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Abstract

The classification of chromosome images holds immense significance in the fields of genetics, clinical diagnostics, and
medical research. It plays a pivotal role in the precise identification of genetic abnormalities, allowing for early and accurate
diagnosis of various genetic disorders and birth defects. The automation of this process offers significant advantages in terms
of time and human resource savings. This study introduces the Model Architecture Search System (MASS), designed to adapt
itself to classify chromosome images for karyotyping. The MASS framework aims to construct an optimal model architecture
for the specific classification task by leveraging predefined CNN backbones, activation functions, and loss functions. There
are 12 pre-trained networks, 5 activation functions, and 2 loss functions in the selection set of the MASS. The proposed
framework utilizes the Tree-structured Parzen Estimator (TPE) algorithm based on Bayesian Optimization, eliminating the
need for manual model searching processes and finding optimal model architecture. The suitable model structure for the
relevant dataset is generated from these groups automatically by using TPE. Experiments conducted on two distinct datasets
demonstrate the superior performance achieved by this proposed mechanism.
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1 Introduction

The karyotyping is a lab procedure used to examine chro-
mosomal count, size, and shape in cytogenetics. It is a
useful method for detecting genetic diseases and chromoso-
mal anomalies [1]. Geneticists and medical professionals can
diagnose chromosomal diseases, such as Turner syndrome,
Down syndrome, and many others by investigating kary-
otypes [1, 2]. To detect abnormalities, karyotyping involves
arranging pairs of chromosomes from 1 to 22, followed
by gonosomes, or sex chromosomes (XX: female and XY:
males), based on their size. However karyotyping offers an
invaluable opportunity to extract information from chromo-
somal images, it is a labor-and time-intensive procedure.
Sorting through the chromosomes, which are rolled up and
overlapped, one by one, and making decisions based on band
transitions is a tedious process. As the volume of genetic
and cytological data increases, there is a huge demand for
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automated and accurate chromosome identification systems.
The many research on automatic karyotyping has been con-
ducted to reduce this workload [3-7]. At the beginning of an
end-to-end karyotyping system, the chromosome detection
problem is handled, and then the images are classified for
pairing [8]. Deep learning models have achieved significant
performances in the classification stage in the karyotyping
process [9-11].

Pre-trained DNN architectures are employed for diverse
image classification challenges, leveraging their intrinsic
capabilities in domain adaptation. Each model, character-
ized by a distinctive graph architecture, yields varying
outcomes across a spectrum of tasks. Hence, the iden-
tification of a suitable model for the relevant problem
necessitates numerous iterative trial-and-error procedures,
entailing a labor-intensive workload. The main motivation
of this paper is to build optimal DNN models for karyotyp-
ing by mitigating this iterative burden. The primary objective
of this research is to build an automated approach, based on
Bayesian Optimization (BO) principles, for the systematic
searching of an optimal model tailored to chromosome clas-
sification datasets. Within this framework, users are afforded
a streamlined process by which they input the names of their
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preferred pre-trained models, along with the desired training
and testing ratios, into the system. Subsequently, the sys-
tem autonomously selects a suitable pre-trained model for
the specific training dataset. The Model Architecture Search
System (MASS) conducts the seeking mechanism for an
appropriate pre-trained model. Moreover, the essential prop-
erties of MASS are extended beyond model selection by
covering the identification of an optimal loss function and
activation function deemed suitable for the given dataset.
The consideration of loss and activation functions is crucial,
because those associated with the pre-trained model may not
be optimal with the task at hand.

1.1 Related works

Within the area of automatic karyotyping investigations, the
field is typically divided into two categories: the first being
the detection/segmentation of chromosomes, and the second
involving the classification of chromosomes. In this study,
because the primary focus is the classification task, greater
emphasis has been given to the examination of image classi-
fication studies.

Minaee et al. [12] introduced a method characterized by
its geometric approach for the segmentation of partially over-
lapping chromosomes. This method comprises two separate
phases. The initial phase is dedicated to the detection of chro-
mosome clusters that cover chromosomes exhibiting either
contact or partial overlap. This detection process relies on the
application of three fundamental geometric criteria related to
the geometry of the chromosomes, specifically, those based
on the surrounding ellipse, convex hull, and skeleton and
end points methodologies. Then, in the second phase, a sep-
aration strategy utilizing a defined cut point is employed to
isolate individual chromosomes within the identified clus-
ters. The application of this method yielded an accuracy rate
of 91.9% when applied to a dataset comprising 62 partially
overlapping and touching chromosomes. Another segmen-
tation work is presented in [13]. The authors proposed a
U-net architecture [14] with specific adaptations to enhance
model training. The dataset used in their study comprised
40 metaphase images gathered from Renji Hospital. To miti-
gate overfitting, the authors implemented data augmentation
techniques. Prior to augmentation, the dataset images were
divided into subsets of 25 for training, 5 for validation, and 10
for testing. Following the augmentation process, the dataset
size expanded to 3500 images for training and 700 images for
validation. Their approach yielded 96.97% Dice similarity
coefficient achievement. One of the leading studies on chro-
mosome classification is given in [15]. Swati et al. introduced
a novel approach based on Siamese networks, where these
networks base their training on comparing pairs of chromo-
somes. The proposed model achieved 84.6% accuracy over
a dataset that contains 1740 images. The Chromenet model,
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as introduced by Menaka et al. [9], is designed for the clas-
sification of metaphase Q-banded chromosome images with
a resolution of 64x64 pixels. The authors conducted a com-
prehensive comparison of commonly used optimizers in the
literature and found that the ADAM optimizer outperformed
others. Their study utilized the dataset provided by BioImLab
[11], and it reported 93.1% accuracy as the highest achieved
score, validated through a tenfold cross-validation process.
In another significant paper [16] concerning chromosome
classification, Lin et al. presented an impactful study that
utilized the original CIR dataset and the Inception-Resnet-
v2 model for their analysis. CIR-Net uses a rotation-based
data augmentation method to increase model performance.
The presented model is designed to process images with
dimensions of 224 x 224 pixels. In the paper, for the high-
est achieved metrics, 95.98% accuracy and 96% F1 score are
reported. Given the relatively low resolution of the BioImLab
dataset, addressing the image classification across 24 dis-
tinct classes is a challenging task. To overcome this struggle,
Menanka et al., as proposed the use of a Laplacian pyrami-
dal super-resolution network (LaPSRN) as a preprocessing
step for the images before classification in [17]. This novel
approach enhanced the image quality for classification by
upscaling them to higher resolution levels. The authors noted
a significant performance improvement of 3% over the base-
line model with the implementation of this pre-processing
technique. Moreover, the study included a hybrid classifi-
cation approach that utilizes feature vectors extracted from
the CNN model and then classifies them by using a support
vector machine (SVM). Remarkably, this framework yielded
the highest performance rate, achieving 94.6% accuracy in
classification tasks on the BiolmLab dataset. In this study,
it is also stated that the Swish [18] activation function is
preferred instead of the usual ReLU as the activation func-
tion. In another study [10], both CIR and BiolmLab data sets
are used. The CNN models that form the basis of the study
are ResNet50 and SENet50. Among the residual layers, the
authors chose to use the Leaky RelLU activation function.
With the proposed framework, the highest 92.97% accuracy,
93.00% recall, and 92.98% precision are obtained for the CIR
dataset, while these values are expressed as 92.58%, 93.08%,
and 92.57% for the BiolmLan dataset. Another significant
study was presented by Al-Kharraz et al. [8]. This research
introduced a comprehensive end-to-end system designed for
karyotyping. The methodology involved the initial detec-
tion of chromosomes within metaphase images through the
implementation of YOLOV2. After this detection process, a
fine-tuned version of the VGG19 model was developed for
the classification of these detected chromosomes. The results
of the study demonstrated an achievement of 94.11% accu-
racy over the BiolmLab dataset.
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1.2 Contributions
Contributions of this paper are listed as follows:

e The proposed fully automated method seeks a proper
pre-trained model for chromosome classification. User-
defined parameters are only the lists of pre-trained
models, activation functions, and loss functions.

e The MASS strives to find a suitable model over the set
given for training using TPE that is based on Bayesian
Optimisation.

e The proposed framework also searches for the activation
function that is optimum for the problem instead of the
activation that comes with the pre-trained model.

e The loss function is selected by MASS and end-to-end
model architecture search is performed.

2 Materials and methods
2.1 Data set

Two distinct datasets were employed in this research to carry
out the study cases. The first of them, referred to as the
CIR-Net dataset, is detailed in [16], while the second one
is provided by the BiolmgLab Group in [11].

The CIR dataset, as described in [16], was generated at
the Medical Genetic Center and the Maternal and Children
Metabolic-Genetic Key Laboratory of Guangdong Women
and Children Hospital. It aims to advance the field of
automated chromosome karyotyping and facilitate research
endeavors. The dataset contains 65 normal karyotypes. Each
normal karyotype comprises a complement of 46 chromo-
somes. Thus, the dataset involves a total of 2990 chromosome
samples which are excreted from 32 male and 33 female sub-
jects. Chromosomes 1 to 22 are identified as paired, while
chromosome 23, indicative of gender, is considered singular.
The images of chromosomes were captured at a resolution
of 8 bits per pixel, and their dimensions conform to a stan-
dardized size of 224 x 224 pixels. Some samples of the CIR
dataset are given in Fig. 1a. The number under the images
presents the chromosome ID.

The BiolmLab chromosome dataset for classification
(BIL) was presented in [11]. The dataset was collected by
expert cytologists with specialized knowledge and expertise
in the field. The dataset contains 5,474 chromosome images,
organized into 119 specific cell samples. Within each cell
folder, a set of 46 chromosomes is represented, reflecting the
typical karyotype complement found in human cells. Chro-
mosome image sizes are different from each other. Hence,
in this paper, each chromosome is placed in the middle of a
224 x 224 template and brought to the sizes required by pre-
trained models. Illustrations of the BIL dataset are depicted

in Fig. 1b. It is discernible from these exemplars that the BIL
dataset exhibits a comparatively lower resolution. The char-
acteristic band transitions that serve as identifying features
of chromosomes are notably faint. This makes their visual
classification substantial complexity and demands manual
effort.

2.2 TPE-based fully-automated model architecture
search

2.2.1 The theoretical background of TPE

The TPE [19-21] is a Bayesian Optimization [22] algo-
rithm widely used for hyperparameter tuning and global
optimization of expensive-to-evaluate functions. It is a prob-
abilistic model-based optimization technique that uses a
tree-structured algorithm to efficiently search for the opti-
mal set of hyperparameters. The algorithm iteratively refines
its probability models by sampling new configurations, eval-
uating them, and updating the probability densities. It selects
the next candidate parameters by optimizing the acquisition
function. In contrast to the grid and random search strategies,
TPE distinguishes itself by not evaluating specific statis-
tical points within the hyperparameter space. TPE, as an
instance of SMBO, adopts a Gaussian Process (GP)-based
[23] approach, incorporating a tree structure. Within TPE,
different functions are used for constructing the surrogate
model, evaluating between regions above and below a spec-
ified threshold value [19, 20, 24].

Specifically, TPE’s surrogate model is established over
the predefined domain of the optimization problems which
encompasses the pre-trained model selection, activation
function determination, and loss function identification. The
principal objective of the GP within TPE is to construct a
surrogate model capable of diminishing the variance in the
output response at unobserved points residing over the opti-
mization domain. As each iteration progresses, TPE seeks
to estimate the optimal hyperparameter point based on the
growing ensemble of previously observed data points. Hence,
as the number of observations accumulates, the surrogate
model’s average response tends to converge [24].

The main goal of a hyperparameter estimation algorithm is
to identify the optimal set of hyperparameters that yield 6* =

argmin £(#). To accomplish this, TPE relies on sequential
0e®

observation pairs (S;, y;). Herein, S £ {61,05,63,---, 0k}
represents K hypermarameter set of s, y refers the loss
value, i indicates index of trials. The set of observed pair
is Diy = {(S1, 1), (82, ¥2), - - (St yo)}. TPE aims to find
next the best hyperparameter set S;4+1 by using Bayesian
approach over P (S;11|D;.¢). The TPE is fundamentally built
on probability density estimation. It models the objective
function as a probability distribution over the hyperparame-
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(a) CIR Samples

Fig. 1 Examples of chromosomes 1, 5, 10, and 15 from the CIR and
BIL datasets. CIR dataset has a higher resolution than BIL. The bands
within the chromosome can be seen more clearly. In addition, while the

ter space. The key idea is to maintain two probability density
functions given in Eq. 1.

0S) ify < y*
(S|D) = . ()
P g(S) ify = y*

£(S) represents the conditional probability density of observ-
ing a configuration S given that its objective function value
y is less than or equal to the best observed value y*. This
models the better region where good results can be obtained.
However, g(8S) is used worst region. These conditional prob-
ability density functions are updated iteratively as more data
points are collected during the optimization process. Due to
its ability to recommend more promising candidate hyper-
parameters for evaluation, TPE facilitates a clearly swifter
recovery of the loss function’s value in comparison to con-
ventional random or grid search methods. This accelerated
convergence contributes to an overall reduction in the loss
function’s evaluation. Although TPE allocates additional
computational resources to select the next set of hyperparam-
eters in order to enhance model performance, it emerges as a
more sensible approach when considering the aggregate time
expended in comparison to grid and random search methods.
Hence, it has a crucial role in decreasing the effect of human
intervention in the model design process, effectively remov-
ing the manual searching from the loop [19, 25]. The TPE is
also used for categorical parameters. These parameters are
paired with an integer number and given to the algorithm.
In this study, TPE uses pre-trained model, activation, and
loss function flags as S £ {f, fa, f1}. The Hyperopt [20]
Python library is preferred to establish the TPE mechanism.
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10 15
(b) BIL samples

images are 224 x 224 in the CIR dataset, they are in different sizes in
the BIL. To make both data sets the same size, BIL samples are placed
in the middle of a 224 x 224 template

2.2.2 The model architecture search system based on TPE

There are two separate stages in the MASS structure, where
the user enters parameters and the framework searches for a
model for chromosome classification.

In the Parameter Definition Stage (PDS) (Fig. 2a), users
are tasked with the specification of sets comprising pre-
trained models, activation functions, and loss functions.
Users are only required to provide a list of parameter names
corresponding to these sets. In this framework, the MASS
automatically retrieves models from the Pytorch Image Mod-
els (TIMM) [26] library. Additionally, users are expected to
specify a training-to-test data ratio denoted as P%, which is
utilized to create training and test datasets. Notably, efforts
are made to preserve this ratio within each class, even in the
presence of imbalanced data sets. Furthermore, users have the
flexibility to indicate the number of folds to be employed for
cross-validation at this stage. For the specific investigation
in this work, a twofold cross-validation approach is adopted.
A total of 12 pre-trained models, 5 activation functions, and
2 loss functions are selected to constitute the sets (Table 1).
These selections are represented by a set of integer flags,
denoted as f. For pre-trained model set, f,, € [1, 12], acti-
vation function set f, € [1, 5] and loss functions f; € {1, 2}
notation is used. The union of these three flags constitutes the
set denoted as S. Within the set S, the parameters associated
with the corresponding flag values are utilized to build the
DNN model. The objective of TPE is to identify the most
suitable subset, denoted as S* for the given classification
task.

In the Model Search Stage (MSS), initially, TPE randomly
selects an initial point denoted as S°. A model is built based
on the parameters within S”. After this process, a twofold
cross-validation process is initiated. In this phase, the model
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(a) Parameter Definion Stage

Fig.2 The Model Architecture Search System (MASS) block diagram.
a In the User Defined Parameter stage, MASS needs two types of param-
eters from the user. In stage b, MASS starts the search process using

(b) Model Search Stage

the Tree-Parzen Estimator over the determined design param. sets. At
the end of each iteration, the best one among all recorded S’ sets is
exported as the optimum model parameters (S*)

Table 1 The design parameter Model FlagID  Activations FlagID  Loss Func. Flag ID
sets that necessitate the
definition by the user cspresnext50 1 ReLU 1 Cross entropy 1
seresnext50_32x4d 2
tv_resnext50_32x4d 3 LeakyReLU 2
densenet121 4
inception_v4 5 Mish 3
inception_resnet_v2 6
efficientnet_b4 7 Label smoothing 2
tf_efficientnetv2_m_in21k 8 SiLU 4
seresnext26d_32x4d 9
tf_efficientnet_b0 10
regnetx_064 11 GELU 5
regnety_064 12

Specifically, the work encompasses 12 different pre-trained models, 5 activation functions, and 2 loss functions.
These sets can be configured for other classification tasks. The Tree-Parzen Estimator methodology operates
on the basis of integer flag ID numbers to generate predictive outcomes

is trained according to hyperparameters set to 10 epochs, 24
mini-batch sizes, and a learning rate of 0.001. In addition,
while each mini-batch size is acquired during the training
phase, the input images are rotated with the degree obtained
from a uniform distribution between [—30, 30] degrees and
applied in data augmentation. The TPE loss is used as Layg =
1 — Fayg during model validation. This means that the average
of the validation F-score values obtained from the models
forms the basis of TPE’s loss. To facilitate the minimization
of the TPE loss function, the avg F-score is subtracted from
1. In a single iteration of TPE, the loss value obtained through
twofold cross-validation is associated with the S® parameters
and recorded. Then, TPE begins its operation to estimate S'.
The same process continues after calculating the appropriate
set of S for the next step. In this study, a value of 30 is
chosen for the TPE iteration. After the MSS is completed,
TPE provides the output in the form of model architecture
parameters (S*) that yield the best validation loss.

|

Test

DNN
Model

MASS Processi‘.
over 2-Fold

Optimum
Model Training]

f

Train
Evaluation
via Test Data

‘Whole Dataset
The Performance

|

Fig.3 Theevaluation of the models, which have been identified through
the MASS procedure, is conducted over test data. Following the training
of these optimal models on the complete training dataset, their perfor-
mance is assessed using the independent test dataset

3 Experimental results and discussion

The MASS approach is tested on two commonly employed
datasets within the literature. The first dataset, denoted as
the CIR dataset, comprises a total of 2990 data instances,
as previously noted. The second dataset, referred to as the
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BIL dataset, consists of 5474 chromosome samples for 24
classes. As depicted in Fig. 1, the BIL dataset presents a
more intricate band interweaving pattern that makes the prob-
lem harder. Otherwise, images in the CIR dataset have more
clear chromosome band transitions. Hence, an initial phase
of the evaluation procedure focuses on assessing the intrin-
sic performance characteristics of the MASS methodology.
Then, comparative evaluation vis-A -vis existing similar deep
learning-based studies in the literature.

Following the completion of both the PDS and MSS, the
process of determining the optimal model for the training
data is finalized. Subsequently, the model undergoes a testing
phase wherein its performance is evaluated (Fig. 3). During
this testing phase, the model is reconfigured with the opti-
mized parameters denoted as (S*). In this step, the model is
trained using the entire training dataset. Then, performance
metrics and results are acquired through the evaluation of the
model’s predictive capacity when tested against the indepen-
dent test dataset.

3.1 The methodology for experimental
investigations

While performing evaluations on the previously described
datasets, the allocation of training and testing samples is
established based on the configuration recommended by pre-
vious works, specifically adhering to an 80:20 split for the
CIR dataset and a 70:30 division for the BIL dataset, as men-
tioned in [16] and [9] respectively. In order to evaluate the
robustness of the MASS, performance metrics are reported
across 10 individual random trials. The partitioning of data
is executed by using the scikit-learn Python library [27],
utilizing the seed parameter of the random number gener-
ator (RNG). This seed parameter, when set to a fixed value,
ensures a similar separation of training and testing samples
during each execution on the same seed value. This is an
important approach for programs to be reproducible. In the
context of this study, integer values within the range [0,9]
are selected as seeds for the RNG. The MASS procedure is
run independently for each randomized trial. This approach
facilitated an investigation into the model structures built by
MASS under varying data distributions.

As comparison metrics, accuracy (ACC), precision (PRE),
recall (RCL), and macro F-Score (Fyacro) are used. These
values are obtained from the confusion matrix. The benefit
of the confusion matrix (K € :2**?%) lies in illustrating the
model’s ability to accurately classify the true positive class
from the others. In the MASS training, there is an optimum
model training phase after finding S* (Fig. 3). The pre-trained
model selected at the end of TPE is trained over a total of
20 epochs. 0.001 is used for the initial learning rate, and
this value is multiplied by 0.75 after each epoch. Adam is
preferred for the optimizer. Mini-batch size is handled as 24.
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The specifications of the platform used for training can be
listed as 17-6700K 4.00 GHz CPU, 16 GB RAM, and Nvidia
1080Ti GPU.

3.2 The performance analysis and comparison of
MASS

The initial performance evaluation of the MASS system is
evaluated by the Model Search Stage (MSS), commencing
after the establishment of key parameters. In this phase,
the TPE algorithm endeavors to identify the optimal model
configuration for the prevailing data distribution through a
twofold cross-validation process applied to the training set.
Figure 4 illustrates the progression of average F-score values
generated in the MSS across three different RNG seeds (0,
2,and 9).

At the beginning of the MSS, TPE initiates its search
by randomly selecting the S® configuration and iteratively
improves its approach. It is noteworthy that TPE does not
consistently converge to a superior solution with each itera-
tion, as evidenced by the oscillations evident in Fig. 4. Within
each TPE iteration, a triad consisting of a pre-trained model,
an activation function, and a loss function is experimented
with. Once the predefined iteration count of N; = 30, as pre-
ferred in this paper, after ending the TPE process, the optimal
model parameters are reported as the final output. The whole
training data is used in the last training phase where the S*
model is built. The circular markers on Fig. 4 show the iter-
ation in which the S$* model is found.

After the completion of the MSS phase, the resultant mod-
els, trained for each RNG seed are handled for comprehensive
testing. The outcomes derived from the proposed MASS
algorithm, when applied to the CIR and BIL datasets, are
detailed in Tables 2 and 3, respectively. These results present
the architectural configuration of the model determined by
MSS for each RNG seed, along with the performance met-
rics generated by this particular model. It should be noted that
due to the differing partition of training and testing datasets at
varying RNG values, the MASS algorithm yields divergent
model architectures.

It is considerable that, despite the variability in training
and testing data, the preferred models identified by MASS
consistently exhibit a superior level of performance. This is
also manifested in the results, which not only showcase a
notable degree of accuracy (ACC) but also demonstrate a
balance between precision (PRE) and recall (RCL) values.

Table 2 demonstrates a significant facet of the study,
namely that the MASS framework focuses only on the SE-
ResNext model and the CSP-ResNext model among 12
models for the CIR data set. This observation suggests that
MASS consistently identifies and endorses these two mod-
els as the most optimal pre-trained models for the CIR
dataset across multiple trials. The preference for these models
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Table 2 Through 10 different random experiments carried out on the CIR dataset, the MASS consistently generates reliable architectural configu-

rations
RNG seed Selected model Loss Func Act. Func ACC PRE RCL Fracro
0 seresnext50 (2) LS (2) L.ReLU (2) 0.9866 0.9872 0.9818 0.9840
1 seresnextS0 (2) LS (2) Mish (3) 0.9833 0.9841 0.9840 0.9838
2 cspresnext50 (1) LS (2) GELU (5) 0.9866 0.9872 0.9765 0.9803
3 seresnext50 (2) LS (2) GELU (5) 0.9766 0.9779 0.9669 0.9706
4 cspresnext50 (1) LS (2) GELU (5) 0.9849 0.9862 0.9798 0.9824
5 seresnext50 (2) CEL (1) Mish (2) 0.9799 0.9808 0.9696 0.9736
6 cspresnext50 (1) LS (2) SiLU (4) 0.9833 0.9844 0.9723 0.9767
7 seresnext50 (2) LS (2) ReLU (1) 0.9799 0.9812 0.9754 0.9776
8 cspresnext50 (1) LS (2) Mish (3) 0.9799 0.9812 0.9749 0.9775
9 cspresnext50 (1) LS (2) L.ReLU (2) 0.9816 0.9823 0.9819 0.9818
Overall evaluation cspresnext50-5 CEL-1 GELU-3 Average scores

seresnext50-5 LS-9 Mish-3 0.9823 0.9833 0.9763 0.9788

These configurations cover pre-trained model choices, loss functions, and activation functions. The consistent performance exhibited by these
configurations on test data attests to their suitability for the CIR dataset. In the "Overall Evaluation" row, the two most frequently selected
parameters are reported. The values in parentheses are the flag ID of the relevant parameter

implies their strong compatibility with the CIR dataset. Fur-
thermore, a detailed examination of the chosen loss functions
reveals that label smoothing (LS) is consistently favored in
9 out of 10 experimental trials, while Cross Entropy Loss
(CEL) is chosen only once. This pattern in loss function
selection indicates the robustness and effectiveness of Label
Smoothing in the context of the relevant data. Additionally,
the investigation of activation functions shows that the most
suitable choices for the CIR dataset are GELU and Mish.
Each of them is elected by the MASS 3 times, while the oth-
ers are preferred less frequently. This finding exhibits that the
MASS consistently achieves superior performance by strate-
gically aligning with the most appropriate configurations for
the CIR dataset.

Table 3 presents the experimental outcomes on the BIL
dataset, and a distinct pattern emerges when compared to the
findings in the context of the CIR dataset. In contrast to the
CIR dataset, MASS exhibits a propensity to select not just
two, but a variety of models across different trials for the BIL

dataset. Particularly, within the subset of models chosen, the
SE-ResNext and CSP-ResNext models emerge as prominent
selections, with the SE-ResNext model displaying a higher
prevalence in the BIL dataset. Analyzing the loss function
aspect, a significant difference is observed in comparison to
the CIR dataset. While LS continues to maintain its promi-
nence, there is a reduction in the disparity between CEL and
LS. Specifically, CEL is selected by MASS four times across
different trials. However, LS is again the most selected loss
function. Regarding activation functions, whereas Mish and
GELU are optimally selected functions for the CIR dataset,
MASS determines that ReLU and Leaky ReLU are better
suited for the BIL dataset. It is worth noting that although the
architectural configurations identified by MASS vary when
applied to training and test data with different random distri-
butions, the performance on the test data remains relatively
stable. This underscores MASS’s ability to consistently pin-
point the most fitting model architectures for chromosome
datasets.
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Table 3 Evaluation of MASS on BIL dataset over 10 experiments

RNG seed Selected model Loss func Act. func ACC PRE RCL Fracro
0 cspresnext50 (1) LS (2) Mish 0.9598 0.9617 0.9610 0.9610
1 cspresnext50 (1) LS (2) L.ReLU 0.9507 0.9530 0.9474 0.9496
2 seresnext50 (2) LS (2) L.ReLU 0.9580 0.9603 0.9592 0.9594
3 tf_effi.netv2 (8) CEL (1) Mish 0.9483 0.9488 0.9496 0.9484
4 seresnext50 (2) LS (2) L.ReLU 0.9562 0.9586 0.9552 0.9562
5 seresnext50 (2) CEL (1) SiLU 0.9428 0.9455 0.9424 0.9433
6 seresnext50 (2) LS (2) ReLU 0.9525 0.9543 0.9536 0.9538
7 inc._resnet_v2 (6) LS (2) ReLU 0.9428 0.9454 0.9398 0.9419
8 cspresnext50 (1) CEL (1) ReLU 0.9544 0.9559 0.9533 0.9542
9 seresnext50 (2) CEL (1) SiLU 0.9537 0.9534 0.9551 0.9538
Opverall evaluation cspresnext50-3 CEL-4 ReLU-3 Average scores

seresnext50-5 LS-6 L.ReLU-3 0.9519 0.9537 0.9517 0.9522

According to CIR, the proposed framework also shows a tendency to choose different models over this dataset. However, SE-ResNext still maintains
a superior advantage. In the activation function, the MASS tends to the selection of ReL.U and Leaky ReLU

Table 4 Examination of the

architectures found by MASS b CIR flat:flset e BIL c.lata.lset o

for two datasets across all Specificity Sensitivity AUC Specificity Sensitivity AUC

chromosome classes according 1 09924002 1.0004£0.00  1.000£0.00 09904001  1.000£0.00  1.000:0.00

to Specificity, Sensitivity, and

AUC values 2 0.995+0.01 0.999-+0.00 1.000=£0.00 0.98240.02 0.999+0.00 0.999-+0.00
3 0.979+0.02 1.000=£0.00 0.996+0.01 0.96240.02 0.999+0.00 0.992+0.01
4 0.99240.01 1.000£0.00 1.000£0.00 0.97240.02 0.99940.00 0.99440.01
5 0.97240.02 0.99940.00 0.996+0.01 0.97840.01 0.99940.00 0.99240.01
6 0.98740.02 0.998+0.00 1.000£0.00 0.9354+0.03 0.99740.00 0.985+0.01
7 0.97940.02 1.000£0.00 0.99940.00 0.95140.02 0.9984+0.00 0.988+0.01
8 0.99540.01 0.99940.00 1.000£0.00 0.94040.03 0.99740.00 0.98740.01
9 0.99240.01 0.99940.00 1.000£0.00 0.95440.03 0.99740.00 0.990+0.01
10 0.97440.03 0.99940.00 0.996+0.01 0.9584+0.02 0.9984+0.00 0.990+0.01
11 0.98240.02 0.99940.00 0.99740.01 0.9584+0.02 0.9984+0.00 0.99240.01
12 0.99040.01 0.9994-0.00 1.000£0.00 0.96440.02 0.9994-0.00 0.99040.01
13 0.99040.01 1.000£0.00 1.000£0.00 0.95940.02 0.9984+0.00 0.99140.01
14 0.96940.02 0.99940.00 0.99240.01 0.92640.03 0.99640.00 0.98240.00
15 0.98240.02 0.99940.00 0.99740.01 0.93140.03 0.99740.00 0.98440.01
16 0.98240.02 0.99940.00 0.99740.01 0.91940.04 0.99740.00 0.98440.01
17 0.98740.02 0.99940.00 1.000£0.00 0.9474+0.04 0.99740.00 0.98440.01
18 0.98740.02 0.99940.00 1.000£0.00 0.95740.03 0.99940.00 0.98940.01
19 0.97440.03 0.99940.00 0.99940.00 0.90140.04 0.998+0.00 0.978+0.01
20 0.977£0.02 0.999+0.00 0.99540.01 0.96240.02 0.998+0.00 0.992+0.01
21 0.977+0.03 0.998+0.00 0.996+0.01 0.97140.03 0.999+0.00 0.992+0.01
22 0.969+0.03 0.998+0.00 0.992+0.01 0.940+0.03 0.995+0.00 0.989+0.01
23 0.969+0.04 0.999-+0.00 0.996+0.01 0.92440.03 0.997+0.00 0.991+0.01
24 0.933+0.08 1.000+0.00 0.994+0.02 0.964+0.05 1.000=+0.00 0.993+0.02

The metrics are provided based on the average of ten random trials. A standard deviation of zero indicates
that there is no significant value beyond the second decimal point

While the overall superiority of the models discovered
by MASS is evident when assessing their general achieve-
ment, Table4 is provided to scrutinize the performance of
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each class individually and identify classes where challenges
arise over specificity, sensitivity, and area under curve (AUC)
values. The findings represent the average across 10 exter-
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Table 5 The Comparison of - -
MASS performance over the Model Train test ratio ACC PRE RCL Fracro Source
CIR dataset by using 80% Lin et al. [16] 80:20 0.9598 0.9600 0.9600 0.9600 Table.1
training and 20% test ratios
Wang et al. [10] 85:5:10 0.8611 0.8025 0.8322 N/A Table.1
Proposed MASS 80:20 0.9823 0.9833 0.9763 0.9788 Table.3
The source column indicates from where the relevant performance values are extracted
Table 6 The Comparison of . -
MASS performance over the Model Train test ratio ACC PRE RCL Fracro Source
BIL dataset by using 70% Wang et al. [10] 85:5:10 09258 09257 09308  N/A Table.1
training and 30% test ratios
Menaka et al. [9] 70:30 0.9310 N/A N/A N/A Table.10
Al-Kharraz et al. [8] 80:20 0.9386 0.9411 0.9451 0.9418 Table.10
Menaka et al.[17] 70:30 0.9460 N/A N/A N/A Table.3
Proposed MASS 70:30 0.9519 0.9537 0.9517 0.9522 Table.4

nally conducted random trials beside Table 3. In the context
of sensitivity, the models demonstrate a notable capability
in accurately detecting true negative samples. The standard
deviation appears as zero due to the precision of values
expressed with two digits after the decimal point. Upon
examination of specificity values, consistently high results
are observed. In particular, classes 14, 22, 23, and 24 are
identified as factors contributing to the reduced performance
of the model on the CIR dataset. When the BIL dataset is
considered, chromosomes 14, 15, 16, 19, and 23 adversely
affect the overall average performance.

Tables 5 and 6 present the average results derived from
10 separate trials conducted with the MASS, and they are
compared with findings from counterpart studies in the liter-
ature over the CIR and BIL datasets, respectively. To ensure
methodological consistency, the selection of train-test ratio
values adhered to the predominant ratios advocated in prior
literature for the respective datasets. Specifically, the values
in Tables 5 and 6 present a division of 80% for training and
20% for testing, as well as 70% and 30%, respectively. To
facilitate an enhanced understanding of the comparisons, the
"Source" column is added at the end of tables to indicate the
specific source from the relevant studies where the reported
values were extracted. This approach offers a more transpar-
ent and fair basis for assessing the performance of the MASS
model relative to existing proposals in the field.

When Table 5 is examined, the proposed framework per-
forms better than the other two studies on the CIR dataset. Itis
evident that higher results are produced not only in the ACC
context but also in PRE and RCL values. The results given in
Table 6 belong to the BIL dataset. Despite this challenging
data set, it is clear that MASS surpasses other studies.

4 Discussion and conclusion

The primary constraint of the presented method lies in the
extended trial and error procedures inherent in dealing with
large-scale datasets. MASS effectively alleviates researchers
from engaging in these trial-and-error tasks by assuming con-
trol over the entire process. The computational workload,
measured in FLOP (floating-point operations), is directly
linked to the user-chosen models and significantly influ-
ences their operational time. Another limitation is that MASS
refrains from intervening with pre-trained architectures. This
is deliberate since the algorithm is specifically crafted to
leverage the adaptability of pre-trained models when con-
fronted with new tasks. The results given in the tables indicate
the consistent capability of the MASS framework to effec-
tively build model architectures for chromosome data. In the
present work, a deliberate choice was made to focus on the
selection of 12 pre-trained models, 2 loss functions, and 6
activation functions. It should be noted that these parameter
sets can be enlarged in terms of number. Over an expanded
parameter set, performance values could be higher by using
TPE iteration size N, that is bigger than 30. Furthermore, the
MASS framework offers the flexibility to incorporate vari-
ous parameters. For instance, the selection of an optimizer
(Adam, RMSProp, Nadam, etc.) is a critical factor that affects
the performance across datasets, and this choice could also
be integrated within the MASS framework.

In summary, chromosome categorization is a labor-
intensive technique that is an integral part of chromosomal
karyotyping research. It stands as a prominent computer
vision challenge that necessitates effective solutions. The
fine-tuning strategy of pre-trained models offers an oppor-
tunity for considerable performance in the classification of
chromosome images. However, identifying the most suitable
model from the tens of times of existing options typically
involves a manual and time-consuming trial-and-error pro-
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cess. In the context of this research, the Model Architecture
Search System (MASS) framework is introduced, which
leverages the power of the Tree-Parzen Estimator that is
based on well-established the Bayesian Optimization mech-
anism. In addition to the TPE algorithm integrated into
the enhancement of the MASS framework, other optimiza-
tion algorithms such as Asynchronous Successive Halving
(ASHA) [28] and BOHB [29] play a crucial role for optimiza-
tion of machine learning models. These algorithms focus on
optimizing resources among workers to address complex and
time-consuming problems, particularly in the context of large
language models. The utilization of ASHA and BOHB will
provide valuable insights and directions for future research
endeavors in this domain. The TPE-based MASS frame-
work has been designed to facilitate the automated search
for an optimal model architecture built for the specific task
of chromosome image classification. Moreover, the capabil-
ities of MASS were extended beyond the mere selection of a
pre-trained model to identify the optimal activation and loss
functions pertinent to the classification task. This approach,
guided by the TPE criterion of expected improvement, strives
to construct the most suitable model architecture, and it
resolves the need for extensive manual experimentation for
chromosome image classification.
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