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Abstract
This paper proposes a multi-modal fusion algorithm for image filtering based on the guidance of local extrema maps. The
image is subjected to a smoothing process using a locally extremal maps-guided image filter, and the difference from the
original image forms the detail layer, while the smoothed image serves as the base layer. To preserve image details, both
the base and detail layers undergo a resolution reduction process, establishing a multi-scale decomposition hierarchy. The
base layer images at each level are decomposed using wavelet transform into low-frequency and high-frequency coefficients.
For the low-frequency component, a region-energy fusion rule with adaptive weight allocation based on spatial and gradient
information is employed, while the high-frequency component undergoes fusion using the AGPCNN fusion rule with neuron
weight assignment initialized. The detail layer is fused using a weighted averaging fusion rule. Finally, the base layer images
are fused through wavelet inverse transform. For the fusion of base and detail layers, a bottom layer employs the absolute
maximum principle, while the top layer utilizes an average weighted fusion rule. Through subjective and objective analysis,
experimental results indicate that the proposed fusion model algorithm not only effectively preserves edge and texture details
but also maintains good color fidelity and spectral distortion control. Comparative analysis with eight other advanced fusion
algorithms demonstrates superior fusion performance.

Keywords Image fusion · Multi-scale decomposition · Local extrema map · Guided filtering · Region energy

1 Introduction

With the advancement ofmodern remote sensing technology,
various Earth observation satellites continuously provide
remote sensing images with different spatial, temporal, and
spectral resolutions [1]. Satellite remote sensing is unable
to actively monitor changes, has low spatial resolution, and
cannotmeet high-precision requirements. The fixed orbit and
observation frequency of satellites result in a low frequency
of Earth observation, making it challenging to obtain timely
information for sudden events, leading to slowdata collection
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and low operational efficiency [2]. Different sensors high-
light different information in images; PAN has higher spatial
resolution, whileMS provides more spectral information [3].
For research purposes, the characteristic information of a
single image is insufficient to meet research objectives. High
spatial and spectral resolution is essential for a range of image
processing applications [4]. Therefore, the fusion of MS and
PAN images, also known as pansharpening, is crucial for
obtaining a comprehensive image with abundant spatial and
spectral information [5].

Researchers commonly classify fusion methods into three
levels based on the stage in the processing workflow and the
abstraction level of information, namely pixel-level, feature-
level, and decision-level fusion [6]. Pixel-level fusion meth-
ods directly manipulate pixels of source images, improving
image quality and referentiality through different rules.
Feature-level fusion methods extract objects of interest from
source images, combining features using different fusion
rules to create a multi-modal fusion image with highlighted
features. Decision-level fusion extracts information using
interpreted/labeled data. The principle of selection is linked
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to consolidated data. The main advantage of this approach
is that higher-level representations make multi-modal fusion
more robust and reliable [7].

Pixel-level image fusion methods can be categorized into
three types: spatial domain-based, transform domain-based,
and other methods. Spatial domain methods directly operate
on the pixels of source images, such as Weighted average,
PCA, and IHS. [8]. An example is the multi-scale exposure
fusion method with detail enhancement in the YUV color
space proposed by Qiantong Wang et al. [9]. Spatial domain
fusion methods are simple, efficient, and computationally
fast. However, the commonly used simple overlay operations
for fusion rules often significantly reduce the signal-to-noise
ratio and contrast of the resulting images. Classical transform
domain operations include pyramid transforms and wavelet
transforms [10]. Algorithms based on multi-scale transform
methods, such as Laplacian pyramids [11, 12], wavelet trans-
forms [13, 14], and hybridmethods, neural networks [15, 16],
play a crucial role in image fusion and have been proven
effective decomposition algorithms [17]. Fusion methods
based on Multiscale Transform (MST) are the most com-
mon traditional methods. They typically apply traditional
weighted fusion rules to base layers, overlooking global con-
trast [18]. To address these limitations, many scholars have
proposed improvements. For instance, Yu Zhang et al. intro-
duced a multi-modal brain image fusion method guided by
local extremevaluemaps, using twoguided imagefilterswith
local minimum and maximum mappings, respectively [19].
Veshki et al. presented a multi-modal image fusion method
based on coupled feature learning [20], separating the images
to be fused into relevant and irrelevant components using
sparse representations with the same support and Pearson
correlation constraints. However, their fusion images suffer
from severe color loss. Jie et al. proposed amulti-modalmed-
ical image fusion method based on multiple dictionaries and
truncatedHuberfiltering [21], usingmultiple dictionaries and
truncated Huber filters to separate images at different layers.
However, the color fidelity of the fused images is not high,
and there is significant spectral loss.

Addressing the shortcomings of the aforementioned algo-
rithms, this paper proposes a remote sensing image multi-
scale fusion model based on locally extreme maps-guided
image filters. The innovation lies in the following aspects:

(1) The use of locally extreme maps-guided image filters to
decompose the image into base and detail layers, com-
bined with wavelet transforms for further extraction of
details from the base layer.

(2) For low-frequency coefficients of the base layer, an
improved regional energy fusion rule is applied, enhanc-
ing pixel connectivity within regions to maintain color
consistency.

(3) For high-frequency coefficients of the base layer, an
improved AGPCNN rule.

2 Multiscale theory

In this section, we will introduce the general multiscale mod-
els.

Scale-space image processing is a fundamental technique
in computer vision for object recognition and low-level fea-
ture extraction [22]. The term "scale-space" was introduced
by Witkin when proposing a method for one-dimensional
signal processing through convolution with a Gaussian ker-
nel [23]. Scale-space can be considered as an alternative to
traditional statistical smoothing methods [24].

Li et al. proposed an Image Fusion Algorithm based
on Laplacian Pyramid and Principal Component Analysis
Transforms [12]. The Laplacian pyramid model reduces the
resolution of the image through downsampling, forming a
multi-scale transformation space to better extract image fea-
tures. The Principal Component Analysis method adopts a
dimensionality reduction approach to rank and reduce the
complex data information, seeking coordinate systems that
reflect patterns to the maximum extent. Both the Laplacian
pyramid and Principal Component Analysis methods used in
their work are multi-scale spatial transformation techniques.
The multi-scale spatial transformation model employed in
this paper also involves downsampling to enhance the extrac-
tion of image features.

The fundamental idea behind multiscale analysis is to
map points in high-dimensional space coordinates to low-
dimensional space while preserving similarity between the
two as much as possible.

The general steps of multiscale analysis are as follows:

(1) Evaluate the nature of the data and, considering the
data acquisition method, choose an appropriate analysis
approach.

(2) Determine the appropriate dimension based on the cri-
teria for evaluation.

(3) Assess the effectiveness and reliability of the results
obtained from multiscale analysis.

(4) Name the coordinate axes and classify objects based on
the spatial map of the data.

The general steps of multiscale analysis are illustrated in
Fig. 1.
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Fig. 1 The general flow of multi-scale analysis theory

3 Proposed fusionmodel

This section introduces the fusion model proposed in this
paper, termed the local extrema maps-guided fusion model
(LEMG). The fusion process of LEMG is outlined as follows:

(1) Smooth the source image using an image filter guided by
local extrema maps. Generate a detail layer by subtract-
ing the smoothed image from the source image, where
the smoothed image serves as the base layer.

(2) Performmulti-scale decomposition on both the base and
detail layers of two source images to extract additional
details.

(3) The base layer incorporates the global information of
the source image to minimize spectral loss, ensuring
the fused image retains the color fidelity of the source
image, decompose the base layers of multiple scales
using wavelet transform into low-frequency and high-
frequency components. Apply an improved regional
energy fusion rule to merge the low-frequency compo-
nents of each layer and an enhanced AGPCNN rule to
merge the high-frequency parts. For the detail layers,
use a weighted average fusion rule to create multiple
levels of merged detail layers.

(4) For each base layer, the wavelet inverse transform is
applied to form the fused base layers. The fused 3rd to

Fig. 2 Frame diagram of image fusion

Fig. 3 Comparison of filter results

4th layers of base layers and the corresponding detail
layers are fused using the rule of taking the absolute
value of the maximum to highlight the features of each
image. The fused images of the 1st and 2nd layers are
blended using an average weighting rule to smooth the
final fused image, achieving the optimal fusion effect.

The schematic diagram of the fusion model is depicted in
Fig. 2.

3.1 Local extrememaps-guided image filter

Classical filters are based on the concept proposed by the
Fourier transform. Filters separate useful signals from noise,
thereby improving the signal’s resistance to interference and
signal-to-noise ratio. At the same time, filters can filter out
uninteresting signal frequencies, achieving the goal of filter-
ing signal frequencies and improving analysis accuracy. For
images that require smoothing and highlighting edges, bilat-
eral filters are commonly used to achieve this goal. The main
idea is to construct a Gaussian kernel based on color intensity
distance and spatial distance.However, bilateral filters tend to
cause gradient reversal and produce artifacts when process-
ing edges, and the computation time is too long. Therefore,
Kaiming He and others proposed the concept of guided fil-
ters [25]. Figure 3 illustrates the distinct filtering outcomes

123



4378 Signal, Image and Video Processing (2024) 18:4375–4383

of bilateral and guided filters. From left to right, the filtered
images of the bilateral filter and the guide filter. The left col-
umn shows the filtering results of the bilateral filter, and the
right column shows the filtering results of the guided filter.

Guided filters are essentially an optimization algorithm
that constructs an energy function and thenminimizes it using
optimization strategies such as least squares andMarkov ran-
domfields. The energy function is usually defined as follows:

E � U + V (1)

where U is the data term, V is the smoothing term.
Guided filters require two source images, namely the

guided image and the input image to be processed. The func-
tion is defined as follows:

Oi � ak Gi + bk , ∀i ∈ ωk (2)

whereOi andGi are the output and guided images, ak and bk
are unique constant linear functions in the M × M window
ωk .

The energy function is defined as follows:

E(ak , bk) �
∑

i∈ωk

((ak Gi + bk − Ii )
2 +θ a2k ) (3)

where Ii is the input image, θ is a constant to prevent ak from
becoming too large.

YuZhang et al. introduced a guidedfilter based on a locally
extreme value map as the guided image for the input image,
thereby significantly suppressing the salient features of the
input image. First, the input image is filtered using the fol-
lowing formula:

IF � G(I , Imin, M) (4)

In the equations presented, IF , I , Imin, M represents the
post-filtered image, the input image, the local minimummap
of the input image, and the window size. The calculation
formula for Imin is given by:

Imin � ime(I , s) (5)

Here, ime denotes the morphological erosion operator,
and s represents a disk-shaped structuring element.

Subsequently, the filtered image is further processed
through a local maximum value mapping, with the calcu-
lation formula given by:

IF � G(IF , Imax, M) (6)

Here, I f , Imax represents the post-filtered image and the
local maximum image of IF . The calculation for Imax is as

Fig. 4 The results of image filtering using local extreme maps-guided
image filter

follows:

Imax � imd(IF , s) (7)

Here, imd denotes the morphological dilation operator.
The formula for the guided image filter based on local

extreme maps is given by:

Iout � LG(I , s, M) (8)

Here, Iout is the filtered output image, and LG represents
the guided image filter based on local extreme maps.

Prominent bright and dark features are removed from the
input image to obtain a smooth image. Subsequently, signifi-
cant features are obtained by subtracting the smoothed image
from the input image, according to the following formulas:

Ib � max(I − Iout, 0) (9)

Id � min(I − Iout, 0) (10)

In the following, Ib, Id denotes the bright feature map
and the dark feature map, with max, min representing the
maximum and minimum values, respectively.

The results of image filtering using local extreme maps-
guided image filter on the experimental data of this paper are
presented in Fig. 4. The images are the first to fourth filtered
images from left to right, with the left column showing the
filtering results of Image 1 and the right column showing the
filtering results of Image 2.

3.2 Fusion rule for low-frequency coefficients

The energy algorithm involves calculating the energy of
an image or pixel region. In the context of an image,
the grayscale value corresponds to the energy, with higher
grayscale values indicating higher energy. Generally, energy
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calculation involves summing the squared grayscale values
of each pixel within an image or region.

Conventional region energy algorithms typically select a
window region and employ a fixed weight multiplied by the
region’s pixels to compute the energy of the central pixel.
Iterating through the image matrix yields an energy matrix
of equal size to the imagematrix. However, traditional region
energy algorithms employ a fixed weight matrix that cannot
be adjusted based on varying region features. Consequently,
these algorithms fail to adapt to diverse image characteris-
tics, limiting the enhancement of fusion effects. This paper
introduces an improved region energy algorithm that elevates
the fusion effect of the region energy fusion strategy by con-
structing a weight matrix adaptable to each region’s features.

Initially, gradient information for each region is computed
to construct the weight matrix, as given by the following
formula:

AG(F) �
√
(I (i + 1, j) − I (i , j))2 + (I (i , j + 1) − I (i , j))2 (11)

Subsequently, the spatial weight matrix for the region is
created using the following formula:

Ws′ � e

(
− x2+y2

2ε2

)

(12)

Ws � Ws′ (i , j)∑
(i , j)∈ω

Ws′ (i , j)
(13)

The variables are defined as follows: ε embodies the stan-
dard deviation of the Gaussian kernel associated with the
spatial weight matrix, x represents a M × M matrix con-
figuration where each row encompasses M values between
elements of [− 1,1] within the window size, y signifies a
M × M matrix setting where each column comprises M val-
ues within the window size between elements of [− 1,1],
Ws′ stands for the preliminary spatial weight matrix, and Ws

denotes the normalized spatial weight matrix, serving as the
conclusive spatial weight matrix.

Finally, the formula for the adaptive weight matrix is as
follows:

F1 � conv
(
(AG1)

2, Ws1

)
(14)

F2 � conv
(
(AG2)

2, Ws2

)
(15)

W � F1

(F1 + F2)
(16)

Here, F1, F2 denotes the outcome of convolution between
the spatial weight matrix and the gradient matrices of the

Fig. 5 Compare images with traditional fusion rules

two input images, with conv symbolizing the convolutional
operation.

Figure 5 compares the results of low-frequency fusion
andhigh-FrequencyCoefficients in this paperwith traditional
region-based energy fusion rules. The left column is the result
image of the traditional fusion rule, and the right column is
the result image of the fusion rule proposed in this paper.

3.3 Fusion rules for high-frequency coefficients

The pulse coupled neural network (PCNN) is an artificial
neural network inspired by physiological stimuli, provid-
ing the ability to establish a highly adaptable physiological
filter. PCNNmodels various aspects of the primate visual cor-
tex, including pulse duration, inter-pulse duration, and neural
interconnections. This network not only meets the filtering
requirements of visual models but also generates essential
connections and pulses for simulating state modulation and
temporal synchronization. However, due to the considerable
number of parameters in the PCNN model, the AGPCNN
model is introduced. This model features a simplified struc-
ture with fewer parameters and employs Gaussian filters for
distributing weights among neurons.

The AGPCNN model comprises five components: feed-
forward input, connectivity input, neuron internal state,
binary output, and dynamic threshold. The respective com-
putational formulas are as follows:

V (i , j) � I (i , j) (17)

Ln(i , j) �
1∑

M�−1

1∑

N�−1

Gσ (M + 2, N + 2)En−1(i + M , j + N )

(18)

Yn(i , j) � V (I , j)(1 + α(i , j)Ln(i . j)) (19)
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Fig. 6 Image of the experimental data

En(i , j) �
{
1, if Yn(i , j) > K (i , j)

n−1

0, otherwise
(20)

Kn(i , j) � d�Kn−1(i , j) + a�En−1(i , j) (21)

In the provided excerpt, (i, j) signifies the position of neu-
rons, n represents the iteration count, Gσ denotes a Gaussian
filter with a standard deviation of σ and a 3 × 3 kernel, α

stands for adaptive estimation of connection strength, d� is
the decay constant, and a� corresponds to the normalization
constant. The computational formula of α is articulated as
follows:

α(i , j) � Is(i , j) �
√
Ir (i , j)2 + Il (i , j)2 (22)

Is(i , j) represents the spatial frequency of the 3 × 3
local window of neurons for (i, j), Ir (i , j) represents row
frequency, and Il (i , j) represents column frequency. The cal-
culation is performed as follows:

Ir (i , j) �

√√√√√
1∑

x�−1

1∑
y�−1

(I (i + x , j + y) − I (i + x , j + y − 1))2

M × N
(23)

Il (i , j) �

√√√√√
1∑

x�−1

1∑
y�−1

(I (i + x , j + y) − I (i + x − 1, j + y))2

M × N
(24)

M × N is the size of the regional window.
The calculation of pulse time for the AGPCNN model

after n iterations is as follows:

Tn(i , j) � Tn−1(i , j) + En(i , j) (25)

The AGPCNN model employed in this study has transi-
tioned from the prior Gaussian filter-weighted allocation for
neighboring neurons to an allocation using He initialization.
This adjustment, which takes into account the properties of
ReLU , effectively mitigates the problem of gradient vanish-
ing, resulting in an enhanced fusion effect.

Fig. 7 Image of the result of the experimental fusion

4 Experimental results and comparisons

This section presents the experimental comparative results
between the algorithmmodel proposed in this paper and eight
other existing algorithms.

4.1 Experimental setup

In order to validate the effectiveness of the proposed algo-
rithm model, comparisons were made against eight other
state-of-the-art algorithm models. The experimental data
comprised four sets of remote sensing images, namely,
panchromatic images and multispectral images. The experi-
mentswere conducted in theMatlab2022a environment using
NVIDIA GeForce RTX 4060 Laptop GPU. Refer to Fig. 6
for the data images utilized in this study. The eight compared
algorithm models are as follows:

C1: Detail-Enhanced Multi-Scale Exposure Fusion in YUV
Color Space (DEMEF) [9].
C2: Medical image fusion by adaptive Gaussian PCNN and
improved Roberts operator (AGPRO) [13].
C3: NSCT-DCT based Fourier Analysis for Fusion of Multi-
modal Images (NDFA) [14].
C4: Medical image fusion based on extended difference-of-
Gaussians and edge-preserving (EDGEP) [15].
C5: Fusion of Multi-modal Images using Parametrically
OptimizedPCNNandDCTbasedFourierAnalysis (PODFA)
[16].
C6: Local extreme map guided multi-modal brain image
fusion (LEGFF) [19].
C7: Multi-modal image fusion via coupled feature learning
(CCFL) [20].
C8: Multi-modal medical image fusion via multi-dictionary
and truncated Huber filtering (MDHU) [21].
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Table 1 The first group of Evaluation index data

The first group metrics MSE↓ CCI↑ PSNR↑ SSIM↑ DD↓ SM↑ CC↑ MI↑

DEMEF 51.3761 0.0409 13.9156 0.5736 38.4708 0.86768 0.81991 1.6315

AGPRO 49.6259 0.0669 14.2166 0.46725 35.6209 0.88247 0.79067 1.3507

NDFA 43.8365 0.0520 15.0845 0.57803 33.7217 0.93793 0.85214 1.5659

EDGEP 34.7534 0.1017 17.3109 0.54619 24.3515 0.96276 0.90808 1.7262

PODFA 53.7939 0.0409 13.2584 0.54242 40.8463 0.88887 0.80484 1.3905

LEGFF 33.2378 0.0938 17.6982 0.56337 23.02 0.95147 0.89353 1.7381

CCFL 33.6189 0.0930 17.5991 0.56578 23.6918 0.95225 0.89793 1.738

MDHU 22.2881 0.1575 21.1693 0.63088 14.6466 0.97967 0.95263 2.1133

LEMG(the proposed method) 19.5162 0.1666 22.3229 0.74068 12.8174 0.97978 0.95991 2.2751

Table 2 The second group of Evaluation index data

The second group metrics MSE↓ CCI↑ PSNR↑ SSIM↑ DD↓ SM↑ CC↑ MI↑

DEMEF 25.9293 0.0484 19.855 0.8259 18.7852 0.91429 0.98639 2.8956

AGPRO 15.3384 0.1753 25.1206 0.82088 11.5966 0.94865 0.98047 2.5901

NDFA 55.2898 0.0453 13.2779 0.54027 42.7866 0.75666 0.84469 1.9238

EDGEP 22.1378 0.1474 21.2281 0.76842 15.1329 0.93721 0.97029 2.3923

PODFA 30.5006 0.0479 18.4653 0.85999 22.7474 0.88396 0.98442 2.7479

LEGFF 23.6062 0.1244 20.6703 0.68032 16.7896 0.92551 0.95671 2.1005

CCFL 21.3022 0.1344 21.5623 0.74848 15.7861 0.94043 0.97188 2.3807

MDHU 12.828 0.2265 25.9676 0.8423 8.7977 0.95601 0.98415 2.8051

LEMG(the proposed method) 10.6061 0.2561 27.6197 0.94577 7.2288 0.97822 0.99162 3.4479

Table 3 The third group of Evaluation index data

The third group metrics MSE↓ CCI↑ PSNR↑ SSIM↑ DD↓ SM↑ CC↑ MI↑

DEMEF 14.9588 0.1290 8.211 0.6461 10.8781 0.2092 0.7922 0.9276

AGPRO 14.2079 0.1738 8.3601 0.6022 10.375 0.1918 0.7855 0.8594

NDFA 33.1718 0.0827 5.3989 0.5684 25.0895 0.0130 0.8413 1.2765

EDGEP 18.8736 0.1393 7.5379 0.5807 13.6641 0.1094 0.8008 0.9087

PODFA 19.3204 0.0980 5.9989 0.7122 16.6934 0.3156 0.8532 1.146

LEGFF 26.5485 0.0776 6.55 0.4188 19.3618 0.0481 0.7449 0.8153

CCFL 15.689 0.1236 8.073 0.5864 11.6336 0.1508 0.8198 0.9731

MDHU 15.3242 0.1604 8.1411 0.5965 11.3818 0 1985 0.75347 0.7854

LEMG(the proposed method) 6.3362 0.3109 32.0943 0.8890 4.7435 0.5715 0.9296 1.556

4.2 Experimental results

Figure 7 illustrates the fusion images obtained from the
experiments. From top to bottom are the fusion image results
of the first to fourth experimental groups. From left to right,
they are C1 ~ C8 and the proposed algorithm are, respec-
tively. Tables 1, 2, 3 and 4 provide the parameter data for
evaluation. The data with the highest rankings in the evalua-
tion parameters are marked with underlines.

From a subjective perspective, the fusion images between
thefirst and third groups, aswell as the fourth groupof experi-
ments reveal that C1,C4,C5,C6,C7, and the proposed fusion
model algorithm exhibit superior color restoration, edge con-
tour retention, and detail texture preservation. However, C2,
C3, and C8, while maintaining good contour texture, suffer
from severe color distortion and exhibit a significant color
gap from the original multispectral images, resulting in poor
fusion performance. The fused image results of the second
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Table 4 The fourth group of Evaluation index data

The fourth group metrics MSE↓ CCI↑ PSNR↑ SSIM↑ DD↓ SM↑ CC↑ MI↑

DEMEF 8.0207 0.1583 10.0155 0.7944 6.3067 0.4272 0.8672 1.3103

AGPRO 10.0154 0.2110 9.3725 0.7150 7.8128 0.4608 0.8045 0.9459

NDFA 37.4319 0.0797 4.9482 0.4989 23.4985 0.0280 0.6477 1.1106

EDGEP 9.2538 0.2307 10.2338 0.7255 6.4404 0.5476 0.8330 1.0774

PODFA 13.2842 0.1171 7.2987 0.7487 10.7743 0.3594 0.7873 1.1074

LEGFF 15.0047 0.1215 8.2021 0.5564 10.7575 0.2421 0.7907 0.8693

CCFL 8.6156 0.2308 9.8084 0.7555 6.013 0.4455 0.8687 1.1514

MDHU 7.7422 0.2807 10.1178 0.7241 5.4347 0.8210 0.8500 1.0622

LEMG(the proposed method) 5.0622 0.3959 34.0441 0.9018 3.2314 0.5450 0.9312 1.7411

group of experiments are similar to those of the first group
of experiments. C1, C4, C5, C6, C7, and the proposed fusion
model algorithm demonstrate commendable image fusion
effects, while C2, C3, and C8 show subpar fusion results.

In the objective evaluation of fusion effects, this study
utilizes eight fusion assessment parameters, namely mean
squared error (MSE), color consistency index (CCI), peak
signal-to-noise ratio (PSNR), structural similarity index
(SSIM), distortion degree (DD), similarity measure (SM),
correlation coefficient (CC), and mutual information (MI).
MSE measures the expected value of the squared differ-
ence between estimated and true parameter values, indicating
the degree of data variation. A smaller MSE implies bet-
ter accuracy in describing experimental data. CCI gages the
perceptual color difference between two colors, with higher
CCI values indicating smaller color differences between
the fusion and source images. PSNR represents the mean
squared error between the fusion and original images, with
higher values signifying lower image distortion. SSIM quan-
tifies the similarity between two images, where larger SSIM
values indicate greater similarity between the fusion and
source images. DD assesses image distortion, with smaller
values denoting less distortion in fusion images. SM mea-
sures image similarity, with larger values indicating better
fusion effects.CC reflects the statistical indicator of the close-
ness of the relationship between variables, with larger values
indicating a stronger correlation. MI measures the distance
(similarity) between two distributions, with larger values
indicating higher similarity between the fusion and source
images.

Tables 1, 2, 3 and 4 demonstrate that the proposed fusion
model algorithm holds a dominant position in all four sets
of experiments across the eight evaluation metrics. In com-
parisons with eight other algorithms, all the data are in the
first place. The algorithm exhibits superior color retention
in fusion images, coupled with lower spectral distortion,
demonstrating outstanding image fusion performance and
applicability to various image fusion scenarios.

5 Conclusion

The experimental results highlight the efficacy of the pro-
posed fusion model algorithm in maintaining color accuracy
and minimizing spectral losses within the domain of remote
sensing image fusion. Additionally, it demonstrates a robust
performance in preserving image edge contours and textures
during the fusion process. Future researchwill focus on refin-
ing and enhancing the overall image fusion performance of
this model.
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