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Abstract
The impulse noise is heavy-tailed and distributed, which is common in many real-world scenarios of automatic control and
target tracking. In order to improve the stability of Kalman filtering algorithms in the context of impulse noise, a number of
Kalman filtering algorithms have been widely developed using the maximum correlation entropy instead of the minimum
mean square error criterion. To better adapt to impulse noise environments. In this paper, we propose a new Kalman filtering
algorithm called robust maximum correlation entropy Kalman filtering algorithm based on S-functions (HWSKF). The
algorithm is based on a new cost function framework. On the one hand, this framework employs the properties of the Softplus
function fused with the maximum correlation entropy to ensure that the algorithm is better adapted to the impulsive noise
environment with faster convergence speed and stronger steady-state properties. On the other hand, the introduction of Huber
regression weighting can effectively exclude the effect of outliers in the case of non-Gaussian noise. Under different impulse
noise environments, we demonstrate through Monte Carlo simulation experiments that the algorithm proposed in this paper
possesses high stationarity compared with the classical Kalman filtering algorithm (KF), the maximum correlation entropy
Kalman filtering algorithm (MCKF), and the maximum correlation entropy Kalman filtering algorithm based on the student’s
kernel (STTKF).

Keywords Kalman filter algorithm · Huber regression · Impulse noise · Softplus function · Robust estimation

1 Introduction

The Kalman filter is an efficient recursive filter [1]. Because
of its excellent mathematical properties and good perfor-
mance, it has been widely used in many fields such as
navigation systems [2], vehicle positioning [3, 4], target
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tracking [5], communication systems to battery management
systems [6, 7].

1.1 Kalman filtering in information learning theory

KF is proposed based on the minimum mean square error
(MMSE) criterion [8],whose use of theMMSEcriterionmin-
imizes themean squared error between the estimated and true
values [9, 10]. Thus, it can showgood performance in aGaus-
sian noise environment [11]. However, the performance is
severely degraded in real-world environments, which usually
face the effects of impulse noise. For this reason, researchers
have focused on Kalman filtering algorithms that can be
applied to non-Gaussian noise environments. In information-
theoretic learning (ITL), correlation entropy is used as a local
similarity measure that focuses only on the local portion of
the probability density in the kernel size range, making it a
robust cost in signal processing and machine learning. Liter-
ature [12] proposed a maximum correlation entropy Kalman
filtering algorithm (MCKF), that successfully reduces the
effect of non-Gaussian noise by exploiting the insensitivity
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of a local metric like correlation entropy to outliers. Since
then a series of Kalman filtering algorithms based on maxi-
mum correlation entropy have been proposed to improve the
system’s steady state. For example, to solve the dispersion-
prone property of the small kernel width state, the maximum
correlation entropy Kalman filtering algorithm (m-MCKF)
based on m-estimation has been proposed in the literature
[13]. To find a suitable noise covariance matrix, an adaptive
maximum correlation entropy Kalman filtering algorithm
(AMCKF) is proposed in literature [14]. Nevertheless, MCC
is usually implemented based on a Gaussian kernel func-
tion, researchers found that the performance of the algorithm
can be optimized by changing the kernel function, so litera-
ture [15] proposed a maximum correlation entropy Kalman
filtering algorithm based on student’s kernel (STTKF), and
literature [16] proposed a Kalman filtering algorithm based
on Cauchy kernel (CKKF).

However, MCC can fix the peak of the probability
density function to zero, which makes the algorithm accu-
racy limited, for this reason, researchers take advantage of
this advantage of minimum error entropy (MEE) to opti-
mize directly for the distribution of errors and propose the
Kalman filtering algorithm (MEE-KF) based on minimum
error entropy in literature [17]. Although the MEE criterion
reduces the uncertainty of the error variable, it does not con-
verge the error to zero due to the translational invariance of
the entropy; for this reason, a central error entropy Kalman
filtering algorithm (CEEKF) has been proposed in the litera-
ture [18]. Literature [19] proposes an outlier-robust Kalman
filters with mixture correntropy. To solve the problem that
the shape of the kernel function of the error entropy cannot
be changed freely, the researchers make use of the property
that the generalized Gaussian kernel function can be adjusted
to the shape freely and propose a Kalman filtering algorithm
based on the generalized minimum error entropy criterion
(GMEEKF) in the literature [20]. Since then to improve
the robust performance of the algorithm at the expense of
algorithm complexity, literature [21]-based adaptive kernel
sensitive loss Kalman filtering algorithm (AKRSLKF) and
various other Kalman filtering algorithms have been pro-
posed.

1.2 Researchmotivation and contributions

In the course of our research, we found that compared to
some other cost functions, the Softplus function has a bet-
ter tolerance to outliers, which makes the model robust to
handling noisy data. Furthermore, the smoothness of Soft-
plus will enable easier finding of optimal solutions when
using optimization algorithms such as gradient descent. M-
estimation as a robust estimation method [22, 23], on the
one hand, his score function and its derivative are bounded,
so the influence function is bounded and M-estimation is

robust [24–26]. On the other hand, the objective function of
M-estimation can be freely chosen within a certain range
to accommodate different needs, and the slower the objec-
tive function grows as the absolute value of the residuals
increases, the more robust the estimation becomes.

Therefore, in this paper, a robust maximum correlation
entropy Kalman filtering algorithm based on S-function is
developed to solve the problem of insufficient robustness
and convergence speed of maximum correlation entropy to
deal with impulse noise. The algorithm first exploits the
smooth robustness of S-shaped functions and the insensi-
tivity of the maximum correlation entropy local measure to
outliers, makes it based on the maximum correlation entropy
Kalmanfiltering algorithm,which speeds up the convergence
and enhances the robustness to a lesser extent. However,
with the algorithm at large kernel widths, we find that the
robust performance of the algorithm has some magnitude of
degradation compared to MCKF. For that, we introduce the
robustness method of Huber regression weighting so that it
can better handle the effects of outliers, making the algorithm
more robust here while having a faster convergence rate.
Finally, the Monte Carlo simulation experiments in different
impulse noise cases prove that the algorithms in this paper
have faster convergence speed and better robust performance
compared with KF, MCKF, STTKF and other algorithms.

1.3 Structure of the article

The structure of this paper is organized as follows: Section
2 introduces the classical Kalman filtering algorithm and the
correlation entropy theory, Sect. 3 carries out the derivation
of the Kalman filtering algorithm in this paper, and then the
mean square error analysis and the time complexity analy-
sis are given in Sects. 4 and 5, we carry out the simulation
comparison in theGaussian aswell as non-Gaussian environ-
ments to make use of Monte Carlo experiments of the two
models to illustrate the superiority of the algorithm more
effectively, and finally, the conclusion is given in Sect. 6.

2 Classical Kalman filtering algorithm and
correlation entropy

2.1 Classical Kalman filter algorithm

The Kalman filtering algorithm acts as an optimal estimator
under the assumption of linearity andGaussian, and the linear
system is defined as the following state and measurement
equations.

xk = Ak−1xk−1 + wk−1 (1)

yk = Ckxk + vk (2)
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where xk ∈ R
n represents the n-dimensional state vector at

moment, represents them-dimensional observation vector at
moment k, Ak−1 and Ck represent the state transfer matrix
and the observation matrix, wk−1 and vk represent the pro-
cess noise vector and the observation noise vector, which
are uncorrelated and have a mean value of zero. Define the
corresponding covariance matrices as Qk−1 and Rk denoted
by

E[wk−1wT
k−1] = Qk−1 (3)

E[vkvTk ] = Rk . (4)

In general, the Kalman filtering algorithm can represented
through two steps: prediction and update:

(1) Prediction: Obtain a priori state estimation matrix and
a priori error covariance matrix

x̂k|k−1 = Ak−1x̂k−1|k−1 (5)

Pk|k−1 = Ak−1Pk−1|k−1AT
k−1 + Qk−1 (6)

(2) Update: Obtain Kalman gain, a posteriori state estima-
tion matrix, and a posteriori covariance matrix

K = Pk|k−1CT
k (CkPk|k−1CT

k + Rk)
−1 (7)

x̂k|k = x̂k|k−1 + K(yk − Ck x̂k|k−1) (8)

Pk|k = (I − KCk)Pk|k−1(I − KCk)
T + KRkKT (9)

where I ∈ R
n×n is the unit matrix for n × n.

2.2 Correlation entropy

Define two random variables X , Y with joint probability den-
sity FXY (x, y) and correlation entropy criterion defined as

V (X ,Y ) = E[α(X ,Y )] =
∫

α(X ,Y )d(FXY (x, y)) (10)

where E[·] is the mathematical expectation and α(·, ·) is the
kernel function, denoted as

α(X ,Y ) = Gσ (e) = exp

(
− e2

2σ 2

)
(11)

where e = X − Y , σ is the kernel width and σ > 0. We can
obtain the cost function of the maximum correlation entropy
Kalman filtering algorithm as

JMCC (xk) = 1

L

L∑
i=1

Gσ (e) (12)

where L = n + m.

3 Algorithm proposal

3.1 Enhancedmodels

First rewrite Eq. (1) and (2) as

[
x̂k|k−1

yk

]
=
[

I
Ck

]
xk + ok (13)

where ok =
[− (x̂k − x̂k|k−1

)
vk

]
,

with

E
[
oko

T
k

]
=
[
Pk|k−1 0

0 Rk

]

=
[

υP:k|k−1υ
T
P:k|k−1 0

0 υR:kυT
R:k

]
= υkυ

T
k (14)

where υP:k|k−1, υR:k and υk are obtained from Pk|k−1, Rk

and E
[
okoTk

]
by Cholesky decomposition, respectively.

Simultaneous left-multiplication of υ−1
k on both sides of

Eq. (13) gives us

Dk = Wkxk + ek (15)

where Dk = υ−1
k

[
x̂k|k−1

yk

]
, Wk = υ−1

k

[
I
Ck

]
and ek =

υ−1
k

[− (x̂k − x̂k|k−1
)

vk

]
. It can be further written as Dk =

[d1:k, d2:k, · · · , dL:k]T, Wk = [w1:k,w2:k, · · · ,wL:k]T and
ek = [e1:k, e2:k, · · · , eL:k]T. Thus

ei :k = di :k − wi :kxk . (16)

3.2 Derivation of HWSKF

To increase the convergence speed and steady state of the
algorithm based on the MCKF algorithm and better adapt to
the effect of impulse noise, the HWSKF algorithm presented
in this section generates a new cost function framework that
combines the Softplus function with the MCKF algorithm.
Observe the expression for the Softplus function, which has
the derivative form 1

1+e−x , such a function is consistent with
the outer manifestation of filter theory. The Softplus function
expression is in logarithmic form, a feature that makes the
algorithm faster to compute. On the other hand, Huber esti-
mation is a robust statistical method designed to deal with
outliers or outliers in regression analysis, while maintaining
efficiency and accuracy for non-outliers. At its core is a loss
function that combines the characteristics of squared loss
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(used in least squares) and absolute value loss (used in L1
regularization), so it can give optimal results when the noise
obeys a normal distribution, and when it does not conform
to a normal distribution, it can effectively address the effects
of outliers and get better results than least squares.

In summary, a new Huber-weighted S-type fusion cost
function is defined as

JL(xk) = 1

L

L∑
i=1

ϑi :k log
(
1 + exp− ei

2

2σ2

)
(17)

where ϑi (x; ei ) =
{

1, |ei | ≤ δ
δ

|ei | , |ei | > δ
, ϑi is the weighting factor

for the i th point. Thus, the optimal estimate of xk under this
condition is

x̂k = arg
xk

max JL(xk) = arg
xk

maxϑi :k log
(
1 + exp− ei

2

2σ2

)

(18)

where ei is the i-th element of ek .
Therefore, the optimal estimate xk can be computed as

∂ JL(xk)
∂xk

=
L∑

i=1

⎡
⎢⎣ϑi :k

exp− ei
2

2σ2

1 + exp− ei
2

2σ2

wT
i :k (di :k − wi :kxk)

⎤
⎥⎦=0

(19)

with

xk =
⎛
⎜⎝

L∑
i=1

[ϑi :k
exp− ei

2

2σ2

1 + exp− ei
2

2σ2

wT
i :kwi :k]

⎞
⎟⎠

−1

⎛
⎜⎝

L∑
i=1

[ϑi :k
exp− ei

2

2σ2

1 + exp− ei
2

2σ2

wT
i :k di :k]

⎞
⎟⎠ (20)

Equation (20) is essentially an iteration of an indefinite
point that can be rewritten as

xk = f (xk) (21)

with

f (xk) =
⎛
⎜⎝

L∑
i=1

[ϑi :k
exp− (di :k−wi :kxk )2

2σ2

1 + exp− (di :k−wi :kxk )2

2σ2

wT
i :kwi :k]

⎞
⎟⎠

−1

×
⎛
⎜⎝

L∑
i=1

[ϑi :k
exp− (di :k−wi :kxk )2

2σ2

1 + exp− (di :k−wi :kxk )2

2σ2

wT
i :k di :k]

⎞
⎟⎠

(22)

An indefinite point iteration can be obtained relatively
easily

x̂k:t+1 = f (x̂k:t ) (23)

where x̂k:t+1 denotes the solution at iteration t + 1 of the
indefinite point.

Equation (23) can be re-expressed as

xk = (WT
k
�kWk)

−1WT
k
�kDk (24)

where �k =
[

�P:k 0
0 �R:k

]
, with

�P:k = diag(ϑ1:k A1:k, ϑ2:k A2:k, · · · , ϑn:k An:k) (25)

�R:k = diag(ϑn+1:k An+1:k, ϑn+2:k An+2:k,
· · · , ϑn+m:k An+m:k) (26)

where AL:k = ϑL:k exp
− (di :k−wi :kxk )2

2σ2

1+exp
− (di :k−wi :kxk )2

2σ2

.

Combining Eq. (8) and (24), bymeans of the matrix inver-
sion theorem, it is obtained that

K̃ = P̃k|k−1CT
k (Ck P̃k|k−1CT

k + R̃k)
−1 (27)

P̃k|k−1 = υP:k|k−1�
−1
P :kυ

T
P :k|k−1

(28)

R̃k = υR:k�−1
R:kυ

T
R

(29)

In summary, the algorithm flow of this paper is as follows
Step 0, choose a small positive number ι, set the initial state

estimate x0|0 and the initial error covariance matrix P0|0.
Step 1, the a priori state estimation matrix x̂k|k−1 and the

a priori error covariance matrix Pk|k−1 are obtained from Eq.
(5) and (6), and υk is obtained by positive definite decompo-
sition.

Step 2, Let t = 1 and x̂k|k:0 = x̂k|k−1, perform indefinite
iteration.

Step 3, using Eqs. (30)–(38), was able to obtain x̂k|k:t .

x̂k|k:t = x̂k|k−1 + K̃(yk − Ck x̂k|k−1) (30)

with

K̃ = P̃k|k−1CT
k (Ck P̃k|k−1CT

k + R̃k)
−1 (31)

P̃k|k−1 = υP:k|k−1�
−1
P :kυ

T
P :k|k−1

(32)

R̃k = υR:k�−1
R:kυ

T
R

(33)

�P:k = diag(ϑ1:k A1:k, ϑ2:k A2:k, · · · , ϑn:k An:k) (34)

�R:k = diag(ϑn+1:k An+1:k, ϑn+2:k An+2:k,
· · · , ϑn+m:k An+m:k) (35)
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AL:k = ϑL:k
exp− (di :k−wi :kxk )2

2σ2

1 + exp− (di :k−wi :kxk )2

2σ2

(36)

Step 4, Comparison utilizes Eq. (37) to compare the esti-
mates of the current state and the previous state, if satisfied
then proceed to the next step and vice versa return to Step 3.

||x̂k|k:t − x̂k|k:t−1||
||x̂k|k:t || ≤ ι (37)

Step 5, update the posterior error covariance matrix and
return to Step 1.

Pk|k = (I − K̃Ck)Pk|k−1(I − K̃Ck)
T + K̃RkK̃T (38)

4 Theoretical analysis

In this section, the performance of the proposed algorithm is
theoretically analyzed in terms of mean square error as well
as time complexity.

4.1 Mean error analysis

The estimation error of the state vector we can express in Eq.
(39)

γk = xk − x̂k|k . (39)

It can be rewritten through Eq. (8) as

γk = (I − K̃Ck)Akγk−1 + (I − K̃Ck)wk − K̃vk . (40)

Therefore, the statistical expectation of γk is

E[γk] = (I − K̃Ck)Ak E[γk−1]
= (I − [P̃−1

k|k−1 + CT
k R̃

−1
k Ck]−1CT

k R̃
−1
k Ck)

× Ak E[γk−1]
(41)

Assuming that the matrixAk is stable, P̃k|k−1 andC
T
k R̃

−1
k Ck

are positive definite or semi-positive definite. So it can be
concluded that is stable. Therefore, we can conclude that the
algorithm will work unbiased when the state matrix is stable.

4.2 Mean square error analysis

Considering the errors in Eqs. (34) and (35), the covariance
matrix of the error can be rewritten as

E[γkγ T
k ] = (I − K̃Ck)Ak E[γk−1γ

T
k−1]AT

k (I − K̃Ck)
T

+(I − K̃Ck)Qk(I − K̃Ck)
T + K̃RkK̃T (42)

Suppose that Ck , Ak , Qk , and Rk are all time-invariant and
that (I − K̃Ck)Qk(I − K̃Ck)

T + K̃RkK̃T and (I − K̃Ck)Ak

are time-invariant. Therefore, we can conclude that E[γkγ T
k ]

converges. Furthermore, assuming that

lim
k→∞ ςk = ς

lim
k→∞ ψk= ψ

lim
k→∞ ϕk = ϕ

(43)

where ςk = E[γkγ T
k ],ψk = (I − K̃Ck)Ak and ϕk = (I −

K̃Ck)Qk(I − K̃Ck)
T + K̃RkK̃T.

Then, we have

ς = ψςψ + ϕ (44)

Eventually, we can get the closed solution from Eq. (44)

Vec(ς)=(I − ψ ⊗ ψ)−1Vec(ϕ) (45)

where ⊗ is the Kronecker product.

4.3 Time complexity analysis

Next, we analyze the time complexity of the algorithm in
Table 1 and give the computational complexity of the basic
equations.

For the classical Kalman filtering algorithm involved in
Eqs. (5)–(9), the computational complexity is

τK F = 8n3 + 10n2m − n2 + 6nm2 − n + o(m3) (46)

And for MCKF the formulas involved are Eqs. (5), (6),
(16), (30)–(33), (38) and two Gaussian kernel formulas,
which define the average number of indefinite point itera-
tions as T , so the computational complexity of MCKF is

τMCK F = (2T + 8)n3 + (4T + 6)n2m + (2T − 1)n2

+(4T + 2)nm2 + (3T − 1)nm + (4T − 1)n

+2Tm3 + 2Tm + To(n3) + 2To(m3) (47)

The formulas involved in the algorithm of this paper are
Eqs. (5), (6), (16), (30)–(35), and (38), the same as defined
above the average number of indefinite point iterations as
T , so the computational complexity of the algorithm of this
paper is shown in Eq. (48)

τHSWK F = (2T + 8)n3 + (4T + 6)n2m

+(4T + 2)nm2 + (T + 3)nm
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Table 1 Time complexity
analysis

Equation Addition and multiplication Division, matrix inversion,
chemical decomposition, and exponentiation

(5) 2n2 − n 0

(6) 4n3 − n2 0

(7) 4n2m + 4nm2 − 3nm o(m3)

(8) 4nm 0

(9) 4n3 + 6n2m − 2n2 + 2nm2 − nm 0

(16) 2n 0

(30) 4nm 0

(31) 4n2m + 4nm2 − 3nm o(m3)

(32) 2n3 n + o(n3)

(33) 2m3 m + o(m3)

(34) 4n2 + 2n 3n

(35) 4nm + 2m 3m

(38) 4n3 + 6n2m − 2n2 + 2nm2 − nm 0

+(4T − 1)n2 + (6T + 1)n + 2Tm3 + 6Tm

+To(n3) + 2To(m3) (48)

Remark: the number of indefinite point iterations is relatively
small, compared with KF, and the time complexity of this
paper is moderate, but compared with MCKF, the time com-
plexity of the algorithm in this paper is not much different.

5 Simulation experiment

To demonstrate the superiority of the proposed algorithm,
over 100 Monte Carlo simulations are performed using two
models, which are run on MATLAB version 2021a running
on an i5-7500 CPU. We used 1000 samples in each run to
measure the mean square deviation of the algorithm, which
is shown in Eq. (49).

MSD = 20log10||xk − x̂k|k ||2 (49)

In simulation experiments before we define the model
fixed parameters, for the process noise are usedGaussian dis-
tribution of the case, and the measurement noise is divided
into a Gaussian distribution q(k−1) ∼ N (0, 0.01) noise and
three different impulse noise two cases. The noise figure is
shown in Fig. 1.

⎧⎪⎪⎨
⎪⎪⎩

r1(k) ∼ N (0, 0.01)
r2(k) = M(0.9, 0, 0.01, 10)
r3(k) = M(0.9, 0, 0.01, 20)
r4(k) = M(0.9, 0, 0.01, 30)

(50)

5.1 Simulation 1

First, we consider a simple linear model literature [3] with
the following state and observation equations

xk =
[
cos θ − sin θ

sin θ cos θ

]
xk−1 + wk−1 (51)

yk = [
1 1
]
xk + vk (52)

where xk is a two-dimensional column vector, θ = 18/π , the
threshold is set to ι = 10−4, and x0, x̂0|0 and P0|0 are set as
follows.

⎧⎨
⎩
x0 ∼ N (0, In)
x̂0|0 ∼ N (x0, In)
P0|0 = In

(53)

We compare the performance of this algorithm with KF,
MCKF and STTKF for these four noise cases. In the MCKF
algorithm, we have chosen σ = 2, 3, 5 three kernel width
cases for simulation. For the STTKF algorithm, we simi-
larly choose σ = 2, 3, 5(v = 3) three identical comparison
parameters for the simulation. In addition, to reflect the strong
robustness of the algorithm, we compare the algorithm in this
paper with the S-type maximum correlation entropy Kalman
filtering algorithm without the addition of Huber’s regres-
sion weighting, which we name WSKF, and the function

cost is JWSK F (xk) = 1
L

∑L
i=1 log(1 + exp− ei

2

2σ2 ). The ker-
nel widths of the WSKF are also selected for the σ = 2, 3, 5
three cases.

We perform simulations under Gaussian noise and three
different impulse noise shapes. The MSD plots in Gaussian
noise environment we placed in Fig. 2, and the simulations
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Fig. 1 Four noise maps. a Case 1 Gaussian noise map; b case 2 impulsive noise map; c case 3 impulsive noise map; d case 4 impulsive noise map

Fig. 2 Comparison of the
algorithms under Gaussian noise
in Example 1

in different pulse environments are shown in Figs. 3, 4 and
5, where KF-TH, MCKF-TH, STTKF-TH,WSKF-TH, and
HWSKF-TH, denote the theoretical steady state errors of
KF, MCKF, STTKF, WSKF, and HWSKF, respectively. We
can see in Fig. 1 that KF has the lowest mean square devia-
tion, the fastest convergence and the best performance when
the system is in a Gaussian noise environment. However,
when the system is under the influence of impulse noise,
Figs. 2, 3 and 4 clearly show that the classical Kalman

loses its original steady state properties, which are weak-
ened with the enhancement of impulse noise. But whatever
the intensity of the impulse noise environment, the proposed
algorithm outperforms the classical Kalman filtering algo-
rithm, the maximum correlation entropy Kalman filtering
algorithm, and the maximum correlation entropy Kalman fil-
tering algorithm based on the learning kernel, and has the
fastest convergence speed. We list the mean square deviation
values in Table 1, which show that the algorithm achieves
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Fig. 3 Comparison under impulse noise for case (2) in Example 1

Fig. 4 Comparison under impulse noise for case (3) in Example 1
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Fig. 5 Comparison under impulse noise for case (4) in Example 1

Table 2 MSDs (dB) of
Example 1 under impulse noise

Case1 Case2 Case3 Case4

KF −14.7330 −12.0724 −7.1217 −2.4643

MCKF (σ = 2) −14.6940 −13.3867 −13.2001 −13.3860

STTKF (σ = 2, v = 3) −14.6682 −14.6682 −13.4005 −13.5625

WSKF (σ = 2) −14.7238 −15.1467 −13.8534 −14.0083

HWSKF (σ = 2) −14.7238 −15.5723 −14.8701 −15.0660

MCKF (σ = 3) −14.7158 −13.0597 −12.3741 −12.4162

STTKF (σ = 3, v = 3) −14.7043 −13.2361 −12.7709 −12.8398

WSKF (σ = 3) −14.7122 −13.2687 −12.2094 −12.1267

HWSKF (σ = 3) −14.7122 −14.4181 −14.2341 −14.3941

MCKF (σ = 5) −14.7268 −12.6001 −10.7658 −10.1954

STTKF (σ = 5, v = 3) −14.7227 −12.7856 −11.4102 −11.0481

WSKF (σ = 5) −14.7297 −12.5695 −10.0705 −9.0950

HWSKF (σ = 5) −14.7297 −14.1321 −13.8165 −13.8905

−14.9234, −14.9234 and 15.0660 in impulse noise(σ = 2),
which are all high steady state.

5.2 Simulation 2

In this section, we investigate the effect of the parameters of
the HWSKF algorithm on the performance, such as kernel
width sigma and threshold ι. The conclusions obtained can

also guide the selection of the parameters of the HWSKF
algorithm. This part is based on the conditional simulation
of model 1.

First, we investigated the effect of kernel width sigma
on the performance with the kernel width set to sigma =
0.5, 1, 2, 5, 10. The values of kernelwidth are shown inTable
3. The simulation plots for different sigma are shown in
Fig. 6. It can be obtained from them that when sigma is near

123



S122 Signal, Image and Video Processing (2024) 18 (Suppl 1):S113–S127

Table 3 MSD at different
kernel widths sigma

sigma 0.5 1 2 5 10

Case2 ι = 1e−4 −22.0129 −17.4571 −14.9234 −15.0666 −13.8905

Case3 ι = 1e−4 −22.0698 −17.3257 −14.9234 −13.8165 −13.5766

Case4 ι = 1e−4 −22.0695 −13.4571 −15.0666 −13.8905 −13.5458

Fig. 6 MSD maps for different core widths (case 3)

0.5, the MSD of the three impulse noises reaches the optimal
results of−22.0129,−22.0689, and−22.0695, respectively,
when the algorithm performance reaches near the optimal.

Then, a large number of experimental analyses were con-
ducted in this paper at different thresholds ι (conducted in
case 3), and the MSD plots and the table of MSD values at
different thresholds are shown in Fig. 7 as well as in Table 4.
We can see from this that the steady state performance of the
algorithm increases as the threshold ι decreases. When the
threshold ι is increased to 1e−4, theMSD reaches−14.8578
at this point, and when the threshold ι is increased to 1e−6,
the MSD decreases by only −0.0113. Therefore, we choose
ι = 1e−4 for all thresholds to reduce the computational com-
plexity of the algorithm, while ensuring that we have a high
degree of steady state.

5.3 Simulation 3

Consider a land navigation model whose equations of state
and observation can be modeled as

xk =

⎡
⎢⎢⎣
1 0 t 0
0 1 0 t
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ xk−1 + wk−1 (54)

yk =
[
1 0 0 0
0 1 0 0

]
xk + vk (55)

where t = 0.1 s, the process noise and observation noise are
the same as in simulation (1), and Gaussian noise and three
kinds of impulse noise are used for the simulation process.
In the experiments, the kernel width is taken as σ = 2 for
MCKF, the parameters of STTKF are σ = 2, v = 3, the
parameters of WSKF are σ = 2, and the choice of kernel
width for HWSKF is the same as that for WSKF. The thresh-
old is taken as ι = 1e−4.

We compare different algorithms for fitting one of the two
positional states of the simulation model in Fig. 8a, b. We
find that the algorithm proposed in this paper is closer to the
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Fig. 7 MSD graph at different thresholds (case 2)

Table 4 MSD at different
thresholds ι

Threshold MSD

ι = 1e−1 −13.5458

ι = 1e−2 −14.8396

ι = 1e−4 −14.8578

ι = 1e−6 −14.8691

ι = 1e−8 −14.8701

real values than KF, MCKF, WSKF and STTKF, and has a
better fitting effect. Similarly, Figs. 9, 10, and 11 show the
performance of the algorithm in three different impulse noise
environments, and the corresponding MSDs are presented in
Table 5. We can clearly observe that the proposed algorithm

in this paper possesses faster convergence speed and lower
MSD compared to other algorithms under the influence of
impulse noise, which are 8.7765, 9.1960 and 9.1960, respec-
tively. Therefore, it can be shown that the algorithm in the
second example also possesses better stationarity under the
influence of impulse noise.
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Fig. 8 Position state (case 2). a Fitting plots for each algorithm at state 1; b fitting plots for each algorithm at state 2
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Fig. 9 Comparison of case (2) in Example 2 under impulse noise

Fig. 10 Comparison of case (3) in Example 2 under impulse noise
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Fig. 11 compares case (4) in Example 2 under impulse noise

Table 5 MSDs (dB) of Example 1 under impulse noise

Case1 Case2 Case3 Case4

KF 8.4212 11.2565 14.7621 19.2202

MCKF (σ = 2) 8.4845 9.6957 10.4514 10.3950

STTKF (σ = 2, v = 3) 8.5274 9.6102 10.1320 10.0686

WSKF (σ = 2) 8.4366 9.0592 10.1200 10.1696

HWSKF (σ = 2) 8.5649 8.7765 9.1960 9.1096

6 Conclusion

This paper proposes a Kalman filtering algorithm that fuses
the S-function with the maximum correlation entropy under
Huber estimated weights, the HSWKF algorithm. The algo-
rithm utilizes the nonlinear properties of the function and the
robust estimation of the weights to solve the problem of poor
robustness of algorithms such as KF and MCKF in impulse
noise environments. By simulation experiments, the stability
of the algorithm is verified. The simulation results show that
the experimental steady state errors of the four algorithms
are consistent with the theoretical values, and the HWSKF
proposed in this paper has the best steady state performance,
which is better than theKF,MCKF, STTKF andWSKF in the
future, the algorithm can be extended to the extendedKalman

filtering algorithm and the estimation of the battery’s charge
state.
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