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Abstract
Insulator defect detection is an important task of power line inspection, but because the insulator defect target occupies a small
area in the transmission line image, and the background is complex and changeable, the accuracy of insulator defect detection
is low. Based on previous research results and existing problems, an insulator defect detection algorithm based on YOLOv5
is proposed. Based on the original YOLOv5, C2f module is proposed to replace C3 module in backbone part of YOLOv5,
Wise-IoU loss function is introduced, and SimAM attention mechanism is added to head part of the original YOLOv5. As for
the above improvement, the method can accurately and effectively identify the insulator and accurately judge whether there
is a defect problem under the complex background. We conducted training and comparison experiments on different models
on the CPLID insulator public data set and the custom data set of Roboflow and designed ablation experiments to analyze
the effects of each improvement part. The experimental results show that the detection accuracy of the improved YOLOv5n
model in the insulator defect target detection task reaches 97.7% and mAP50-95 reaches 78.7%. Compared with the original
YOLOv5n model, the accuracy of the improved YOLOv5 model is increased by 0.6% and mAP50-95 by 1.1 percentage
points. The improved algorithm can be better applied to the target detection of insulator defects in UAV. Considering the high
probability that mobile devices do not support high-performance Gpus and the simple network structure of YOLOv5 is more
lightweight than the YOLOv8 model, we chose the 5 version of YOLO instead of the latest YOLOv8.

Keywords Deep learning · YOLOv5 · Wise-IoU · SimAM

1 Introduction

Asabasic component of transmission lines, insulators play an
important role in electrical isolation andmechanical support.
However, because they are often in a harsh natural envi-
ronment, insulators are vulnerable to external factors and
cause damage, which may lead to power line interruption in
serious cases. Therefore, insulator detection has become an
important part of transmission line inspection that cannot be
ignored. In the process of insulator defect detection, there
will be some complicated situations, the common situation
is that the insulator is damaged (as shown in Fig. 1a), and
there may also be occluder on the insulator, which may be
animals (including birds, reptiles, insects, etc., Fig. 1b shows
the snake on the insulator). The presence of animals on the
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insulator is generally regarded as normal. If the cover is a
bird’s nest, it is considered a defect that needs to be addressed
(Fig. 1c shows this).

Insulator defect detection is a hot research field, and many
experts at home and abroad are exploring effective detection
methods. With the development of deep learning and the
progress of computers, insulator defect detection methods
based on deep learning have gradually become the main-
stream. As an application example of object detection, the
algorithm of insulator detection can follow the mature algo-
rithm of object detection. These methods use deep neural
networks to extract the features of insulator images, and
classify and locate defects. Literature [1] uses the improved
faster RCNN algorithm to detect insulator defects on power
lines, but only one category of experimental results is not
convincing. In literature [2], based on generative adversarial
network (GAN), U-Net network is used to detect insulator
defects, and the detection accuracy is significantly increased,
but the background is complex and changeable, and data
enhancement is lacking. Literature [3] uses the three fea-
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Fig. 1 Insulator condition
diagram

tures of contrast, variance andmean value for comprehensive
analysis to diagnosewhether the insulator has self-explosion.
However, the current method lacks adaptability in the area
division. In literature [4], the detected insulator region was
processed into blocks, and then the distance measurement
between chromaticity was used for statistical analysis. The
method is sensitive to environmental changes and has insuf-
ficient sensitivity. Literature [5–9] is the experimental effect
achieved by the latest research on the improvement of YOLO
model. While the single performance is improved, the accu-
racy and mAP obviously have relatively large errors. In the
literature [10], insulator defect detection based on deep learn-
ing convolutional autoencoder (DCAE) was used to encode
and decode the insulator image, and then whether there was a
defect was determined according to the reconstruction error
and anomaly score. This method did not need a large amount
of labeled data and could effectively extract image features.
When the accuracy is improved, the image is processed by
slicing, and the appropriate threshold is set to distinguish the
normal and abnormal images, which makes the early work-
load quite large, and there are too many influencing factors
such as image quality and noise, resulting in poor detection
results. Literature [11] uses a deep learning insulator defect
detectionmethod based on the framework of two-stage target
detection Fast-RCNN +FPN. Compared with the one-stage

network, the two-stage network structure can better deal with
the problem of multi-scale and small targets. At the same
time, the improvement of deep learning algorithm leads to
more calculation and poor real-time performance. The global
RoI method leads to the large size of the feature map, occu-
pies more memory and computing resources, and reduces
efficiency. Therefore, the development of more efficient and
adaptive target detection technology has become an urgent
task for the challenges and needs unique to the diversity and
complex background of insulators.

2 Related work

In this study, the YOLOv5 model was used for insulator
defect detection. The YOLOv5 model was improved in view
of problems such as highmissed or false detection rate, diver-
sity of insulators, and inability to accurately identify small
defective insulators in insulator defect image detection. The
improvement work is as follows: (1) C2f of YOLOv8 is used
to replace C3 of backbone part of YOLOv5. The structure
of C2f module is inspired by the design of C3 module and
ELAN module, which can realize the bidirectional fusion
of features and thus realize the lightweight of features. (2)
Adding the SimAM [12] attention mechanism to the head
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part of YOLOv5 can effectively enhance the expression abil-
ity of features and improve the adaptability of multi-scales
by adjusting the attention of feature maps before each detec-
tion head. (3) The Wise-IoU [13] loss function is introduced
to dynamically update the normalization factor, which can
ensure that the gradient gain remains at a high level as a
whole, so as to optimize the training effect of the model.

YOLOv5 and YOLOv8 are both advanced target detec-
tion algorithms in the field of deep learning. They both adopt
the backbone-neck-head network architecture, but there are
some differences in details. YOLOv5 has fewer model
parameters and a smaller amount of computation, making it
more suitable for operating in resource-constrained environ-
ments, such as mobile devices or edge computing platforms.
Onboth theCPUandGPU,YOLOv5 is able to achieve higher
frames per second (FPS), which is an important advantage
for applications that require real-time processing. YOLOv5
does not need to design a large number of anchor boxes, and
it simplifies the detection process by directly predicting the
center point of the target, which is especially advantageous
in small target detection. For specific detection tasks, such
as insulator detection, these characteristics make YOLOv5
a more suitable choice. Although YOLOv8 may have some
improvements in some aspects, YOLOv5 still has significant
advantages in lightweight, speed, stability, and adaptability
to specific scenarios.

YOLOv5, as a relatively advanced network architecture in
theYOLO series and a single-stage object detection network,
has achieved good results in detection accuracy and speed.
TheYOLOv5 algorithmmodelmainly consists of three parts:
the backbone network, the feature fusion module (Neck),
and the detection module (Detect). This structure provides
an efficient and accurate solution for image object detection,
and its detailed structure is shown in Fig. 2.

(1) A concise backbone network: mainly used for extracting
image features, using CSPNet [14] to segment feature
maps and cross connect them at different stages, thereby
reducing computational complexity and improving the
learning ability of feature maps; it includes the focus
module, which reduces the width and height of the input
image by half through slicing operations, while increas-
ing the number of channels by four times. This allows for
more effective extraction of image detail features without
increasing computational complexity; introduced adap-
tive anchor box calculation, which can automatically
adjust the size and proportion of anchor boxes based on
the training dataset.

(2) Feature Fusion Module (Neck): It is used to fuse feature
mapsof different scales,YOLOv5adopts thePANet (path
aggregation network) structure,which enhances informa-
tion flow and feature utilization by adding paths between

low-level and high-level featuremaps; in the neck section
of YOLOv5, there is not only top-down feature fusion,
but also a bottom-up path, which can better preserve
high-resolution detail information while utilizing deep
semantic information; it also includes a spatial pyramid
pooling (SPP) module, which can pool features at differ-
ent scales, making the model more robust to the size of
the input image.

(3) Detect: For locating the position of the target and predict-
ing the class of the target, YOLOv5 uses anchor boxes
to predict the bounding box of the target. In each anchor
box, YOLOv5 predicts the class and position offset of the
target. During the detection process, there will be many
overlapping prediction boxes. YOLOv5 uses the NMS
algorithm to remove these overlapping prediction boxes
and only keeps the prediction boxes that are most likely
to contain the target.

3 Methodology

This article takes YOLOv5 as the baseline model and pro-
poses YOLOv8’s C2f to replace the C3 in the backbone part
of YOLOv5. SimAM attention mechanism is added to the
head part of the original YOLOv5, and the Wise-IoU loss
function is introduced. The improved model structure dia-
gram is shown in Fig. 3.

3.1 C2f module concept and introduction effect

The C2f module is a feature fusion layer based on the C3
module, which draws on the ideas of ELAN and aims to
improve gradient flow information and lightweight capabil-
ities. The C2f module is mainly divided into two key parts:
SPP (spatial pyramid pooling) and PAN (path aggregation
network). Through the synergistic effect of these two parts,
the C2f module can introduce more effective feature rep-
resentations into the neural network. Firstly, SPP achieves
effective feature extraction for targets of different sizes by
constructing a pyramid structure with pooling layers of dif-
ferent scales. This can enable the network to have better
perception ability and recognize objects of different sizes;
next is PAN,whichmainly solves the problem of information
fusion between feature maps of different scales. The PAN
module adopts multiple cross-stage partial network fusion
(CSP) modules to fuse information from shallow and deep
feature maps. This can increase the perception range of the
network and improve the accuracy of object detection.

During the process of insulator defect detection using
drones, due to the irregular size of defects and the varying dis-
tances between drones and targets, there may be issues with
accuracy not meeting expectations in actual insulator defect
detection. Therefore, this improvement is based on the orig-
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Fig. 2 YOLOv5 algorithm structure diagram

inal C3 of YOLOv5, replacing the original C3 module of
YOLOv 5 with C2f. By adopting the C2f module, the model
can leverage its efficient feature merging and channel par-
titioning mechanism to reduce computational requirements
and accelerate inference speed. In addition, the design of the
C2f module has also optimized the extraction and integration
of multi-scale features, thereby improving the performance
of the model in identifying small targets. The C2f structure
diagram is shown in Fig. 4:

3.2 Adding wise-IoU loss function

In the field of insulator defect detection, the loss function
plays a crucial role. The main goal is to improve the accu-
racy of the detection model by optimizing the position error
between the predicted frame and the enclosing frame of the
actual insulator defect. By reducing the difference between
the predicted frame and the real frame, the optimization of the
loss function enables the model to more accurately identify
and locate defects on the insulator. Because the training data
inevitably contains low-quality examples, geometric mea-
sures such as distance and aspect ratio will aggravate the
penalty for low-quality examples and reduce the generaliza-
tion performance of the model. A good loss function should

reduce the penalty of geometric measures when the anchor
frame and the target frame coincide well, but more interven-
tion training will make the model have better generalization
ability. Therefore, the Wise-IoU v1 version is adopted as a
new loss function in this study to balance the model training
results pushed by different masses and obtain more accurate
detection results. The parameters of Wise-IoU are shown in
Fig. 5:

IoU loss is defined as:

L Iou =
(
B ∩ Bgt

)

(
B ∪ Bgt

) (1)

In the formula: B is the predicted bounding box, and Bgt

is the real bounding boxes.
The distance loss formula for the Wise-IoU loss function

is:

RWise-IoU = exp

⎡

⎢
⎣

(
x − xgt

)2 + (
y − ygt

)2
(
W 2

g + H2
g

)∗

⎤

⎥
⎦ (2)

LWise-IoU v1 = RWise-IoU L Iou (3)
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Fig. 3 YOLOv5 algorithm improvement structure diagram

Fig. 4 C2f structure
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Fig. 5 Wise-IoU parameters diagram

In the formula: As shown in Fig. 5, Wg and Hg belong
to the minimum enclosed box size; x, y are the coordinate
of the center point of the prediction box; xgt and ygt are the
coordinates of the center point of the real box.

RWise-IoU ∈ [1, e), this will significantly enlarge the L Iou

of the ordinary quality anchor box. L Iou ∈ [0, 1], this will
significantly improve the RWise-IoU of high-quality anchor
frames, and significantly reduce its focus on the distance to
the center point when the anchor box and target box overlap
well.

To prevent RWise-IoU from generating gradients that hin-
der convergence, separateWg and Hg from the computational
graph (superscript * indicates this operation) because it effec-
tively eliminates factors that hinder convergence.

After the above improvements, the YOLOv5n model has
improved its recognition ability and robustness during the
image preprocessing stage, further enhancing its feature
extraction and fusion capabilities.

3.3 Adding SimAM attentionmechanism

The attention mechanism is a novel attention module dis-
covered based on the combined processing of human visual
and brain signals. For the task of detecting insulator defects
with similar background environments, research has found
that introducing attention mechanisms in the head can effec-
tively remove irrelevant interference. Therefore, this article
introduces a parameter-free attention module SimAM. This
attention mechanism is implemented by an energy function,
which is related to spatial inhibition in visual neuroscience. In
other words, in visual processing, neurons that exhibit signif-
icant spatial inhibitory effects should be given higher priority
(i.e., importance). The simplest way to find these neurons is
to measure the linear separability between a target neuron
and other neurons. Based on these neuroscience findings, we
defined the following energy function for each neuron:

et (wt , bt , y, xi ) = 1

M − 1

M−1∑

i=1

(−1 − (wt xi + bt ))
2

+ (1 − (wt t + bt ))
2 + λw2

t (4)

The weight and deviation obtained by solving formula (4)
are shown in formula (5) and formula (6):

Wt = − 2 (t − ut )

(t − ut )2 + 2σ 2
t + 2λ

(5)

bt = 1

2
(t + ut ) wt (6)

Among them, ut and σt represent mean and variance, and
the SimAM attention mechanism structure diagram is shown
in Fig. 6:

The formula of the energy function indicates that the lower
the energy, the greater the difference between the neuron
and the surrounding neurons, thus increasing its importance.
Based on this concept, the output formula of SimAM (sim-
ilarity attention module) can be derived from this. Among
them, E represents the sum of theminimum energy in all spa-
tial and channel dimensions, and A is the input feature. After
applying the sigmoid function to the outliers that suppress
attention weights, multiplying them with the corresponding
elements of the input feature matrix yields the final output:

Â = Sigmod

(
1

E

)
· A (7)

This experiment places SimAM in the head section to
improve the model’s attention to important features in the
image, thereby enhancing the performance of object detec-
tion. SimAMadaptively adjusts the information in the feature
map to enable the model to focus more on useful features for
the current insulator defect detection task.

4 Experiments and results

4.1 Experimental environment construction

The experimental parts involved in this article were all com-
pleted under the agreed experimental environment, which
consists of hardware and software. The specific parameters
are shown in Tables 1 and 2.

4.2 Dataset collection and image enhancement

The experiment used the Chinese Power Line Insulator
Dataset (CPLID) public dataset, with a total of 848 images
and an input image size of 640 × 640. Due to the limited
variety and quantity of insulator defect datasets, in order to
improve the accuracy of model training results and prevent
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Fig. 6 SimAM attention mechanism structure

Table 1 Configuration of experimental hardware environment

Experimental environment Configuration

System Windows 10

CPU Intel(R) Xeon(R) Silver
4210 CPU @ 2.20GHz

2.19GHz

RAM 256 GB

GPU GeForce GTX 3090

Memory 24 GB

Table 2 Experimental software environment configuration

Experimental environment Configuration

CUDA 12.1

Python 3.9

Anaconda 2.0.3

Pytorch 1.8.1

overfitting during the process, this study enhanced the dataset
with images and performed the following enhancement oper-
ations:

Flip: Flip the insulator image clockwise and counterclock-
wise by 45 degrees each, for a total of 90 degrees.

Brightness: Use Roboflow to enhance and decrease the
brightness of the image by 30 degrees each.

Saturation: Increase or decrease the saturation of the insu-
lator dataset image by 30 degrees, totaling 60 degrees.

After the above data augmentation operations, Roboflow
is used to convert the data set format into YOLO format out-
put, and the data set is automatically re-labeledwith insulator
and defect locations. The final dataset was expanded to 5581
images in total. Before the model training, the data set was
divided into 4906 images in the training set, 506 images in
the test set, and 169 images in the validation set.

In order to carry out comparative experiments to prove
that all the innovations of this improvement are feasible, a
custom data set is used at the same time. The experiment
uses the custom data set ins defect on Roboflow. It contains

2089 images collected from different angles, illumination,
scale, lighting, background, and insulator types, and contains
2089 images of real environment occlusion and scale change.
When training the model, the dataset was divided into 1497
images as the training set and 395 images as the validation set.

4.3 Comparative analysis of experimental results

4.3.1 C2f contrast experiment and effect analysis

A comparative experiment was conducted on YOLOv5n
model to verify the performance of the improved algorithm.
There were four sets of test results, including accuracy, recall
rate, mAP and mAP50-95 before and after the improvement.

The first group is the initial YOLOv5n model; Group 2
refers to the change of C3module to C2f module on the basis
of group 1, and group 1 and group 2 are comparative experi-
ments conducted on public data sets. Group 3 andGroup 4 are
experimental comparisons on custom data sets on Roboflow.
The P–R curve of the comparison experiment is shown in
Fig. 7. Table 1 compares the performance indicators. Table 3
shows the results of C2f comparison experiment.

As can be seen from Table 3 of the comparative exper-
iments, after C2f module is used to replace C3 module,
the recall rate of the improved model on the public data
set increases by 0.4%, mAP by 0.3%, and mAP50-95 by
2.5%and improved accuracy on customdatasets by 0.9%and
mAP50-95 by 1.5%. The comparative experimental results
show that the performance of replacing C3 with C2f on the
originalYOLOv5nmodel is improved, thus verifying the fea-
sibility of the improvement and the effectiveness of insulator
defect detection.

4.3.2 Loss function comparison experiment and
experimental results

In order to comprehensively evaluate the performance of the
improvedmodel in this study, comparative experiments were
designed with different loss functions on a common dataset.
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Fig. 7 Precision–Recall curve

Table 3 Results of C2f comparison experiment

Model Accuracy Recall rate mAP50 mAP50-95

1. YOLOv5n 97.1 98.0 98.7 77.6

2. YOLOv5n+C2f 96.4 98.4 99.0 80.1

3. YOLOv5n 94.9 91.1 94.2 68.6

4. YOLOv5n+C2f 95.8 90.6 93.8 70.1

To investigate the impact of theWise-IoU loss function on
algorithm performance in the YOLOv5n model, this paper
embeds five common loss functions into the algorithm net-
work YOLOv5n. YOLOv5n defaults to using the Ciou loss
function, forming a comparative experiment between the five
loss functions proposed in Table 4 and the model before and
after improvement.

For the detection of insulator defect images, different loss
functions were added to theYOLOv5nmodel under the same
hardware environment. According to Table 4, after introduc-

Table 4 Comparative experimental results of loss function

Model Accuracy Recall
rate

mAP50 mAP50-95

1. YOLOv5n 97.1 98.0 98.7 77.6

2. YOLOv5n+Giou 96.6 98.3 98.6 77.2

3. YOLOv5n+Siou 96.9 97.5 98.4 77.7

4. YOLOv5n+Diou 96.6 97.6 98.5 78.6

5. YOLOv5n+Eiou 96.5 98.3 98.9 78.6

6. YOLOv5n+Wise-loU 96.7 97.8 98.9 78.2

ing the Wise-IoU loss function, the mAP50 of the model
reached a maximum of 98.9, which is currently the best per-
formance compared to the other loss functions introduced
this time. This verifies the feasibility of selecting Wise-IoU
as the loss function. The results of the YOLOv5n model with
the introduction of the Wise-IoU loss function are shown in
Fig. 8.
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Fig. 8 Improved model results

Table 5 Experimental results of attention mechanism comparison

Model Accuracy Recall rate mAP50 mAP50-95

1.YOLOv5n 97.1 98.0 98.7 77.6

2.YOLOv5n+
SEAttention

97.7 97.0 98.9 77.9

3.YOLOv5n+MHSA 96.6 97.8 98.6 77.9

4.YOLOv5n+GAM 96.8 98.0 98.9 78.5

5.YOLOv5n+
TripleAttention

97.5 98.0 98.9 78.4

6.YOLOv5n+
ShuffleAttention

97.1 97.7 98.4 77.8

7.YOLOv5n+SGE 97.5 98.0 98.6 77.2

8.YOLOv5n+SK 97.1 98.4 98.8 77.4

9.YOLOv5n+
SimAM

96.3 98.0 98.7 78.2

4.3.3 Comparative experiment and result analysis of
attention mechanism

At present, there are thirteen commonly used attentionmech-
anisms in the improved model. This study selected seven
comparative experiments with SimAM attention mecha-
nisms to verify the effectiveness of this improvement. The
comparative experiment is shown in Table 5.

After comparing the final algorithm model with different
attention mechanisms such as GAM, SK, and SGE embed-
ded in the public dataset provided in this article, it can be
concluded that although the SimAM attention mechanism
does not have the highest performance among several atten-
tion comparisons, its performance in recall, mAP50, and

mAP50-95 is relatively balanced and above average,with sta-
ble performance. The other types of attention perform best in
a certain aspect, but the overall performance difference is too
large, which is inconsistent with the original intention of this
improvement concept. Therefore, it is still best to introduce
the SimAM attention mechanism for performance.

4.3.4 Ablation experiment

In order to verify the effectiveness of replacing C3 module
of YOLOv 5 with C2f module, adding SimAM attention to
backbone part, and Wise-IoU loss function improved in this
paper, ablation experiments are carried out to evaluate the
influence of each improved module on the detection algo-
rithm in this paper. The ablation experiment uses the original
YOLOv5n experimental results as the benchmark, and the
performance of the experiment on the public data set is shown
in Table 6, and the performance under the custom is shown
in Table 7.

Table 6 Ablation results 1

Improving network
structure

Accuracy Recall rate mAP50 mAP50-95

YOLOv5n 97.1 98.0 98.7 77.6

YOLOv5n+C2f 96.4 98.4 99.0 80.1

YOLOv5n+SimAM 96.3 98.0 98.7 78.2

YOLOv5n+Wise-
loU

96.7 97.8 98.9 78.2

YOLOv5n+C2f+
SimAM+Wise-IoU

97.7 97.5 98.7 78.7
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Table 7 Ablation results 2

Improving network
structure

Accuracy Recall rate mAP50 mAP50-95

YOLOv5n 94.9 91.1 94.2 68.6

YOLOv5n+C2f 95.8 90.6 93.8 70.1

YOLOv5n+SimAM 94.9 91.1 94.2 68.6

YOLOv5n+Wise-
loU

95.4 91.1 94.3 69.4

YOLOv5n+C2f+
SimAM+Wise-loU

95.9 90.4 93.9 71.0

It can be seen from Tables 3 and 7 that the original
YOLOv5n can obtain 94.9% precision, 91.1% recall rate,
94.2%mAP50 − 95 and 68.6%mAP50 − 95 results on the
ins defect data set. After gradually adding the three improved
modules, the detection indicators are basically improved. It
shows that each module contributes to the task of insula-
tor defect detection on transmission lines and also validates
the rationality of taking enhancing the gradient information
flow of the model and reducing the influence of noise fea-
tures, reducing the competitiveness of high-quality anchors,
and reducing the harmful gradients generated by low-quality
samples as the starting point. In the public data set and the
customdata set, YOLOv5nmodel has significantly improved
the accuracy and mAP50-95 of the models after the intro-

duction of the three innovations. Thus, the feasibility and
efficiency of the improved model can be illustrated, and
insulator defects can be detected with higher accuracy. The
detection results are shown in Fig. 9.

Firstly, the accuracy of YOLOv 5n is improved from
97.1% to 97.7%, and the recall rate is improved from 98.0%
to 98.4% under the public data set after replacing the C3
module of YOLOv5N with C2f. The mAP50 increased from
98.7% to 99%, and the MAP50-95 value increased by 0.2%,
which proves that the improved model helps to improve the
object detection accuracy of the model in low light environ-
ment. Secondly, the mAP50-95 value is increased by 0.6%
after introducing the SimAM attention mechanism, which
proves that the model with the SimAM attention mecha-
nism can strengthen themodel’s attention to the target feature
by simplifying the calculation process without significantly
increasing the computational burden. After introducing the
Wise-IoU loss function, the mAP is increased by 0.2% and
the mAP50-95 is increased by 0.6%, which proves that the
improved model can optimize the regression of the bound-
ing box by dynamic focusing mechanism, so as to improve
the detection accuracy. Finally, when the model integrates
three improvements, the accuracy is significantly improved
to 97.7%, and the mAP50-95 is improved to 78.7%. The
above data clearly verify the feasibility of this improvement
for the insulator defect detection task.

Fig. 9 Insulator defect detection results
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Table 8 Comparison of results
of different detection algorithms

Detection algorithm Accuracy Recall rate mAP

FasterNet-YOLOv5 [5] 97.57 93.3

YOLOv4+SE-CSPDarkNet+loU-aware [6] 94.31 90.31 93.76

YOLOv5s+ODConv +CAAttention[7] 95.3 90.3 95.0

YOLOv5-GSEM [8] 91.1 82.4 87.8

EfficientNet-YOLOv5s [9] 92.5 97.9 98.5

Ours 97.7 97.5 98.7

Fig. 10 P–R curve before and after improvement

4.3.5 Comparison experiments of different detection
algorithms

By comparing the performance of the improved lightweight
detection model YOLOv5n with other mainstream detection
algorithms and the existing improved lightweight YOLOv5
algorithm, the data in this study are the results of 300 rounds
of experimental epochs, the specific results are shown in
Table 8, and the P–R curve before and after improvement
is shown in Fig. 10.

5 Conclusion

This study is based on the original YOLOv5n algorithm. By
replacing the C3 module with the C2f module of YOLOv8
on the basis of the original YOLOv5n, the SimAM attention
mechanism is introduced, and the loss function is improved
to the Wise-IoU loss function to improve the detection of
insulator defects on the transmission line. Compared with
YOLOv5, YOLOv8 is more lightweight, and the improve-
ment and comparison experiments in the above three parts
prove that the improved algorithm has significantly improved
the accuracy and recall rate in defect detection on the pub-
lic data set and custom data set. It shows the feasibility of

the improved research and can be better applied to similar
complex and variable image detection environment.
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