight A(Qr , KY , VV ), which may be expressed as follows:

A(Qr , KY , VV ) = so f tmax

(
Qr K T

y√
dk

)
VV (5)

1√
dk
, is essential to manage the attention values with an

appropriate variance. It primarily prevents the softmax func-
tion’s input from becoming overly large. For each possible
combination of Queries and Keys, Qr K T

Y provides the dot
product, producing a matrix with the shape T × T . The
model can obtain long-term relationships among residues

Fig. 1 Illustrative diagram of self-attention module

by dynamically focusing on the residues that comprise the
sequences and capturing the global properties of the input
DNA sequences because of the self-attention mechanism.

2.2 Convolutional neural network (CNN)

As widely recognised, the convolutional layer, usually fol-
lowed by the ReLU unit, is a motif scanner that calculates a
score for all possible motifs. Thus, this stage is in charge of
detecting motif features. Prior CNN-based prediction tech-
niques have shown that CNNs can pick up complex features.
Nonetheless, different CNN architectures will result in vari-
ous network efficiency levels [44, 45]. Increasing the number
of convolution kernels makes it easier to identify motif vari-
ants while stacking convolutional layers deepens the model
and improves feature identification/extraction. The single
convolution layer focusesmore on extracting local features in
the absence of the stacking step. Themultilayer convolutional
neural network is frequently employed to create layered rep-
resentations of the input sequence, facilitating the extraction
of meaningful features at different levels of abstraction [45]
and more thoroughly detect TFBSs [44]. By collaborating
among convolution layers, the network achieves its goals.
However, this makes it challenging to train with excessive
parameters, and the global information produced is typically
incomplete and lossy. As a result, our model only employs
one CNN layer to extract local features, and the 2D convo-
lution at every location i is as follows:

Conv(Ek Si ) =
l∑

m=1

γ∑
τ=1

Ekm ,τ Si+m−1,τ (6)

Where Wk denotes convolutional filters corresponding to
S, the input sequence, m, is the location of the convolutional
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operation. The sequence motif detector is a l × γ weight
matrix, where γ is the channel number of S and l is the
filter’s length. τ is the filter’s index.

2.3 Recurrent neural network (RNN)

Long Short-Term Memory (LSTM) (one of the types of
RNN) [46] addresses the issue that regular RNN is unable to
handlewith long-termdependency.We usedLSTM to extract
long-term characteristics from the DNA sequence, consider-
ing its double-stranded structure. The cell state is crucial to
LSTM and is carefully monitored by structures known as
gates, which include output, forget, and input gates. In the
first phase, the "forget gate" determines which data should be
saved or deleted. The next step is to choose the appropriate
amount of new data to be added to the cell state. The output
value is decided in the last stage.

f gt = σ(W f · hlt−1,W f · xt + b f ) (7)

igt = σ(Wi · hlt−1,Wi · xt ] + bi ) (8)

Cmt = tanh(WG · hlt−1,WG · xt + bG) (9)

Pt = f gt � Pt−1 + igt � Cmt (10)

Ogt = σ(Wo · hlt−1,Wo · xt + bo) (11)

hlt = Ogt · tanh(Pt ) (12)

Where f gt , igt , and Ogt stand for the forget, input, and
output gates weight values; W is the weight matrix, and b
is the bias; the input vector, the memory representation, and
the hidden layer state are denoted, respectively, by the vari-
ables xt , Cmt , and hlt at time t ; and � used to represent
element-wise multiplication. σ stands for sigmoid function.
For clarity, the summary of notations used here is described
in the following Table 1.

3 Material andmethod

We develop a two-path deep learning sequence plus shape
kernels (DeepCTF) framework: one for DNA sequences
computation with attention mechanism and the other regard-
ing DNA shape-related data processing. The specifics of
DeepCTF are explained as follows, as illustrated in Fig. 2.

3.1 Dataset and processing

The data processing technique for the proposed DeepCTF
model is depicted in Fig. 2a.

3.1.1 DNA sequence data

ThePBMapproachprovides biological understanding regard-
ing the regulatory roles and in vivo activities of protein-DNA

interactions. We extracted 12 uPBM data [47], which origi-
nates from a range of protein families, to assess the efficiency
of the proposed model. Every input DNA sequence was first
converted by one-hot encoding into a matrix n × l, suitable
for a DL model. Here, n denotes the four nucleotides (A, T,
C and G), indicated by the binary vectors written as follows,
and l is the sequence length, i.e.35, in the uPBMwe utilised.

A = [1000], T = [0100],C = [0010], andG = [0001](13)

3.1.2 DNA shape data

The binding patterns are significantly influenced by the 3D
structure of DNA of TFs [48]. The four DNA shape features
have distinct pentamers utilising a sliding-window method
and a query table-which were identified in earlier work [49].
Table S3 [50] included the preliminary DNA shape data. The
efficient contribution of the four DNA shapes is determined
by averaging the two roll and HelT values, one MGW value,
and one ProT value contributed by each pentamer. As in [43],
to generate a DNA sequence of length l+4, it is padded with
two zeros at both sides of the sequence. Next, we utilise
sliding window a to produce an input shape feature matrix
n × l, with a size similar to the DNA sequence. Zero-mean
normalisation was applied to each feature to remove the bias
resulting from varying value ranges for distinct shapes.

3.2 Architecture of DeepCTF

The overall layout of the DeepCTF model is seen in Fig. 2.
On the left side of Fig. 2b, our model DeepCTF begins by
encoding the DNA sequences into one-hot form and fed to a
self-attention module. Then, we move on to a convolutional
layer that performs the convolution function and a 2D max
pooling layer to obtain an initial sense of local and global
attributes. The purpose of the max pooling layer is to shorten
the lengthy sequences to minimise the number of parame-
ters and avoid overfitting. An LSTM layer is placed after the
max pooling layer to record long-term relationships between
the motifs and the orientations and spatial separations of
DNA sequences. To mitigate overfitting, a dropout layer was
implemented following the LSTM layer. Left-sided module
configuration of Proposed DeepCTF model is presented in
Table 2.

Implementing the DNA shape feature data in our model
DeepCTF as shown on the right side of Fig. 2b, we used
the same method as CRPTS [43] i.e. a convolution layer
for processing DNA shape features to match the size of the
DNA sequence feature. After the convolution layer, the out-
put from this layer is fed into the activation function ReLU,
which is used in our model. It improves convergence per-
formance and addresses gradient disappearing issues during
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Table 1 Description of the
notation in the variable

Notation Description

Qr Query

KY Key

Vv Value

T Sequence Length

dk hidden dimensionality of query or key

dv Hidden dimensionality of value

WQr Learned weight matrices of query

WKY Learned weight matrices of key

WVV Learned weight matrices of value

1/
√
dk Scaling factor

S Input sequence

Ek Convolutional Filters corresponding to S

m The position at which the convolutional operation is performed

τ Index of the filter

l Length of the filter

γ Channel number of S

f gt Forget gate at time t

igt Input gate at time t

Ogt Output gate at time t

W Weight matrix

B Bias

xt Input vector at time t

Cmt Memory representation at time t

hlt Hidden layer state at time t

� Element-wise multiplication

σ Sigmoid function

m Number of shape feature

Bm Size of mini-batch size

J (θ) Loss function

N number of sequences in each training dataset

λ Regularization variable

R2 Coefficient of determination

PCC Pearson correlation coefficient

Table 2 Left-sided module configuration of Proposed DeepCTF model

Model Layers Layout Configuration Result

Attention (Bm , n, 4)

Convolutional Kernel number = 16,Kernel size = 13,Stride = 1, Padding = 6 (Bm , n, 16)

ReLU – (Bm , n, 16)

Max-pooling Global (Bm , 16)

LSTM 32 (Bm , 32)

Dropout 0.2 (Bm , 32)

Table 3 Right-sided module
configuration of Proposed
DeepCTF model

Model layers layout Configuration Result

Convolutional Kernel number = 4,Kernel size = 1,Stride = 1, Padding = 0 (Bm , n, 4)

ReLU (Bm , n, 4)
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Fig. 2 A visual representation
of the suggested model
DeepCTF, where m is the
number of shape features (m=4),
n is the length of DNA
sequences, and Bm is the size of
the mini-batch
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Table 4 Dense layer configuration of proposed DeepCTF model

Model layers layout Configuration Result

Concatenation – (Bm , 32)

Batch-normalization – (Bm , 32)

Fully connected 32 (Bm , 32)

ReLU – (Bm , 32)

Dropout Samples = {0.2, 0.5, 0.7} (Bm , 32)

Fully connected 1 (Bm , 1)

back-propagation training. Right-sided module configura-
tion of Proposed DeepCTF model is presented in Table 3.

In the end, outputs from both the left and right sides of the
DeepCTFmodel are concatenated and processed through the
dense layer. The dense layer consists of two Fully Connected
(FC) layers: batch normalisation and dropout (Table 4).

Batch normalisation was used at the output stage to sim-
plify the network parameter initialisation process and reduce
gradient problems during back-propagation. The previous
layer’s outputs were fed into an FC layer to enable fea-
ture integration. A dropout layer containing a single neuron
followed the output layer, which was utilised to predict the
binding/no binding probability of TF-DNA binding. Table 4
presents a comprehensive configuration of this dense layer.

4 Experimental results

Conducting several comparative experiments in this section
to show how well the proposed model DeepCTF performed.

4.1 Experimental setup and hyper-parameter
settings

In the training process of DeepCTF, we minimise the tolera-
ble loss function for each dataset. The loss function used in
our proposed model is Mean Squared Error (MSE), which is
described below:

J (θ) = 1

N

N∑
i=1

(ȳi − y2i ) + λ ‖θ‖2 (14)

where N represents the total number of DNA samples in
each training dataset, and ȳi and yi denote the ground and
the observed value of the i-th sample, respectively. To prevent
overfitting of the model, L2 regularisation was employed; λ
denotes a regularisation variable, and ‖.‖2 denotes the L2
norm. Mini-batch size is equal to 300, and AdaMax opti-
mises the loss function. In AdaMax, the neural network’s
dropout ratio, momentum, and Delta were chosen at ran-
dom from [0.2,0.5], [0.9,0.99,0.999], and [1e-8,1e-6,1e-4],

respectively.We employed five-fold cross-validation to guar-
antee model accuracy and avoid overfitting. An early stop
approach was utilized in addition to choosing 100 training
epochs to reduce the model running time. We also utilized a
random-search approach to determine the optimal configu-
ration for certain sensitive hyperparameters, such as dropout
ratio, Momentum, and Delta, wherein we randomly sampled
30 hyperparameter settings. The training process spanned
100 epochs, during which the accuracy of the validation set
was evaluated and monitored after each epoch. The model
achieving the highest accuracy on the validation set was
saved.

4.2 Evaluationmetrics

DeepCTF model performance is evaluated using current
competitive techniques to assess the suggested approach.
The Pearson correlation coefficient (PCC) and coefficient
of determination (R2) were used to evaluate the pro-
posed model’s predicted binding affinity. Working under
the assumption that as these mentioned evaluation metrics
approach 1, themodel’s efficacy improves. These twometrics
were implemented on every dataset to confirm the model’s
overall performance. The following defines two performance
measures:

R2 = 1 − Rss

T ss
(15)

PCC(y,Y ) = SyY√
Syy × SYY

(16)

yi , Yi , y, and Y stand observed, predicted, average observed,
and average predicted binding affinity scores, respectively.
Where SyY = ∑

i (yi − ȳ)(Yi − Ȳ ), Syy = (yi − ȳ)2, and
SYY = (Yi − Ȳ )2. Also Rss=

∑
i (yi − Yi )2 is the residuals

of sum of squares and Tss=
∑

i (yi − ȳ)2 is the total sum of
squares.

4.3 Performance comparison with competitive
models

To assess DeepCTF’s performance, we evaluate it not only
with Deepbind, which relied on using the DNA sequences
as primary input source processed by CNN but also with
four different techniques that combined DNA shapes and
sequences, which are two kernel-based approaches, DLBSS
and CRPTS. Evaluating DeepCTF’s performance against the
state-of-the-art approaches using 12 in vitro datasets is shown
by considering the aforementioned PCC and R2 metrics.

Moreover, Figs. 3 and 4 compare the overall efficacy of
DeepCTF with the state-of-the-art methods using 12 in vitro
datasets. Concerning PCC and R2, it is clear from Figs. 3
and 4 that DeepCTF performs more well and steadily than
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Fig. 3 Performance comparison of DeepCTF model with state-of-the-art models using R2 evaluation metric
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Fig. 4 Performance comparison of DeepCTF model with state-of-the-art models using PCC evaluation metric
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Fig. 5 Boxplot of the Evalution
Metric Avearage R2 and PCC
values of 12 datasets for
DeepCTF and state-of-the-art
models

the other approaches. As seen from these plots, DeepCTF
performance is superior to the two kernel-based techniques
due to the use of DNA sequences with the DNA shapes,
proving that both significantly influence the identification of
TFBSs. DeepCTF attains a statistically significant improve-
ment in average R2 and PCC , as seen in Fig. 5. In terms of
R2 and PCC , DeepCTF outperforms DLBSS and CRPTS
by roughly 7% and 4%, and 3% and 1.4%, respectively.
This indicates that our suggested DLmodel with an attention
mechanism outperforms the one that merely uses CNN. In
12 in vitro datasets, DeepCTF’s highest and lowest values
outperform the competing approaches. The smaller box of
the DeepCTF shows that the two indicators (R2 and PCC)
range is more condensed, demonstrating its strong stability.

The exceptional performance of DeepCTF in comparison
to other competitive models (K_spectrum+Shape, Dimis-
match+ shape, DeepBind, DLBSS, CRPT, and CPRTS) was
attributed to two factors: (1) It utilises the DNA shape
information; and (2) By employing an attention mechanism
with CNN and RNN, DeepCTF prioritises obtaining global
information regarding DNA sequences instead of local infor-
mation. Thus, the main flaw of the convolution technique is
that it only processes local neighbourhoods; as a result, global
information is missed. This flaw of convolutional technique
performance is overcomewith the help of self-attentionmod-
ules to gather more relational information from the network.

Further, we experimented with the DeepCTF model util-
ising only DNA sequences (without DNA Shape data) as
input to evaluate whether adding DNA shape information
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Fig. 6 Bar Plot Representation
of R2 and PCC for DeepCTF
without DNA shape with
DeepCTF with DNA Shape,
CRPTS and CRPT models for
12 in-vitro datasets

impacts the resulting prediction accuracy of TF binding
affinities. Figure6 shows that the DeepCTF model with
only DNA sequence data (DeepCTF_without DNAShape) as
input has lower values of R2 and PCC values as compared to
DeepCTF with both DNA sequence plus shape data as input,
but higher values as compared to CRPT. This shows that the
DeepCTF model has good stability. Since DeepCTF con-
sists of an attention layer mechanism that extracts the global
representation of the input DNA sequences and combines it
with the local features drawn out from the next convolutional
layer, the LSTM layer draws out long-term dependence in the
DNA sequences and then combines it with DNA shape fea-
tures generated by a convolutional layer which enhances the
model prediction ability.

5 Conclusion

Deep-learning models have effectively reduced the compu-
tational cost and time required for exploring the intricate
relationships within large-scale biological data, revealing
hidden complexities. This paper proposes an attention-based
deep learning model (DeepCTF) to use DNA sequences and
shape data to predict transcription factor binding specifici-
ties. This method uses an attention layer, a CNN layer, and
an RNN layer to learn features from DNA sequences, and
on the other side, it uses a single convolutional layer to learn
features from DNA shape data. The two heterogeneous data
sets are suitably integrated and fully utilized by the model.
The higher efficiency of our proposedmodel DeepCTF is due
to the usage of the attention layer, which extracts the global
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representation of DNA sequences and combines it with the
local features extracted from the CNN layers and provides
it to the RNN layer, which is used to learn the long term
dependencies from DNA sequences. Thus, the experimental
findings obtained on 12 uPBM datasets demonstrate the high
efficiency of our proposed approach, DeepCTF, in TFBS pre-
diction.
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