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Abstract
Traffic sign recognition (TSR) systems are essential for strengthening road safety, enhancing traffic management, and pro-
moting efficient driving due to the ever-increasing number of vehicles on the roads and the need for better transportation
systems. Modern intelligent transportation systems rely on TSR systems to help with the detection, categorization, and inter-
pretation of traffic signs. These technologies improve driving assistance and road safety by automatically recognizing and
comprehending the information contained in traffic signs through the use of computer vision and AI. By automating the
recognition process, these systems lessen the load on drivers, limit the possibility of human error, and help to keep the roads
safe by reducing infractions and accidents. TSR systems are also necessary for the creation and application of advanced driver
assistance systems, laying the foundation for a future that places a premium on safer and more effective transportation. An
efficient deep learning (DL)-based model for TSR was presented in this paper. The suggested TSR system consists of two
models: a traffic sign detection model that uses RetinaNet and a traffic sign classification model that uses DenseNet-121. The
performance evaluation of detection and classification models relies on the utilization of the GTSDB and GTSRB datasets.
The performance of the detector was found to surpass that of the existing traffic sign detectors. The traffic sign classifier
achieved better classification performance with an accuracy of 98.32%. Using powerful TSR technology could revolutionize
transportation and provide a better environment for all drivers.

Keywords Intelligent transportation systems · Road safety · Driver assistance · Traffic management · Image processing ·
Computer vision · Artificial Intelligence · Detection · Classification

1 Introduction

Images are gradually becoming a crucial use in day today
life, along with their acquisition, storage, and subsequent
processing. The method that captured photographs are con-
verted to digital form and then shared through various online
and mobile application platforms has been entirely improved
by digital image processing (DIP) technologies. According
to research, human errors have been identified as the primary
cause of over 93% of road accidents resulting in fatalities and
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injuries [1]. Due to this reality, it is now important for the
research community to provide technological advances that
will assist society and the government in developing regula-
tions to lessen accidents. In addition to the 50million injuries
sustained each year, almost 25 million of those injuries result
in permanent disability [2]. Each year, traffic accidents injure
nearly 1.3million people worldwide, with nearly 2%of those
injuries occurring in EUnations. TheWHOestimates that the
cost of traffic accidents in most nations is roughly 3% of their
GDP [3].

DIP involves utilizing computer technology to algorithmi-
callymanipulate digital images. The utilization of algorithms
helps address issues related to noise and distortion that may
arise during the processing stage. Here are some of the
technological applications and techniques used in DIP. DIP
encompasses a range of techniques such as image manipula-
tion, image recovery, independent component analysis, and
neural networks, among others. DIP applications encompass
a wide range of tasks such as categorization, extracting key
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attributes, analyzing signals at various scales, recognizing
patterns, and projecting data. DIP offers a comprehensive
set of industry-standard algorithms and workflow tools for
tasks such as image processing, analysis, visualization, and
the creation of new algorithms [4].

The terms “object detection” and “object recognition” are
frequently used to describe computer vision tasks that involve
locating things in digital environments or digital images. The
acquired digital images undergo a series of preprocessing
steps, segmentation, and subsequent classification for fur-
ther analysis and interpretation. Image classification involves
the process of accurately determining the correct class or
category to which an object belongs. Following image seg-
mentation for ROI detection, object localization finds the
presence of the target object [5]. A few examples of images
in which traffic signs are not clearly visible are shown in
Fig. 1. Additionally, traffic indicators are less likely to catch
drivers’ attention during these times.

These conditions make driving challenging and increase
the number of traffic accidents. Traffic signs control traffic or
notify drivers of information connected to the signs, keeping
them safe and comfortable while driving. Figure 2 displays
a few types of traffic sign images.

Traffic signs provide drivers and pedestrians with visual
cues to help them navigate their way and control traffic by
informing them of the conditions and restrictions of the road
[7]. The primary causes of many accidents are hazardous
roads and excessive accelerations by other road users. Tomit-
igate these issues, the route is equipped with variable speed
limits that are adjusted based on the road’s condition, traffic
density, and visibility, ensuring a proactive approach to avoid
potential problems. The design of traffic signs in different
countries is governed by their respective legal frameworks,
ensuring adherence to specific regulations and standards [8].
Traffic signs are categorized according to their color, shape,
and texture. For example, information signs have blue sig-
nals, warning signs have triangles, and prohibition signs have
red rims. Some of the categories of Indian traffic signs are
depicted in Fig. 3. The interpretation of traffic signs is a
significant challenge for the areas of computer vision and
intelligent systems. As they are made to alert drivers to
prospective hazards and existing road conditions, traffic signs
efficiently support drivers and help them drive more safely.
These signs typically have bold colors and stiff, simple forms
like circles, triangles, and regular polygons [9]. As a result,
TSR is gaining significance in the context of autonomous
vehicles, highway upkeep, and systems that aid drivers. The
suggested work in this study comprises object detection and
classification which falls under the broad category of com-
puter vision and image processing.

A specific traffic sign needs to have clear information
about it. There are distinctive design styles used. Differences
are based on size, shape, and color. Road signs offer ideal

solutions to ensure safe driving. The majority of collisions
are caused by drivers who either fail to see a stop sign or
fail to pay attention at crucial moments. Additionally, poor
lighting makes it difficult for drivers to see. The headlights
of the vehicles coming from opposite directions throughout
the night, especially in severe weather conditions like rain,
fog, and snow, may distract or even blind the drivers. A good
computer vision system is necessary for themajority of tasks,
and as these tools advance, they may even be able to replace
people. By utilizing TSR technology, vehicles have the capa-
bility to interpret and comprehend road signs such as “narrow
bridge” or “hump ahead” that are posted on the roadside. One
of the crucial systems for managing driver safety is traffic
management, which directs drivers in the proper direction at
all times. In order to create an efficient intelligent road trans-
port system, a well-defined automatic intelligent TSR system
has been designed. Figure 4 depicts the overall structure of a
TSR system.

When driving on busy roads, traffic sign detection might
help drivers pay attention to the posted speed limits and other
road signs on the console screen. The improvement of general
road safety depends heavily on the accurate identification of
traffic signs. Real-timewarnings and notifications can be sent
to drivers to encourage them to obey traffic laws and prevent
accidents when traffic signs are accurately detected and rec-
ognized. This technology can drastically lower the danger of
collisions and increase overall road safety by delivering accu-
rate information on speed limits, stop signs, no-entry zones,
and other traffic indicators. So, a useful DL-based model for
TSR was proposed in this paper.

2 Literature review

This section provided a summary of the current studies and
methodologies employed in the area of TSR.D. Tabernik
et al. [10]. This approach is used to detect the 200 traffic sign
categories contained in our new dataset. The findings are pre-
sented for extremely difficult traffic sign categories that have
not before been studied. It presents a comprehensive anal-
ysis of the deep learning method for detecting traffic signs
with large intra-category appearance variation and show that
the proposed approach achieves error rates of less than 3%,
which is sufficient for deployment in practical applications
of traffic sign inventory management.

The traffic sign classification and recognition studies done
by Cao et al. [11] are based on the German Traffic Sign
Recognition Benchmark. The continual training and test-
ing of the network model result in positive prediction and
accurate recognition of traffic signs. According to the exper-
imental data, the accurate recognition rate of traffic signs is
99.75%, and the average processing time per frame is 5.4 ms.
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Fig. 1 Non-visible conditions of traffic sign: a unfavorable light condition, b partial occlusion, c cluttered background, d small size [6]

Fig. 2 Sample traffic sign categories

In 2019, Sun et al. [12] the training and validation datasets
were created using image augmentation. The first classifier
was trained using 40,000 photographs, including 28,000 pos-
itive images (images that contain traffic signs) and 12,000
negative images (images that are that do not contain any traf-
fic signs).With 2400 positive photographs and 1200 negative
images, 3600 images have been employed to train the sec-
ond classifier. The photographs are processed to identify the
region of interest, which is subsequently classified by two
CNN classifiers.

In 2019, Vennelakanti et al. [13] describe a method for
traffic sign detection and identification that uses image pro-
cessing for sign detection and an ensemble of convolutional
neural networks (CNN) for sign identification in this paper.
CNNs have a high recognition rate, making them appealing
for use in a variety of computer vision tasks. TensorFlow is
utilized in theCNN implementation.On theBelgian andGer-
man data sets, we achieved recognition accuracies of more
than 99% for circular signs.

In 2019, William et al. [14] solved the traffic sign detec-
tion problem using cutting-edge multi-object detection sys-
tems such as faster recurrent convolutional neural networks

(F-RCNN) and single shot multi-box detector (SSD) in con-
junction with various feature extractors such as MobileNet
v1 and Inception v2, as well as Tiny-YOLOv2. However,
because they produced the best results, F-RCNN Inception
v2 and Tiny YOLO v2 will be the focus of this paper. The
above-mentioned algorithms were refined using data from
the German Traffic Signs Detection Benchmark (GTSDB).

In 2019, Kamal et al. [15] objective recommended net-
workoutperforms the current state-of-the-art object detection
networks, such as the Faster RCNN inception ResNet V2 and
R-FCN ResNet 101, by a large margin, with precision and
recall of 94.60 and 80.21%, respectively, on this part of the
dataset. Furthermore, the network is tested on the German
Traffic SignDetection Benchmark (GTSDB) dataset, achiev-
ing precision and recall of 95.29% and 89.01%, respectively.

According to 2020, Liang et al. [16], the detection and
recognition of targets by networking with various feature
scales has greatly improved, with recall and accuracy of
95.32% and 93.13%, correspondingly. Finally, the algorithm
for traffic sign identification and authentication is tested on
the NVIDIA Jetson Tx2 platform and offers great results at
28 frames per second.
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Fig. 3 Traffic signs in India
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Fig. 4 General workflow of TSR
system

In 2019, Alghmgham et al. [17] an autonomous traffic
and road sign (ATRS) detection and recognition system is
built using a deep convolutional neural network (CNN). The
suggested system detects and recognizes traffic sign images
in real time. This study also includes a recently created
database of 24 different traffic signs gathered from random
road sides in Saudi Arabia. The photographs were obtained
from various viewpoints and included various elements and
circumstances. A total of 2718 photographs were collected to
create the Saudi Arabian Traffic and Road Signs (SA-TRS-
2018) dataset.

In 2019, Rajendran et al. [18] the traffic sign detection
network is formed using YOLOv3, and the traffic sign class
recognizer is formed by a CNN-based classifier. The Ger-
man Traffic Sign Detection Benchmark (GTSDB) [5] dataset
is used for network training and evaluation, and the classi-
fier performance is validated using the German Traffic Sign
Recognition Benchmark (GTSRB) [6] dataset.

In 2019, Yuan et al. [19] first, traffic signs are often small-
sized items, making them more difficult to detect than large
ones; second, without context information, it is difficult to
distinguish false targets that resemble real traffic signs in
complex street scenes. To address these issues, we offer a
revolutionary end-to-end deep learning strategy for detecting
traffic signs in complicated situations.

In 2019, Xu et al. [20] the upgraded Faster RCNN
achieves 29.8 frames per second and a mean average pre-
cision of 99.5%, outperforming state-of-the-art approaches
and making it more appropriate for traffic sign detection.

Furthermore, the suggestedmodel is applied to the Tsinghua-
Tencent 100 K (TT100K) dataset, yielding a competitive
detection performance.

According to 2021 Ahmed et al. [21], this approach
achieves anoverall precision and recall of 91.1%and70.71%,
correspondingly, which is a 7.58 and 35.90% improvement
in precision and recall over the current benchmark. Fur-
thermore, they compare this method to various CNN-based
TSDR approaches and show that it beats them by a wide
margin.

In 2019, Han et al. [22] in actuality, traffic indicators, such
as traffic signals or distant road signs, generally cover less
than 5% of the total image in the camera’s view. As a result,
we devote great effort in this study to offer a real-time tiny
traffic sign identification solution based on improved Faster
RCNN.

In 2020, Liu et al. [23] it suggests an a two-stage
adaptable classification loss function for regional proposal
networks (RPN) and fully interconnected neural networks
withinDR-CNN to enhance training effectiveness and distin-
guish challenging negative samples from easy positive ones.
Finally, we test our suggested technique on the novel and
difficult Tsinghua-Tencent 100 K dataset.

In 2020, Jin et al. [24] in this research, it is suggested
MF-SSD, an enhanced (single shot detector) SSD algorithm
for traffic sign recognition based on multi-feature fusion
and augmentation. First, low-level features are combined
with high-level features to increase the detection of small
objects in the SSD. The features in separate channels are
then enhanced to detect the target by augmenting effective
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channels characteristics and minimizing invalid channel fea-
tures.

In 2022, Yi Shi and Young Chun Ko [25] using Chinese
English grammar as the research object, three groups of pho-
netic data were chosen to serve as experimental auxiliary
data, based on the convolutional neural network, through the
preset reset of the model’s pronunciation the identification
system, the speech system’s sampling and recognition extrac-
tion, wrong speech detection, and feature assessment of the
multi-level data stream tandem, while the tests are carried
out with CU-CHLOE language learning database.

In 2021, Ojha et al. [26] the study provides an effective
step-by-step description of the procedure’s flow in recog-
nizing autos in various real-world scenarios. The suggested
model achieves 94.66% accuracy and 95.13% precision after
being trained on a combination of two benchmark datasets.

In 2021, Dewangan et al. [27] in these phases, the oper-
ational mechanism is primarily based on vision sensors,
which allow these vehicles to comprehend heterogeneous
and changing surroundings and make appropriate decisions.
This study identifies numerous cutting-edge approaches and
phase-wise datasets that have been used in the literature. It
emphasizes the progress in various phases, problems, and
scopes for the creation and production of intelligent vehi-
cle systems. Table 1 shows the deep learning approaches to
traffic sign recognition.

Despite tremendous improvements in TSR, there is
still limitations in tackling the difficulties of accurate detec-
tion in challenging environments. Certain constraints in the
current research onTSRhave been discussed here. In the area
of health care, such as disease diagnosis, previous research
in digital imaging employing CNN, YOLO, and SVM algo-
rithms has produced trustworthy results. However, there has
been a lack of studies producing good results in the specific
case of traffic sign detection. Additionally, studies that con-
sidered the usage of HSV or HSI color spaces, which are
thought to be more beneficial for human eye perception with
regard to sunlight and color intensity. The majority of study
employed RGB color spaces. Previous research in related
fields predominantly focused on grayscale images, leaving a
gap in understanding the impact and effectiveness of utiliz-
ing color images, which are more pertinent in the context of
traffic signs. Principal component analysis (PCA) techniques
were found to be a component of dimensionality reduction
techniques, which aid in further feature optimization. The
chi-square, RRelifF, and MRR approaches are some of these
methods. The traffic sign data sets have not before been exam-
ined using these techniques. For performance improvement
measurements, the authors choose to take these approaches
into account on various image datasets. It has been discov-
ered that the chi-square selection feature is one of the efficient
filter-based selection techniques that can aid in the removal of
superfluous features for optimizing overall processing time

and raising accuracy levels. Additionally, there was a gap
in the absence of research on chi-square selection for traffic
signs. So, to overcome the identified limitations, an effective
DL-based TSR model was proposed in this paper.

3 Materials andmethods

The suggested model contains two phases. The initial stage
involves identifying traffic signs, followed by categorizing
them based on their characteristics. The main objective of
a traffic sign detection system is to precisely recognize
and ascertain the exact location of traffic signs present in
an image. Bounding boxes are utilized to enclose objects,
capturing their spatial extent or location. The algorithm
categorizes these identified labels into designated groups
throughout the subsequent stages of TSR. The proposed TSR
model comprises of a traffic sign detection module based on
RetinaNet and a traffic sign classification module based on
DenseNet-121. Figure 5 displays the block diagram of the
suggested TSR model.

3.1 Dataset description

Two distinct datasets were utilized to assess the effectiveness
of the proposed models in accurately recognizing and classi-
fying traffic signs. The GTSDB dataset [25] and the GTSRB
dataset [26] have gained extensive usage in TSR tasks. Video
sequences are utilized to create the GTSDB dataset. The
task is quite challenging as it involves a diverse range of
images captured in different weather conditions and lighting
situations, encompassing urban, rural, and highway scenes,
making it a comprehensive and representative dataset.

The dataset has a total of 900 images, where 600 images
are used for training purposes and the remaining 300 images
are reserved for testing.

Each image has dimensions of 1360× 800 pixels and is in
rawPPMformat. The test images have 360 traffic signs,while
the training ones have 846. The images show traffic signs
with sizes ranging from 16 to 128 pixels. Figure 6 displays
sample images from the GTSDB collection.

There are around 50,000 traffic sign images in the GTSRB
dataset, and they are classified into 43 distinct categories.
The classifier model, trained on a dataset called GTSRB, uti-
lizes 39,209 training images to learn and is then evaluated on
12,630 test images to assess its performance. Sample images
from the GTSRB dataset are depicted in Fig. 7.

3.2 Image preprocessing

Image preprocessing techniques encompass a range of oper-
ations that are applied to images prior to conducting sub-
sequent analysis or tasks. These methods seek to improve
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Table 1 Summary of deep learning approaches to traffic sign recognition

References Algorithm Dataset Advantages Disadvantages Accuracy
(%)

Research gap

Liu et al. [23] DR-CNN Tsinghua-Tencent
100 K

Traffic in all
directions

Increases total
delay, especially
off-peak

98 Detecting and
recognizing
traffic signs on
roads is the low
quality of
images owing to
variable urban
environments

Jin et al. [24] MF-SSD GTSRB Traffic in a signal
system corridor

Increase fuel
consumption

To model complex
urban road
surroundings,
which is a
similar
shortcoming
inherited from
features-based
methods

Vincent et al.
[40]

CNN GTSRB Provisions for side
street vehicles to
enter the traffic
stream

Time delay and
less appropriate
route

96.15 To solve the traffic
sign recognition
problem using a
CNN-based
object detection
framework

Haque et al.
[41]

DeepThin GTSRB
BTSC

Less time delay Not properly
locate

88.49 Object tracking is
an algorithm
that assigns a
unique ID to a
detected object
and maintains
the ID value
unchanged even
as frames flow

Fang et al. [42] MicroNet-BF GTSRB Possible
improvements in
capacity

Time variation 98.11 Since urban road
scenes can have
different aspects
from benchmark
images, it is
crucial to
investigate deep
learning models
for real-world
application

Shi et al.[25] – CU-CHLOE
language learning
database

Traffic moments in
all directions

Bad timing and
road accidents

98.69 Utilizing features
from the color
and shape of a
given image
have been
proposed for
traffic sign
recognition tasks
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Fig. 5 Block diagram of proposed TSR model

Fig. 6 Sample images from GTSDB dataset

image quality by lowering noise, repairing distortions, and
extracting relevant characteristics. In computer vision and
image processing tasks, image preprocessing is essential
because it increases the precision, dependability, and effec-
tiveness of executing techniques. The most often used image
preprocessing techniques include image scaling and resiz-
ing, denoising, contrast boosting, normalization, rotation,
and cropping, among others. Preprocessing approaches min-
imize image noise, which can impair algorithm performance
and accuracy. Noise reduction enhances image quality and
aids in the extraction of important information. Preprocess-
ing approaches boost the performance and effectiveness of

Fig. 7 Sample images from GTSRB dataset

algorithms by preparing images for upcoming tasks. Better
results and interpretations are produced by enhancing image
quality and feature representation.

3.3 Traffic sign detectionmodule based
on RetinaNet

The RetinaNet model is employed as a detector for identi-
fying traffic signs. RetinaNet is an object detection model
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Fig. 8 Basic architecture of RetinaNet detector

that combines a Feature Pyramid Network (FPN) and uses
a unique loss function called Focal Loss. The RetinaNet
architecture consists of three main components: a backbone
network, a FPN, and two subnetworks dedicated to clas-
sification and regression tasks. The backbone network is
in assigned to taking the features out of the input image.
ResNet50, which consists of four feature maps with various
resolutions, serves as the backbone network for RetinaNet.
By utilizing the FPN, the featuremaps aremerged together to
create a layered structure of feature maps at various scales,
facilitating the identification of objects with varying sizes.
The regression subnetwork refines the bounding box coor-
dinates of the objects, while the classification subnetwork
categorizes the objects into different classes by utilizing the
feature maps produced by the FPN. RetinaNet incorporates
anchor boxes, which are pre-defined bounding boxes that
come in different sizes and aspect ratios, allowing for the
detection of objects at various scales and positions. A cru-
cial part of the architecture of RetinaNet is the Focal Loss
function. Figure 8 displays the fundamental design of the
RetinaNet detector.

3.3.1 Feature pyramid network (FPN)

An essential part of RetinaNet’s architecture is the FPN.
Through the creation of a feature pyramidwith various scales
and resolutions, it addresses the problem of objects of var-
ied scales. FPN functions by initially examining the feature
maps generated by the underlying network using both a top-
down and bottom-up strategy. Once the feature maps from
both the lower-level and higher-level pathways are upsam-
pled to a higher resolution, they aremerged or fused together.
To create a feature pyramid with several tiers, this technique
is repeatedly carried out. The model is capable of detecting
objects of different sizes because the feature maps at each

Fig. 9 FPN architecture

level of the pyramid possess diverse scales and resolutions.
The higher-level featuremaps in the pyramid have finer detail
and are specifically designed to identify smaller elements,
while the lower-level feature maps have reduced resolution
and are optimized for detecting larger objects. Figure 9 dis-
plays the FPN framework.

Bottom–Up pathway The input image is initially processed
through a convolutional neural network (CNN) to extract fea-
tures. The CNN typically consists of multiple layers, and
as you move deeper into the network, the spatial resolution
decreases, while the semantic information increases.
Top–down pathway FPN introduces a top-down pathway to
the network. It starts by adding a lateral connection from a
higher-resolution feature map to a lower-resolution one. This
top-down pathway involves upsampling the spatially coarser
feature maps to match the spatial resolution of the higher-
level feature maps.

The goal is to reintroduce fine-grained spatial information
at higher resolutions.
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Combining features At each level of the feature pyramid,
the combined features are obtained by adding the upsam-
pled higher-level features to the corresponding lower-level
features. This process is repeated iteratively through the pyra-
mid, creating a series of feature maps with both high-level
semantic information and fine-grained spatial details.
Feature pyramids The result is a feature pyramid where each
level corresponds to a different scale. Higher levels contain
more abstract and semantic information, while lower levels
retain more spatial details. The feature pyramid enables the
network to effectively handle objects of different sizes, as
features at multiple scales are available for analysis.

By incorporating the top-down pathway and lateral con-
nections, FPNallows the network tomaintain a rich represen-
tation of spatial information at different scales. This is crucial
for tasks like object detection, where objects may vary in size
and appearance, and capturing both global context and fine
details is essential for accurate predictions.

3.3.2 Classification subnet

The object classification subnetwork is linked to each level
of the feature pyramid through a fully convolutional network
for effective feature mapping. Each subnetwork consists of
four layers of 3 × 3 convolutional operations with 256 fil-
ters, which are activated using the ReLU function. This is
succeeded by another layer of 3 × 3 convolutional oper-
ations with a sigmoid activation function. The dimensions
of the output are influenced by the dimensions of the input
feature map. The dimensions of the output are scaled in pro-
portion to the original map, whereas the depth of the output is
determined by the number of classes and anchor boxes used.

3.3.3 Regression subnet

For every level of the FPN, there is a corresponding bound-
ing box regression subnet. The only difference in structure
between the subnetwork and the classification network is the
number of filters in the final convolutional layer. In this case,
the final convolutional layer has a filter count of 4A, repre-
senting four bounding box coordinates for each anchor box.

3.3.4 Focal loss function

The architecture of RetinaNet also includes the Focal Loss
function. To address imbalanced data, the strategy involves
assigning higher weights to challenging examples, which are
instances that the model struggles to accurately detect or
classify. The targeted loss function works by reducing the
impact of loss on correctly classified examples and increas-
ing the impact on incorrectly classified examples. This is
accomplished by incorporating a regulating element called

the focal factor, which reduces the loss assigned to instances
that are correctly classified and amplifies the loss attributed to
examples that are classified incorrectly. The anticipated prob-
ability of the object is a function of the focal factor. The loss
is given less importance when the anticipated probability is
high but the focal factor is low.When the loss is up-weighted,
the focal factor is high, and the anticipated probability is
low. The use of this approach is superior to the traditional
cross-entropy loss, as it considers the varying difficulty of
examples, assigning appropriate weights accordingly. The
multi-task loss function used inRetinaNet brings together the
classification loss and the regression loss, effectively com-
bining them into a single loss function. The multi-task loss
function in RetinaNet is determined by combining two sep-
arate losses in a weighted manner [28–31].

Let’s denote the ground truth class label for an anchor box
as yi and the predicted class probabilities as pi . Similarly, the
ground truth bounding box regression targets are represented
as ti , and the predicted bounding box regression offsets are
vi . The multi-task loss function in RetinaNet can be defined
as follows:

Loss � Classification loss + λ ∗ Regression loss (1)

The weighting factor in the multi-task loss function inte-
grates the classification loss and regression loss to produce
a single objective. The parameter, λ, regulates the weight-
ing of the two losses and can be changed to give preference
to one over the other. It determines the relative importance
of classification and regression during training. The classi-
fication loss measures the difference between the predicted
class probabilities, pi and the ground truth class labels yi .
It is commonly computed using the cross-entropy loss. The
classification loss for a single anchor box is given by

Classification loss � −yi ∗ log(pi ) − (1 − yi ) ∗ log(1 − pi )
(2)

Here, yi is a binary indicator that equals 1 if the anchor box
is positive (contains an object) and 0 otherwise. pi depicts
the predicted probability of the positive class.

The regression loss captures the discrepancy between the
predicted bounding box regression offsets yi and the ground
truth bounding box regression targets ti . The smooth L1 loss
is commonly used for this purpose. The regression loss for a
single anchor box is calculated as:

Regression loss � Smooth L1(vi − ti ) (3)
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Fig. 10 Basic architecture of DenseNet-121

3.4 Bounding box preprocessor

The initial processing step for bounding boxes involves tak-
ing the identified candidate traffic sign boxes and preparing
them for classification. This preparation includes extracting
relevant information andmaking any required adjustments to
ensure accurate classification [32]. The traffic sign is placed
in the region’s exact center, which is then increased by 25%
to account for any regression mistakes and ensure that the
area is completely encircled by the bounding box. In order
for the classifier network to evaluate the class of a traffic sign,
the enlarged boxes are cropped and adjusted to a uniform size
of 48 × 48 pixels.

The GTSDB dataset, which contains 600 training images,
was used to train the detector. The RetinaNet was loaded
with the Resnet50 model, which had been pre-trained on
the COCO dataset. The subnets are trained using minibatch
training with a batch size of thirty-two over a duration of 100
epochs. The loss function optimizer employed was the Adam
algorithm.

3.5 Traffic sign classificationmodule based
on DenseNet-121

CNNs, a kind of deep neural networks, are employed to
analyze images [33]. CNN has the important advantage of

requiring no human effort or prior knowledge for feature
design. A basic CNN ismade up of layers, and each layer of a
CNNemploys adifferentiable function to convert onevolume
of activations to another. The DenseNet-121, a deep CNN
architecture, has gained popularity in numerous computer
vision tasks due to its effectiveness in image classification
[27]. It works particularly well for tasks like classifying traf-
fic signs, where precise sign identification is essential for
guaranteeing traffic safety. The family of DenseNets, which
are renowned for their densely connected layers and effec-
tive feature reuse, includes DenseNet-121. DenseNet adds
dense connections, which enable each layer to receive direct
inputs from all preceding layers, in contrast to conventional
CNN architectures that stack layers one after the other. The
network can efficiently learn and reuse features at various
depths due to this extensive connectivity, which encourages
information flow across layers [34–36]. Each dense block
in DenseNet-121 has a number of densely connected con-
volutional layers. Each dense block has a rich collection of
features that are created by concatenating the feature maps
from earlier levels, which are then passed on to the following
layers. By preventing the vanishing gradient issue, this dense
connectivity makes the network easier to train.

A DenseNet is a type of fully CNN that establishes dense
connections by directly linking all of its layers together using
Dense Blocks. This design creates a dense interconnection
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Table 2 Parameter setup

Parameter Value

The number of dense blocks 3

The depth of the convolutional block 15

Batch size 52

Epoch 52

Growth rate 10

among the layers. Every layer in the network receives addi-
tional inputs from all the layer above it and passes its own
set of feature mappings to the layer below it in order to
maintain the forward flow of information. DenseNet was
developed primarily to improve high-level NN accuracy due
to the vanishing gradient, which happens when data vanishes
after arriving at its destination due to the enormous distance
between input and output layers [37]. Each layer uses con-
catenated feature maps as inputs rather than summarizing
the feature maps of all prior levels. As a result, DenseNet
uses fewer variables than a standard CNN, enabling fea-
ture reuse by tossing out redundant feature maps. Figure 10
depicts the basic framework of the DenseNet-121 model.
In addition to the basic convolutional and pooling layers,
DenseNet also includes two crucial elements. They consist
of dense blocks and transition layers. A simple convolution
and pooling layer comprise the first layer of DenseNet. The
structure of the model includes a series of dense blocks, with
each block being accompanied by a transition layer. This
sequence leads to a concluding dense block, followed by a
classification layer. The growth rate, denoted by k, is a hyper-
parameter that determines howmany new featuresmaps each
layer contributes to the network. If k � 12; for example, each
layer adds 12 new feature maps to the input it receives. Table
2 shows the parameter setup for DenseNet.

DenseNet-121 consists of 121 layers, including convo-
lutional layers, transition layers, a global average pooling
layer, and a FC layer. The majority of the layers in the model
are made up of dense blocks, each of which has a particular
number of convolutional layers. The feature maps are down
sampled using the transition layers, and the spatial dimen-
sions are shrunk utilizing the global average pooling layer.
Based on the total number of target classes, the fully con-
nected layer generates the final classification probabilities.
A classifier was trained using 39,209 training images from
the GTSRB dataset. During the training process, a batch size
of 32 was employed for minibatch training. The optimiza-
tion procedure was facilitated by the Adam optimizer. The
classifier underwent 100 epochs of training.

4 Results and discussion

4.1 Hardware and software setup

The proposed method was implemented once the dataset had
been collected. Keras with a TensorFlow backend is utilized
to implement the traffic sign detector and classifier. The
GTSDB dataset is utilized for training and evaluating the
detector, while the GTSRB dataset is employed for training
and testing the classifier. The suggested detector and clas-
sification model are trained and evaluated on the Google
Colaboratory platform.

4.2 Performance evaluation

4.2.1 Detector performance

The effectiveness of the suggested traffic sign detector was
evaluated bymeasuring two key factors, mean average preci-
sion (mAP) and speed of detection per image. The calculation
of the mAP score considers the average precision for each
class as well as the intersection over union (IoU) thresholds,
which vary depending on the specific detection challenges
being addressed. The overlap between the actual and pre-
dicted bounding boxes is determined by IoU. It is commonly
employed to ascertain whether a detection is an accurate pos-
itive finding or an erroneous positive result. The IoU between
the predicted and actual bounding boxes is evaluated by
dividing the combined area of the two boxes by the area of
overlap.Apositive proposal is onewhere the IoUbetween the
anticipated bounding box and the ground truth box is more
than 0.5. The following procedures are commonly taken to
calculate the mAP for object detection. The first step entails
figuring out the IoU for each expected bounding box and its
matching ground truth bounding box. The degree of precision
in object localization is determined by the IoU value, which
quantifies the extent of overlap between the predicted bound-
ing boxes and the actual ground truth boxes. The anticipated
bounding boxes are then ranked depending on the confi-
dence levels associated with each one. At various confidence
score thresholds, precision and recall values are calculated
for each class. A precision–recall curve is produced for each
class by altering the threshold. The precision–recall curve is
then integrated to determine the average precision for each
class. A higher value indicates greater performance for the
average precision metric, which has a range of 0 to 1. It mea-
sures the effectiveness of a detector in accurately identifying
and classifying a specific class. The weighted average of the
average precision values over all object classes is then deter-
mined, considering the proportion of ground truth instances
for each class. By addressing class imbalance, this weighting
makes it possible to fairly assess the detector’s effectiveness
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Table 3 Comparison of detection performance

Detector mAP% Speed of detection per image
(milliseconds)

YOLOV3 92.2 101

Faster RCNN 84.5 261

Proposed model 98.2 193

Fig. 11 Performance comparison of traffic sign detectors

across all classes. An overall evaluation of the object detec-
tor’s precision, localization, and performance is provided by
the generated mAP. It is a widely used statistic in object
detection tasks for contrasting and assessing various mod-
els. The time it takes an object detection model to process a
single image and produce predictions for the items inside it
is referred to as the speed of detection per image for object
detection. It evaluates the detector’s performance and compu-
tational effectiveness by examining a single image. The speed
of detection per image can be influenced by various factors
including model architecture, hardware acceleration, input
image size, batch processing, optimization techniques, and
framework and implementation. Table 3 compares the per-
formance of the suggested detection approachwithYOLOV3
[38] and F-RCNN [39].

The experimental findings revealed that the RetinaNet-
based traffic sign detection model surpassed the existing
detection model in terms of mAP. The mAP value for the
suggested RetinaNet-based traffic sign detection model was
98.2%. Figure 11 illustrates a visual depiction of the perfor-
mance evaluation, contrasting the proposed detection model
with existing detection models. Figure 12 displays a few of
the traffic sign detection results.

4.2.2 Classifier performance

Various performance metrics are generally employed to
assess the effectiveness of a classification model in correctly
identifying instances. Classification performance relies on
several key metrics such as accuracy, precision, recall, and

Fig. 12 Traffic sign detection results

Table 4 Performance metrics

Performance metrics Equation

Accuracy (TP+FP)
(TP+FP+TN+FN)

Precision (TP)
(TP+FP)

Recall (TP)
(TP+FN)

F1-score 2 × (Precision×Recall)
(Precision+Recall)

where TP � True positive, TN � True Negative, FP � False positive,
FN � False negative

Table 5 Performance of traffic sign classification model

Performance Metrics Obtained results (%)

Accuracy 98.32

Precision 99.16

Recall 97.92

F1-score 98.53

F1-score, which are crucial in assessing the quality of the
classification model’s results. Table 4 lists the mathematical
formulas for the performance parameters.

Table 5 provides the performancemetrics for the proposed
traffic sign classificationmodel. Table 3 demonstrates that the
suggested classification model produced enhanced classifi-
cationfindings. The accuracy rate of the suggested traffic sign
classification model was 98.32%. The efficiency of the sug-
gested traffic sign classification model is depicted in Fig. 13.
Figure 14 displays some of the classification outcomes for
traffic signs.
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Fig. 13 Performance evaluation of proposed traffic sign classification
model

Fig. 14 Traffic sign labeled with classification results

4.2.3 Traffic sign classification module based
on DenseNet-121

The training speed and convergence of DenseNet-121, with
existing deep learning architecture, depend on various factors
such as the dataset, hardware, optimization techniques, and
specific hyperparameters used during training. DenseNet-
121 is a specific variant of the DenseNet architecture with
121 layers, and it has demonstrated several advantages in
terms of training dynamics. It is essential to benchmark the
performance of DenseNet-121 against other architectures on
a specific task and dataset to draw conclusions about its rela-
tive efficiency.Additionally, advancements in hardware (e.g.,
GPUs and TPUs) and software optimization techniques can
influence the training speed of deep learning models, making
it necessary to consider the latest tools and technologieswhen
assessingmodel performance. In Fig. 15, the training and test
accuracywith running time of three algorithms are evaluated.
Traffic Sign Classification Module Based on DenseNet-121
about 52 epochs, DenseNet-121, achieves 98% the highest
training speed when compared with existing algorithm such
as Faster RCNN.

Fig. 15 Training speed with running time for DenseNet-121

Fig. 16 Convergence speed

Fig. 17 Focal loss function

Figure 16 illustrates the FPN of various iterations in order
to learn the optimal policy of the reality mining dataset. The
operating speed of the proposed work is analyzed for 220
iterations. For the FPN process, the convergence speed is
analyzed with 5 10 iterations. This shows that our proposed
algorithm has a higher convergence speed than the Faster
RCNN process. The proposal algorithm’s equivalent state
value helps reduce the high dimensionality for learning the
process efficiently.
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Table 6 Comparison of FPN
performance with pre-trained
model DenseNet-121

Models Accuracy Precision Recall F1_score

YOLOV3 92.34 91.41 92.45 94.18

Faster RCNN 95.48 96.23 97.16 88.16

VGG-16 86.26 94.12 93.22 89.15

ResNet-18 Model 91.45 94.25 93.11 80.16

Proposed model 98.12 98.16 97.26 92.54

4.2.4 Focal loss function

In Fig. 17, focal loss is a loss function designed to address
the class imbalance problem, particularly in object detection
scenarios where there is a large number of background exam-
ples compared to positive (foreground) examples. The class
imbalance problem arises when the number of instances of
one class significantly outweighs the instances of another
class, leading the model to be biased toward the majority
class. In object detection, most of the image regions are often
background, making the problem more pronounced.

4.2.5 Comparison of FPN with pre-trained models

Transfer learning involves leveraging knowledge gained
from pre-training a model on one task to improve perfor-
mance on a different but related task. When integrating
pre-trained models with feature pyramid network (FPN) for
improved performance, the general approach is to use a pre-
trained backbone network and build the FPN on top of it. By
integrating a pre-trained backbone with FPN, you can ben-
efit from the generalization capabilities of the pre-trained
model while simultaneously leveraging the multi-scale fea-
ture representation provided by FPN. This combination is
particularly powerful for tasks like object detection, where
capturing both high-level semantic information and fine-
grained spatial details is essential for accurate predictions.
The integration of pre-trained models with FPN helps in
achieving better performance on a wide range of com-
puter vision tasks with limited annotated data. According to
Table 6, FPN contributes to improving the accuracy of object
detectionmodels, especially in scenarios with a large number
of background examples, by addressing the class imbalance
problem. It allows the model to focus more on challenging
instances, leading to better performance in terms of accuracy,
precision, recall, and F1-score, particularly for the minority
class (foreground) in object detection tasks.

5 Conclusion

Road safety and traffic control are significantly impacted
by the creation and implementation of a TSR system. TSR

systems offer several benefits. They improve the driver’s
understanding of their surroundings by delivering precise and
timely details regarding speed limits, traffic rules, and the
state of the roads. This promotes safe driving practices and
lessens the possibility of accidents brought onbycarelessness
or disregard for traffic signs. These technologies can also help
to reduce infractions and increase adherence to traffic laws,
which will make the roads safer for all road users in the long
run. The development and use of autonomous vehicles are
further supported by TSR technologies. These technologies
enable autonomous vehicles to navigate and interact with
their environment successfully by correctly recognizing and
interpreting traffic signs. By ensuring that vehicles can react
appropriately to traffic signs, this technology improves the
safety and dependability of autonomous driving, contribut-
ing to increased traffic flow efficiency and road safety. The
accuracy and dependability of TSR systems are improving
due to ongoing developments in computer vision and AI.
This paper introduces a deep learning system designed for
efficient TSR. The RetinaNet-based traffic sign detection
model and the DenseNet-121-based traffic sign classification
model constitute the suggested TSR model. The detection
and classification models are evaluated using the GTSDB
and GTSRB datasets, each serving their purpose in assess-
ing the models. The results indicated that the suggested TSR
system has enhanced its ability to detect and classify traffic
signs.
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