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Abstract
This study presents a new attempt to quantify and predict changes in the ECG signal in the pre-ictal period. In the proposed
approach, threshold techniques were applied to the standard deviation of two heart rate variability features (The number of
heartbeats per two minutes and approximate entropy) computed to ensure prediction and quantification of the pre-ictal state.
We analyzed clinical data taken from two epileptic public databases, Siena scalp EEG and post-ictal heart rate oscillations
in partial epilepsy and a local database. By testing the proposed approach on the Siena scalp EEG database, we achieved a
sensitivity of 100%, specificity of 95%, and an accuracy of 96.4% whereas using acquisitions from the post-ictal database,
we achieved a sensitivity of 100%, specificity of 91% and an accuracy of 94% and using the local database we achieved a
sensitivity of 100%, a specificity of 97% and an accuracy of 97.5%. Furthermore, the proposed approach predicted 58.7%,
57.2, and 40% of the seizures before the onset by more than 10min for the data taken from post-ictal, local and Siena database,
respectively. Using the automatic threshold technique, we were able to achieve a sensitivity, specificity, and accuracy of 85%,
81%, 82% using our local database, respectively, whereas using acquisitions take from the Siena scalp EEG database, we
achieved a sensitivity of 75%, specificity of 85% and an accuracy of 82%. Besides, using the post-ictal database, we achieved
a sensitivity of 90%, a specificity of 83% and an accuracy of 85%.
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1 Introduction

Epilepsy is one of the most common neurological disorders
[1]. It is mainly characterized by a perdurable predisposition
to generate epileptic seizures and by the neurobiologi-
cal, cognitive, psychological, and social consequences. This
disorder is characterizedby recurrent andunpredictable inter-
ruptions of normal brain function called epileptic seizures.
An epileptic seizure is defined conceptually as a transient
occurrence of signs and/or symptoms due to abnormal exces-
sive or synchronous neuronal activity in the brain [2, 3].
Epilepsy has become the second-highest incidence of cere-
brovascular diseases and about 1% of the world’s population
suffers from epilepsy [4]. The condition affects all ages [5].
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In the USA, more than 500 thousand patients are older than
65 years and more than 300 thousand patients are younger
than 14. Despite the introduction of new antiepileptic drugs
in the last decades, one-third of peoplewith epilepsy continue
to have seizures despite treatments [6]. Epileptic seizures are
often thought to have a well-defined onset time determined
by electroencephalogram (EEG) and or clinical signs (semi-
ology). However, some patients suffering from epilepsy can
feel the seizures coming before it is registered on EEG (pro-
drome which is an early symptom that indicates the onset),
indicating that physiological changes happen in the pre-ictal
period before the seizures arise [7]. In most cases, EEGmon-
itoring which presents the gold standard in neurology for
clinical monitoring of seizure activities is usually unavail-
able [8]. Moreover, monitoring the seizure activity based on
the use of EEG signals is not always easy and accessible
for several reasons and can be made only by highly trained
neurologists, which is expensive and time consuming [9]. In
addition, abrasive paste and electrolyte gel are sticky prod-
ucts that make hair scalp dirty and could be harmful [10].
Furthermore, specialists are wasting time trying to reduce
the impedance of electrodes to an acceptable value where
a countdown begins when the gel dries causing the disap-
pearance of the transudative properties [11]. For that reason,
electrocardiogram (ECG) is a very useful signal as it is rou-
tinely monitored, and compared to EEG, a trained specialist
is not required for ECG recording. Besides, ECG signal has
a higher signal-to-noise ratio than EEG signal [8].

Epileptic seizures (partial and generalized) affect behav-
ior of autonomic function during all periods: preictal, ictal,
and post-ictal. Moreover, the sympathetic nervous activity
is activated by seizures, which leads to an increase in heart
rate and blood pressure [12]. For that reason, several works
tried to demonstrate and quantify the significant changes in
ECG signal in the preictal period. A power spectrum anal-
ysis on six seizures taken from three patients (two females,
one male) in [7] showed a significant increase in the curve
of the reciprocal high frequency band (HF) (0.15–0.40 Hz)
just around the onset time of epileptic seizure. The authors
used ECG data from 25 to 30 min pre-seizure up to 30 to
300 s post-seizure of ECG. Moreover, a random season of
30 min ECG acquisition not within 4 h of seizures was used
as a non-seizure control period. They did not report any sig-
nificant changes for the frequency band features analyzed
such as (LF) (0.04–0.15 Hz), the very low frequency (VHF)
(0.40625–0.5 Hz), HF, the ratio LF/HF, and LF/(LF + HF).
The authors in [13] investigated into ECG changes in the pre-
ictal period. Four clustering techniques (K-means clustering,
Agglomerative hierarchical clustering, Density-based spatial
clustering (DBSCAN), and expectation–maximization (EM)
clustering) were used in order to quantify changes in the
pre-ictal period using three-features combination extracted
from 32 Heart rate variability (HRV) features (linear and

nonlinear). The latters were extracted from 120 min of sig-
nal preceding the seizures and time preceding the seizure
prediction horizon (SPH) of 10 min. Using the clustering
techniques, the author was able to distinguish 41% of the
seizures and 90% of the patients. In addition, changes pre-
dicted in the intervals 40–0 min before seizures were more
prominent than in other intervals with 47 seizures (53% of
all the seizures studied). In the same study, for the interval
of 80–40 min only 21 seizures, which account for 28% of
all the seizures studied allowed to obtain predictions. Then,
for the last finding interval 80–120 min, 25 seizures, which
represent 24% of all the seizures studied were predicted.
Furthermore, the authors reported that time-domain features
RRmax, RRmin, and RRmean were the most relevant fea-
tures. In terms of predictability, they found the following
features: LF/HF, the number of adjacent RR intervals which
differ by more than 50 ms divided by the total number of
RR intervals (pNN50), the number of pairs of successive NN
(R–R) intervals that differ by more than 50 ms (NN50), and
recurrence quantification analysis (RQA) entropy (ENT).
Other works on prediction of epileptic seizures were based
only onECG. In [14], the authors used a set of eight linear and
nonlinear features which are: time interval between two suc-
cessiveR peaks (RRi),Mean of heart rate (MeanHR), LF,HF,
LF/HF, Poincaré plot standard deviation perpendicular the
line of identity (SD1), Poincaré plot standard deviation along
the line of identity (SD2) and SD2/SD1 extracted from the
data taken from a public database [15] which consists of 11
seizures taken from seven subjects. Besides, using the thresh-
old technique, the authors reported a prediction sensitivity of
86.2%. In fact, a thresholdingvaluewasfixed for eachpatient.
They also reported that features like mean HR, LF/HF, and
SD2/SD significantly increased while the RRi significantly
decreased. Moreover, most of the observed changes in the
features occurred 15 min before the seizures. In [16], the
authors studied the data taken from the public database [15].
In order to predict the epileptic seizure, the authors used
a threshold technique and SVM using temporal and spec-
tral features. The temporal features are the Hjorth features:
activity, mobility and complexity whereas the spectral fea-
tures are spectral entropy and means of absolute derivation.
These authors reported that the threshold technique was bet-
ter than the SVM classifier for epileptic seizure prediction
and reported a prediction performance of 94.2% as accu-
racy, a sensitivity of 84.1% and a specificity of 94.5%.In
[17] the authors studied 170 seizures taken from 16 patients
where time and frequency domain features were computed.
Adaptative threshold techniques were used and a threshold
value was fixed for each patient separately. The proposed
approach achieved a 75% sensitivity, a 0.21 false positive
rate per hour (FP/h), a seizure occurrence period (SOP) of
4:30 and an intervention tile (IT) of 110 s. The authors also
reported that between 30–15 min before seizure onset: the
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mean HR, RRi, LF/HF, and SD2/SD1 showed significant
changes. In the approach proposed by [18], seizure prediction
approachwas proposed based on the use of an SVMclassifier
with Eigen decompositionHRV features based on covariance
matrices. The authors used a total of 34 seizures taken from
12 patients (a total of 55.2 h of inter-ictal recording) and
123.6 h of ECG acquisitions taken from healthy subjects.
The proposed approach predicted seizures onset from 5 min
to the time just before the seizure with a 94.1% sensitivity,
0.49 false-positive per hour (FP/h) in patients with epilepsy
and 0.19 in healthy subjects.

This work aimed to study changes in the ECG signal in
the pre-ictal period to explore the feasibility of creating an
automatic epileptic seizure prediction approach in which the
result of the application of the statistical operator standard
deviation (STD) on the computed HRV features is used as
input for a thresholding technique in order to quantify the
changes in the input pre-ictal ECG signal. The feasibility of
our study was carried out using ECG acquisitions of a public
and local databases consisting of 31 patients and a healthy
public database consisting of forty patients.

2 Material andmethods

2.1 Dataset

Siena Scalp EEG Database (version 1.0.0). To achieve our
objective (establishing the feasibility of our methodology
to quantify the epileptic seizures), we focused exclusively
on ECG acquisitions of epileptic patients from a public
database. The Siena Scalp EEG Database is free to use on
the Physionet platform (https://physionet.org/content/siena-
scalp-eeg/1.0.0/). The database consists of data acquired
from 14 epileptic patients: nine males (aged 36–71) and
five females (aged 20–58), within the Unit of Neurology and
Neurophysiology at the University of Siena, Italy. The data
contain synchronized EEG-ECG recordings of pathological
patients acquired based on the use of EB Neuro and Natus
Quantum LTM amplifiers, and reusable silver/gold cup elec-
trodes. The electrodes used in the acquisition were arranged
according to the international 10–20 system. During data
acquisition, the patients were asked to stay in bed as much as
possible, either asleep or awake [19]. All the data recorded
were revised by expert clinicians according to the criteria of
the International LeagueAgainst Epilepsy.More information
about the patients, seizures and signal duration are presented
in Table 1.

2.1.1 Post-ictal heart rate oscillations in partial epilepsy
1.0.0

The post-ictal database is available and free on the Physionet
platform. The database consists of ten seizures recorded from
seven female patients aged 31 to 48 years old. The duration
of the recorded ECG signals varies from two to four hours
with a sampling rate of 200 Hz, 12 bits per sample, and 5mV.
Besides, for each acquisition, the exact time of seizure onset
and offset was specified by an expert [16].

2.1.2 Local data

The local database consists of 14 ECG acquisitions taken
from 13 patients aged 8 and 42 years old. The experimental
data were selected from the F-TRACT database of spon-
taneous video-SEEG seizures (research protocol INSERM
IRB 14-140). The patients gave their consent to undergo
invasive recordings and peripheral recordings as part of a
pre-surgical evaluation of their drug-resistant epilepsy. The
SEEG/ECG recordings were performed using a video-EEG
monitoring system (Micromed, Treviso, Italy) that allowed
for simultaneously recording up to 256 monopolar contacts.
The sampling rate was either 256 or 512 Hz, with an acqui-
sition band-pass filter between 0.1 and 90 Hz or between 0.1
and 200 Hz, respectively, depending on amplifier capacities
at the date of recordings. The data were acquired using a
referential montage with a reference electrode chosen in the
whitematter. The table below presents some details about the
patient (age, gender, epilepsy type and lesion) [20] (Table 2).

2.1.3 Data manipulation

In order to study changes in the ECG signal in the pre-ictal
phase, we took 1 h of ECG signal before seizures and 5 min
after seizures. when the acquisition did not contain at least
1 h of signal before seizure, we used all the provided pre-ictal
in our work. Moreover, we only used data from the patients
where at least one readable ECG acquisition was available.
In fact, the Siena scalp database was made only for epileptic
EEG analysis. For that reason, some of the ECG acquisitions
are unreadable due to the presence of a lot of noise, espe-
cially from 20 min before the seizure’s onset which allow
the study of the variation of the input ECG signal in the pre-
ictal period. The existence of such noises is due to either
patient movements or bad connection of the ECG electrodes
with patients’ skin.

All functions and algorithmsused in the current studywere
developed using open source python libraries such asMNE to
read the signal acquisitions, NumPy for matrix manipulation
and SciPy for the statistical analysis etc.

From the Siena scalp database, we were able to study only
acquisitions from 11 patients after deleting all unreadable
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Table 1 Siena scalp EEG database patients [17]

Patient Age Gender Seizure Localization Lateralization EEG_channel ECG_channel N° seizures Signal_duration
(min)

PN00 55 Male IAS T R 29 2 5 198

PN01 46 Male IAS T L 29 2 2 809

PN03 54 Male IAS T R 29 2 2 752

PN05 51 Female IAS T L 29 2 3 359

PN06 36 Male IAS T L 29 2 5 722

PN07 20 Female IAS T L 29 2 1 523

PN09 27 Female IAS T L 29 2 3 410

PN10 25 Male FBTC F Bilateral 20 2 10 1002

PN11 58 Female IAS T R 29 2 1 145

PN12 71 Male IAS T L 29 2 4 246

PN13 34 Female IAS T L 29 2 3 519

PN14 49 Male WIAS T L 29 2 4 1408

PN16 41 Female IAS T L 29 2 2 303

PN17 42 Male IAS T R 29 2 2 308

Table 2 Local database description

Patient code Age Gender Epilepsy type Lesion

Patient 1 12 Female Left frontal dysplasia Left frontal dysplasia

Patient 2 22 Female Bilateral temporo-frontal Bilateral peri-ventricular junction heterotopia

Patient 3 14 Male Right frontal temporal parietal Thickening of right temporo-parietal junction, T2

Patient 4 14 Male Left temporal insular No

Patient 5 35 Female Right frontal No

Patient 6 15 Female Right temporal insular No

Patient 7 15 Male Left parietal insular No

Patient 8 13 Female Right frontal Frontal dorsolateral/premotor

Patient 9 8 Female No information No information

Patient 10 42 Female No information No information

Patient 11 39 Male Right temporal right temporo-polar juxta-cortical focal lesion

Patient 12 38 Male No information No information

Patient 13 31 Male Left central insular parietal No

and very noisy ECG acquisitions. From the 11 patients, only
34 seizures were studied after getting rid of the unreadable
acquisitions. In addition, patient PN16 was excluded from
this study because both of his seizures were recorded during
sleep. All seizures from the post-ictal database were used in
our study.

Moreover, in order to improve our analysis, we also used
inter-ictal segments taken from all the studied patients. We
extracted 8 h of pre-ictal period from the post-ictal database,
29 h from the Siena scalp EEG database and 14 h from the
local database. Heart rate takes some time after seizures to
go back to the basic signal rate. The first five minutes after
seizures are considered as post-ictal instabilities and we do

not take them into consideration. In the present work, the
inter-ictal period will be considered from at least 5 min after
the onset. Besides, inter-ictal segments are considered before
the one hour signal before the onset which is the pre-ictal
segment. In addition, we only extracted inter-ictal segments
with at least 20 min of continuous signal, so we could ana-
lyze all changes in the segments. Moreover, to maximize
the number of segments of the inter-ictal period, the whole
inter-ictal signal extracted was divided into sub-segments of
20 min length each to obtain 24 inter-ictal segments from the
post-ictal database, 87 inter-ictal segments from the Siena
scalp EEG database and 63 inter-ictal segments from the
local database.
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2.2 Pre-processing and feature extraction

In order to improve the R peaks detections, we applied
multiple noises (such as the baseline wander, power-line
interference, and electromyography noise) removal func-
tions. For that reason, we used a notch filter followed by
the application of two butterworth filters (high pass and low
filters with order 2). Furthermore, our notch filter was used to
remove the power-line interference with a 50 Hz cutoff (this
cutoff should be 50/60 Hz). Then, the cutoff of the high-
pass and the low-pass filters were set to 20 Hz and 10 Hz,
respectively.

The next step in our approach was the detection of the
R peaks series. For that reason, we used the QRS detection
approach proposed in [21] which is based on the use of two
moving average windows with a thresholding technique to
detect the QRS complexes and extract the R-peak series from
the input signal.

In order to demonstrate the variations of the ECG signal,
we extracted time-domain analysis and nonlinear features
that reflect dynamic changes of the input signal during the
different stages of the signal: pre-ictal, seizure onset, and after
seizure. Then, the time domain analysis features extracted
were directly calculated from the time series of the extracted
RRi. Next, we computed the number of the RRi distances
extracted from the signal segment. The number of the RRi
distance in the signal segment (NRRi) would directly reflect
the dynamic changes (increase and decrease) of the heart rate.

In order to quantify unpredictability of a time series and
complexity of mechanisms that regulate the HRV, a nonlin-
ear metrics approximate entropy (ApEn) was computed. The
ApEn was devised in order to quantify the regularity, corre-
lation, and persistence in time series. At first, the ApEn was
developed in order to analyze medical data, essentially heart
rate [22]. This means a high ApEn values refer to the inde-
pendence between the data signals (a low number of repeated
patterns and randomness), and low ApEn values refer to a
very persistent system (repetitive and predictive). In addi-
tion, a zero value of ApEn indicates a fully predictable series
[23]. As for the Sample entropy, two variables will be needed
to compute the ApEn, a factor noise factor r and a template’s
length m (the different vector’s window length). Moreover,
the higher the value of m and the smaller the value of r
the sharper is the parameters description. Given a sequence
of number u � {u(1), u(2), . . . , u(N )} with lengthN , real
positive value r and integer m where0 ≤ m ≤ N . We
define two blocks x(i) � {u(i), u(i + 1), . . . , u(im−1)}
and x( j) � {u( j), u( j + 1), . . . , u( j + m − 1)}. Next, the
distance of those two blocks is computed as follows:

d[x(i), x( j)] � Maxk�1, ...,m(|u(i + k−1)−u( j + k−1)|)
(1)

Next, for all x(i) vectors where i ≤ N − m + 1, a value
for cmi (i) is computed by comparing all x( j) vectors where
j ≤ N−m+1 to x(i) vector [24] as in the following equation:

(2)

cmi (r ) � number of j ≤ N − m + 1,

such thatd [x (i) , x ( j)] ≤ r/ (N − m + 1)

Moreover, cmi (r) is always positive where for all i values,
x(i) is compared relatively to x(i) [24]. cmi counts the number
of consecutive blocks of length m within the resolution r
which are similar to a given block computed as follows:

φm(r) � 1

N − m + 1

N−m+1∑

i�1

log cmi (r) (3)

Then, the ApEn can be computed as follows [23]

ApEn(m, r , N ) � φm(r) − φm+1(r) (4)

In order to have more information about the signal, a slid-
ing window with an overlapping was used. Besides, to select
the optimal sliding window and the overlapping window, we
selected randomly ten acquisitions from different patients to
test several variations of sliding windows starting from 30 s
up to 300 s. Then, the overlapping windows starting from
10 s up to 60 s of ECG signal were tested to search for an
optimum. Figure 1 shows an example of the use of the sliding
window technique with an overlapping windowwhere in this
example, W0 presents an overlapping window of 10 s.

Finally, after testing several sliding and overlapping win-
dows, a sliding window of 120 s with an overlapping of 10 s
reflected the best combination to quantify the changes of the
ApEn curves in the pre-ictal period.

2.3 Prediction

After computing the RRi, our approach consists in comput-
ing two linear and nonlinear features: NRRi and approximate
entropy (ApEn) using a sliding window with an overlap-
ping technique. Then, based on the results of computing both
NRRi and ApEn features, the standard deviation (STD) was
computed using a sliding window of six values. Mathemati-
cally, the STD is computed by the following equation [25].

STD =

√∑(
Xi − X

)2

n − 1
(5)

where Xi presents the value at position i , X presents the
means of all values in the sample, n is the number of the
values in the sample.

Figure 2 shows the result of computing the ApEn fea-
ture of a one-hour pre-ictal period (the discontinuous red
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Fig. 1 Sliding window of 120 s
with overlapping of 10 s

Fig. 2 The result of computing the ApEn and the STD-ApEn curves for the PN09-3 acquisition

Fig. 3 The result of computing the NRRi and the STD-NRRI curves for the PN09-3 acquisition
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line represents the moment of the seizure) taken from patient
PN09-3 from the Siena scalp EEG database. The same figure
also demonstrates the result of computing the STD operator
using ApEn feature. Figure 3 demonstrates the result of com-
puting the NRRi feature and the STD-NRRi with the same
acquisition used in Fig. 2.

In order to confirm a seizure alert, the STD calculation
results calculated from these two features were combined. In
addition, the thresholdmethodwas used on the STD results to
ensure seizure prediction. The threshold value with the best
prediction results was selected. In the present work, tests
were applied on the pre-ictal and the inter-ictal segments to
select the best threshold valuewhere each patient was studied
separately. Furthermore, a seizure alert is predicted if and
only if the threshold exceeded both the STD curves of ApEn
and NRRi.

3 Results and discussion

In order to measure the performance of our proposed
approach, pre-ictal and inter-ictal data taken from both
epileptic databases were tested. From the Siena scalp EEG
database, we were able to extract 34 seizures taken from
11 patients studied. Moreover, none of the noisy or in-
sleep acquisitions were taken into consideration. All the ten
seizures from the post-ictal database were analyzed. In addi-
tion, we used 8 h of the inter-ictal signal taken from the
post-ictal database and 29 h of inter-ictal signal taken from
the Siena scalp EEG database. The whole inter-ictal sig-
nal extracted was divided into 20-min long sub-segments to
obtain 24 inter-ictal segments from the post-ictal database,
87 segments from the Siena scalp EEG database and 63 inter-
ictal segments from the local database.

In order to characterize epileptic seizure prediction, three
criteria were introduced: sensitivity, specificity, and accu-
racy. Sensitivity reflects the probability of a positive detection
whereas specificity reflects the probability of true detection
of the non-seizure segment (inter-ictal segment):

True positive (TP): pre-ictal segment identified as a pre-
ictal segment.

False-negative (FN): pre-ictal segment incorrectly identi-
fied as an inter-ictal segment.

False-positive (FP): inter-ictal segment identified as a pre-
ictal segment.

True negative (TN): inter-ictal segment identified as an
inter-ictal segment.

The three criteria proposed are computed as follows:

Sensitivity � TP

TP + FN
∗ 100 (6)

Specificity � TN

TN + FP
∗ 100 (7)

Table 3 The comparison of the proposed approach performance with
the approaches from the state of art using post-ictal database

Sensitivity (%) Specificity (%) Accuracy
(%)

[14] 88.3 86.2 –

[16] 94.2 84.1 94.5

Proposed
approach

100 91 94

Table 5 The Performance of the proposed approach using the local
database

Sensitivity Specificity Accuracy

Local data base 100% 97% 97.5%

Accuracy � (TP + TN)

(TP + FP + TN + FN)
∗ 100 (8)

Based on the proposed three criteria, we compared our
analysis with two other works that used the threshold tech-
nique to predict epileptic seizures. As all the analyses were
extracted from the post-ictal database, we present in the fol-
lowing table our results:

As can be seen in Table 3, our proposed approach achieved
a higher value of sensitivity and specificity compared to
the other works. However, the proposed approach in [16]
achieved a better accuracy than our approach. The authors
in [14] did not mention accuracy. The proposed approach
also showed a prediction latency much better than both
approaches seen in the state of arts. However, none of the two
works have specified the length of the pre-ictal and inter-ictal
segment studied compared to our work. Besides, no informa-
tion was mentioned about the number of inter-ictal segments
used to measure the performance of their approaches.

We also compared the prediction latency of the proposed
approach with the other approaches seen in the state of arts
as it can be seen in Table 4. In fact, in some acquisitions,
we can see that there is not a huge difference between the
prediction delay of our approach compared with [16] (both
threshold and SVM results) such as for patient 1, patient
5. Otherwise, our approach predicted the epileptic seizure
before 43.08 min, 22.32 min and before 46.5 min, 35.84 min
for both seizures of patients 2 and 6, respectively.

Similarly, we tested the performance of the proposed
approach on the local database as can be seen in Table 5.
The proposed approach achieved a 100% sensitivity, a 97%
specificity and 97.5% accuracy. The local database consists
of acquisitions taken from 14 patients with different seizure
types, which prove the feasibility of the proposed approach
to predict epileptic seizures using ECG of different seizure
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Table 4 Comparison between the
prediction delay of our work with
the state of arts works using the
post-ictal database

Patient [14] [16] [16] Our approach

Seizure number Threshold Threshold (s) SVM (s) Threshold

Patient 1 Seizure 1 – 0 20 15 s

Patient 2 Seizure 1 – 30 7 43.08 min

Patient 2 Seizure 2 – 6 9 22.32 min

Patient 3 Seizure 1 – 20 26 25.8 s

Patient 3 Seizure 2 – 3 3 37.8 s

Patient 4 Seizure 1 – 8 20 10 s

Patient 5 Seizure 1 – 0 53 24 s

Patient 6 Seizure 1 – 35 35 46.5 min

Patient 6 Seizure 2 – – – 35.84 min

Patient 7 Seizure 1 – 0 28 56.4 s

Table 6 Prediction delay of the proposed approach using the local
database

Patient Seizure number Delay

Patient 1 Seizure 1 6 s

Patient 2 Seizure 1 50 min

Patient 3 Seizure 1 7.4 min

Patient 4 Seizure 1 10.5 min

Patient 5 Seizure 1 81 s

Patient 6 Seizure 1 16.21 min

Patient 7 Seizure 1 25.2 s

Patient 8 Seizure 1 3 s

Patient 9 Seizure 1 13.14 min

Patient 10 Seizure 1 25.8 s

Patient 11 Seizure 1 48.04 min

Patient 12 Seizure 1 21.18 min

Patient 13 Seizure 1 54 min

Patient 13 Seizure 2 60 min

types. Moreover, from 63 inter-ictal segments, only two false
alerts were returned by our approach.

Table 6 presents the delay prediction of the proposed
approach using the local database data. All patients in this
database are presented with only one seizure except patient
13. Our proposed approach could achieve a prediction delay
starting from a few seconds before the seizure up to more
than 15 min before the seizure.

We also measured the performance of the proposed
approach using the epileptic database Siena scalp EEG
database as can be seen in Table 7. The Siena scalp database
is composed of acquisitions with focal onset impaired aware-
ness (IAS), focal onset without impaired awareness (WIAS),
and bilateral seizures, where the majority of the acquisitions
are IAS. For that reason, the performance of the proposed

Table 7 The performance of the proposed approach using the Siena
scalp EEG database

Sensitivity (%) Specificity (%) Accuracy
(%)

Only IAS 100 95 96.4

All patients 85 94 91.5

approach was measured firstly using only IAS acquisitions
and then all the acquisitions extracted from the database.

As it can be seen In Table 7, using only the acquisi-
tions with IAS seizure, our approach could achieve a 100%
sensitivity, a 95% specificity and a 96.4% accuracy. How-
ever, using all the acquisitions (different seizure types) we
achieved an 85% sensitivity, a 94% specificity, and a 91.5%
accuracy. Unfortunately, we could not compare this perfor-
mance with other approaches because, to the best of our
knowledge, the present work is the first to study the effect
of epileptic seizures on the ECG signal using the new public
database Siena scalp.

Using only data taken from patients with the IAS seizures,
from the 61 inter-ictal segments, our approach sent a false
alert only on 3 inter-ictal segmentswhich showed unexpected
changes in both curves. In fact, apart from all patients with
temporal epileptic seizures in the Siena scalp EEG database,
patient PN14 was the only one to have WIAS and we could
study only two seizures (the rest contain a lot of noise), and
our approach predicted only one of the two seizures stud-
ied. Subject PN10 was the only patient in the database who
had Bilateral epilepsy. Our approach could predict only five
seizures from eight seizures studied. No more investigations
could be made to assume why no seizure alert was trig-
gered for those acquisitions taken from both PN10 and PN14
patients, whichwas due to a lack of patient datawith the same
type of seizures.
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Fig. 4 Presentation of the
prediction delay for the Siena
scalp EEG database and the local
database

Table 8 Percentage of the predicted seizure by the prediction time

Database Prediction time

[0–5 min]
(%)

[5–10 min]
(%)

10 min < (%)

Post-ictal
database

37.9 3.4 58.7

Local
database

35.7 7.1 57.2

Siena
database

60 0 40

Figure 4 presents the prediction delay of the proposed
approach using the Siena scalp EEG and the local database.
The blue and orange points reflect the prediction delay for
the Siena scalp EEG and the local databases, respectively. As
it can be seen in these Fig. 4, the prediction delay varies from
a few seconds before the seizure up to more than 15–20 min
before the seizure depending on patients. In Addition, for
almost all patientswithmore than one seizure acquisition, the
prediction times of the different seizures were close to each
other. Moreover, the green points reflect the mean prediction
delay of the Siena scalp EEG database acquisitions, which
reflects our high prediction delay achieved.

Table 8 presents the percentage of the predicted seizures
by the time of prediction, either from 0 to 5 min, 5 to 10 min
or predicted before the seizure bymore than 10min. As it can
be seen, in the table, our approach could predict 58.7% and
57.2% of the seizure before more than 10 min for both post-
ictal and local database, respectively. For the Siena database,
our approach could predict only 40% of the seizures before
10 min from the onset.

Figure 5 shows an example of the STD operator calcu-
lation on a one-hour pre-ictal period and 10 min after the
onset taken from epileptic patient 9 from the Siena scalp
EEG database. This was aimed at studying the modifications
before and after the onset. In this example, the red discontin-
uous line represents the moment of the seizure. The red cross
in the figure shows when both curves exceed the threshold
(presented by the blue discontinuous line) before the seizure
at the same time interval, which triggers a seizure alert. As
it can be seen, our approach could quantify and predict the
seizure before 33.6 s for this acquisition.

In this work, we also proposed an automatic threshold
technique for onset prediction. We believe that for normal
patients, the variation of both features (ApEn and NRRi),
especially the NRRi, which presents heart rate changes,
varies around the value of the mean. For that reason, the
proposed approach consists in using the mean of the STD
computed from both ApEn and NRRi features. Moreover,
based on the use of the computed STD curves, the automatic
threshold approach proposed consists in using a five min-
data segment with one minute overlapping. Next, for each
segment, the threshold value is computed following list of
equations:

Thresh � Mean + β (9)

• Where Mean represents the mean value of the input data
segment.

• β is a value computed from Mean where the value of β

will be in the range of values [0–Mean], where the min
value of β will equal to 0 and the max will be equal to the
value of Mean
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Fig. 5 The result of applying the proposed STD approach on patient PN09-3

Table 9 The performance of the automatic threshold approach using
local database

Sensitivity (%) Specificity (%) Accuracy
(%)

The local
database

85 81 82

Siena scalp
EEG database

75 85 82

Post-ictal
database

90 83 85

• For selecting the β value, a grid-search algorithm will be
used to test all possible threshold values.

• Wefirst test all the possible values ofβ using only the inter-
ictal period tofind the valueswhichwill return the less false
alerts. Then, the pre-ictal periods will be used to select
the proper β value that will return the best performance
(maximumonset prediction and the less false alerts results)
to be selected.

• The β value will be selected for each patient separately.

Table 9 presents the results of testing the performance of
the automatic threshold prediction approach using the same
three databases adopted by the manual threshold technique.
In fact, acquisitions of less than 10 min in length will not be
taken into consideration in this part of the work.

From the results presented in the tables above, the pre-
diction approach using the manual threshold value selection
gave a better result. In fact, the proposed automatic threshold
technique is based on themean of the two features computed.

Even for the inter-ictal period, if the changes (peak) in both
curves’ features was instant, and even if these changes are
small compared to pre-ictal period, this kind of change is con-
sidered as a prediction by our proposed automatic approach
(false alert). Another weak point in our proposed automatic
threshold technique is the gradual increase of the value. If the
values of both curves increase gradually in time, the thresh-
old value will also increase gradually with the curves, which
will lead to unpredicted seizure. For those reasons, a man-
ual threshold selection technique gave better results. In the
inverse, the manual threshold selection is not affected by
those problems. Figure 6 shows an example of application
of the automatic threshold approach on the pre-ictal period
of the second acquisition of patient number 6 from the Siena
Scalp EEG database. In fact, the period studied in this figure
represents 1 h before the seizure and 10 min after. The dis-
continuous red line represents the moment of the seizure.
The discontinuous green line represents the threshold value
which varies in time. Moreover, the red cross in the figure
showswhen both curves exceed the threshold (they are above
the threshold in the same moment) triggering a seizure alert.
As it can be seen, our approach could quantify and predict
the seizure before 27 min for this acquisition.

For almost all the studied acquisitions, significant changes
for both NRRi and ApEn features were seen in the pre-ictal
period of the input ECG signal. In fact, a significant decrease
was seen in the NRRi features, especially right before the
seizure. This increase can be explained by the fact that about
82%of epileptic seizures are associatedwith ictal tachycardia
which proceeds epileptic seizures [18]. In addition, the ApEn
features showed significant change in the pre-ictal period,
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Fig. 6 An example of applying the automatic threshold prediction approach on PN06-2 acquisition

and a clear decrease was seen for almost all the patients right
before the seizure, which can be associated with the increase
in the sympathetic activity [18].

In this work, not only were ApEn and NRRi features stud-
ied but also several other features such as ApEn, sample,
fuzzy, Shannon and spectral entropy to quantify the com-
plexity of mechanisms that regulate HRV.Moreover, to study
temporal changes in the HRV, we studied several features
such as SDNN (the standard deviation of the RRi), RMSSD
(the root mean square of successive differences between nor-
mal heartbeats), pNN50. However, not all features studied
showed significant changes to be used in our approach and
ensure a good quantification and prediction of the epileptic
seizures except for NRRi and ApEn which showed a signif-
icant correlated change in the pre-ictal period and inter-ictal
period. In this part of the paper, we describe some significant
changes in the other features studied which can be used to
predict epileptic seizures. Only acquisitions taken from the
Siena scalp EEG database were studied whereas no infor-
mation about localization, lateralization, or even the seizure
types was given for the acquisitions taken from the post-Ictal
database. Besides, the local database contains mixed acqui-
sitions for adults and children, and we still do not know if
the HRV will react in the same way for both categories.

A significant change in the sample and fuzzy entropy
curves was seen starting approximately 30 min before the
seizure for patients PN06, PN10 (bilateral seizure), and PN14
(starting from the discontinuous green line, where the red line
presents the start of the seizure). However, for patient PN09,
these changes occurred starting 15 min before the seizure. In
the same way, for both fuzzy and sample entropy curves, a

clearly significant decreasewas seen either at themoments of
the seizure or just after the seizure for all the studied acquisi-
tions. This decrease was not seen for only the patient PN10-2
as can be seen in Figs. 7 and 8.

Studying the SDNN feature in the pre-ictal period (1 h
before the seizure) showed a slight decrease of the SDNN
curve for patient PN06 starting 25 min before the seizure
(in blue color), PN10 (bilateral seizure) showed a significant
decrease between 30 to 8 min before the seizure while a
significant change was seen for patient PN09, 14 min before
the seizure. Moreover, a significant increase in the SDNN
curve was seen starting from the moment of the seizure for
patients PN06, PN09, and PN14 as can be seen in Fig. 9.

The proposed epileptic seizure prediction approach is
based on the threshold technique. For that reason, we could
notmeasure the performance of the proposed approach to dif-
ferentiate between the pre-ictal period of epileptic patients
and the ECG of healthy subjects. Therefore, we used a sta-
tistical operator in order to distinguish between features
computed from epileptic and healthy patients. In our case,
we are studying continuous data where we are searching to
show all differences between studied data. Next, the idea is to
use amean-based algorithmbecause the variation of both fea-
tures (ApEn and NRRi) especially the NRRi varies around
the average for normal patients. We only have two groups
of data and neither of them follows the normal distribution
(gaussian distribution), so we need to use a non-parametric
algorithm where we end up with the Mann–Whitney algo-
rithm. In fact, the Mann–Whitney U test will be used to
compare differences between these two independent groups
which test our hypothesis that these two groups are extracted
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Fig. 7 Fuzzy entropy curves of four different patients in the pre-ictal period (1 h before the seizure)

Fig. 8 Sample entropy curves of four different patients in the pre-ictal period (1 h before the seizure)

from a same population (p). Besides. Mann–Whitney U test
can be applied even on a small number of data between 5–20
values and larger group of data (> 20). However, the perfor-
mance of the Mann Whitney algorithm increases with more
input data [26]. Moreover, after applying theMann–Whitney
algorithm, the statistical P value given by the Mann–Whit-
ney algorithm for both features taken from both epileptic
and healthy subjects is less than null hypothesis 0.05 which

means that both distributions are not from the same category,
especially for the NRRi feature distribution.

We also investigated the histogram-distribution of the data
taken from both epileptic and healthy patients. In fact, we
took all the epileptic data studied in this work and all the
healthy patients’ acquisitions and we compared their data
distribution. As can be seen in Figs. 10, 11, 12, 13, there is a
significant difference between NRRi distribution taken from
epileptic and healthy patients. The NNRi value range is from
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Fig. 9 Extraction of time-domain analysis features SDNN using the four acquisitions studied

Fig. 10 The histogram of the ApEn entropy of healthy patients

80 to 160 but for the epileptic patients it ranges from less than
100 up to more than 250. Moreover, for healthy patients, the
value distribution is spread out compared to the epileptic dis-
tribution which is concentrated in value intervals [125–150].
In the same way, as it can be seen in Figs. 10, 11, a huge
difference can be seen when comparing the histogram distri-
bution of the ApEn feature of epileptic and healthy subjects
where the healthy distribution is more spread out compared
to the epileptic distribution. Moreover, the epileptic distribu-
tion is more concentrated around the value 0.8 compared to

the healthy distribution where the concentration of the values
is more spread out in the range of [0.6–0.9].

In fact, further research needs to address the limitations
of the proposed work which includes only a small num-
ber of subjects in the study. Moreover, all patients from the
Siena scalp data base suffer from IAS seizures with only one
patient withWIAS seizure and only one patient with bilateral
seizure. For that reason, no investigations can be made on the
effects of the seizure type on the ECG signal in the pre-ictal
period. In addition, it would be more important to study pre-
ictal and inter-ictal periods of ECG acquisitions taken under
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Fig. 11 The histogram of the ApEn entropy of epileptic patients

Fig. 12 The histogram of the NRRi feature of healthy patients

the same conditions to have more accurate results and con-
tributions not from three separated databases. In addition,
having the clinical details about patients’ medical history,
more information about the patient’s condition and video
monitoring can lead to better explanations of the changes
in the ECG signal and more confidence in the contributions
made by the proposed methodology. We are planning to col-
lect more data about both children and adults to have a deeper
insight into the signal changes resulting from an epileptic
seizure. Nevertheless, another investigation could be done
on the effect of the epileptic seizures in the pre-ictal period

based on the use of other frequency-domain features and
nonlinear feature analysis based on the chaos theory to bet-
ter understand the effect of the epileptic seizure on the ECG
signal. Furthermore, the HRV-based epileptic seizures pre-
diction approach could be proposed in order to quantify the
results of our work and the works that proved the effective-
ness of epileptic seizures on the ECG signal.
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Fig. 13 The histogram of the NRRi feature for epileptic patients

4 Conclusion

In this study, we proposed two new approaches to ensure
the quantification of the significant changes in the pre-ictal
period based on the use of the threshold technique on the STD
curves. Moreover, the STD curves were computed using the
time-domain analysis feature NRRi and the nonlinear fea-
ture ApEn to reflect the high increase and the irregularity of
the ECG signal before epileptic seizures. Using the manual
threshold approach on the IAS seizures taken from the Siena
scalp EEG database, we achieved a 100% sensitivity, a 95%
specificity, and a 96.4% accuracy. However, we achieved
a 100% sensitivity, a 91% specificity and a 94% accuracy
when using the acquisition from the Post-Ictal database. We
achieved a 100% sensitivity, a 97% specificity and 97.5% a
accuracywhen using the acquisitions from the local database.
Furthermore, the proposed approach predicted 58.7%, 57.2,
40%of the seizuresmore than10minbefore onset for the data
taken from post-ictal, local and Siena Scalp EEG database,
respectively. Using the automatic threshold technique, we
could achieve a sensitivity, a specificity, and an accuracy of
85%, 81%, 82%, respectively, using the local database. How-
ever, we achieved a sensitivity of 75%, specificity of 85%
and an accuracy of 82% when using the acquisitions from
the Siena Scalp EEG database. Besides, using the post-ictal
database, we achieved a 90% sensitivity, an 83% specificity
and an 85% accuracy. As a future work, additional ECG
acquisitions will be collected and used to improve the perfor-
mance of the proposed approaches and give more credibility
to the results obtained.
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